2007年湖南卷
数学(文史类)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.不等式的解集是()
A.
B.
C.
D.
2.若是不共线的任意三点,则以下各式中成立的是()
A.
B.
C.
D.
3.设(),关于的方程()有实数,则是的()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
4.在等比数列()中,若,则该数列的前10项和为()
A.
B.
C.
D.
5.在()的二次展开式中,若只有的系数最大,则()
A
B
C
F
A.8
B.9
C.10
D.11
6.如图1,在正四棱柱中,分别是,的中点,则以下结论中不成立的是()
A.与垂直
B.与垂直
C.与异面
D.与异面
7.根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图2).从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是()
A.48米
B.49米
C.50米
D.51米
0.5%
1%
2%
水位(米)
图2
8.函数的图象和函数的图象的交点个数是()
A.1
B.2
C.3
D.4
9.设分别是椭圆()的左、右焦点,是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是()
A.
B.
C.
D.
10.设集合,都是的含两个元素的子集,且满足:对任意的,(,),都有(表示两个数中的较小者),则的最大值是()
A.10
B.11
C.12
D.13
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上.
11.圆心为且与直线相切的圆的方程是
.
12.在中,角所对的边分别为,若,,则
.
13.若,则
.
14.设集合,,(1)的取值范围是;
(2)若,且的最大值为9,则的值是
.
15.棱长为1的正方体的8个顶点都在球的表面上,则球的表面积是
;设分别是该正方体的棱,的中点,则直线被球截得的线段长为
.
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本小题满分12分)
已知函数.求:
(I)函数的最小正周期;
(II)函数的单调增区间.
17.(本小题满分12分)
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率.
18.(本小题满分12分)
如图3,已知直二面角,,,直线和平面所成的角为.
(I)证明;
(II)求二面角的大小.
A
B
C
Q
P
19.(本小题满分13分)
已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是.
(I)证明,为常数;
(II)若动点满足(其中为坐标原点),求点的轨迹方程.
20.(本小题满分13分)
设是数列()的前项和,且,.
(I)证明:数列()是常数数列;
(II)试找出一个奇数,使以18为首项,7为公比的等比数列()中的所有项都是数列中的项,并指出是数列中的第几项.
21.(本小题满分13分)
已知函数在区间,内各有一个极值点.
(I)求的最大值;
(II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式.
2007年普通高等学校招生全国统一考试(湖南卷)
数学(文史类)参考答案
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.D
2.B
3.A
4.B
5.C
6.D
7.C
8.C
9.D
10.B
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上.
11.12.
13.3
14.(1)(2)
15.,三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.解:
.
(I)函数的最小正周期是;
(II)当,即()时,函数是增函数,故函数的单调递增区间是().
17.解:任选1名下岗人员,记“该人参加过财会培训”为事件,“该人参加过计算机培训”为事件,由题设知,事件与相互独立,且,.
(I)解法一:任选1名下岗人员,该人没有参加过培训的概率是
所以该人参加过培训的概率是.
解法二:任选1名下岗人员,该人只参加过一项培训的概率是
该人参加过两项培训的概率是.
所以该人参加过培训的概率是.
(II)解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是
.
3人都参加过培训的概率是.
所以3人中至少有2人参加过培训的概率是.
解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是
.
3人都没有参加过培训的概率是.
所以3人中至少有2人参加过培训的概率是.
A
B
C
Q
P
O
H
18.解:(I)在平面内过点作于点,连结.
因为,所以,又因为,所以.
而,所以,从而,又,所以平面.因为平面,故.
(II)解法一:由(I)知,又,,所以.
过点作于点,连结,由三垂线定理知,.
故是二面角的平面角.
由(I)知,所以是和平面所成的角,则,不妨设,则,.
在中,所以,于是在中,.
故二面角的大小为.
解法二:由(I)知,,故可以为原点,分别以直线为轴,轴,轴建立空间直角坐标系(如图).
因为,所以是和平面所成的角,则.
不妨设,则,.
A
B
C
Q
P
O
x
y
z
在中,所以.
则相关各点的坐标分别是,,.
所以,.
设是平面的一个法向量,由得
取,得.
易知是平面的一个法向量.
设二面角的平面角为,由图可知,.
所以.
故二面角的大小为.
19.解:由条件知,设,.
(I)当与轴垂直时,可设点的坐标分别为,此时.
当不与轴垂直时,设直线的方程是.
代入,有.
则是上述方程的两个实根,所以,于是
.
综上所述,为常数.
(II)解法一:设,则,,由得:
即
于是的中点坐标为.
当不与轴垂直时,即.
又因为两点在双曲线上,所以,两式相减得,即.
将代入上式,化简得.
当与轴垂直时,求得,也满足上述方程.
所以点的轨迹方程是.
解法二:同解法一得……………………………………①
当不与轴垂直时,由(I)
有.…………………②
.………………………③
由①②③得.…………………………………………………④
.……………………………………………………………………⑤
当时,由④⑤得,将其代入⑤有
.整理得.
当时,点的坐标为,满足上述方程.
当与轴垂直时,求得,也满足上述方程.
故点的轨迹方程是.
20.解:(I)当时,由已知得.
因为,所以.
…………………………①
于是.
…………………………………………………②
由②-①得:.……………………………………………③
于是.……………………………………………………④
由④-③得:.…………………………………………………⑤
即数列()是常数数列.
(II)由①有,所以.
由③有,所以,而⑤表明:数列和分别是以,为首项,6为公差的等差数列.
所以,.
由题设知,.当为奇数时,为奇数,而为偶数,所以不是数列中的项,只可能是数列中的项.
若是数列中的第项,由得,取,得,此时,由,得,从而是数列中的第项.
(注:考生取满足,的任一奇数,说明是数列中的第项即可)
21.解:(I)因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根,设两实根为(),则,且.于是,且当,即,时等号成立.故的最大值是16.
(II)解法一:由知在点处的切线的方程是,即,因为切线在点处空过的图象,所以在两边附近的函数值异号,则
不是的极值点.
而,且
.
若,则和都是的极值点.
所以,即,又由,得,故.
解法二:同解法一得
.
因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在().
当时,当时,;
或当时,当时,.
设,则
当时,当时,;
或当时,当时,.
由知是的一个极值点,则,所以,又由,得,故.