学习名师《交换律》有感
围绕“问题导学。提升思维品质”的主题,我学习名师张齐华的了一堂有价值的数学课,教师给予学生的影响是多元而立体的。有知识的丰厚、技能的纯熟,更有方法的领悟、思想的启迪、精神的熏陶。事实上,数学的确拥有这一切,而且,也可能传递这一切。然而,出于对知识与技能的盲目追逐,当今数学课堂忽视了本该拥有的文化气度和从容姿态。知识化、技巧化、功利化思想的不断弥散,让数学思想、方法和精神失却了可能生长的土壤,并逐渐为数学课堂所遗忘,这不能不说是当今众多数学课堂的悲哀。近年来,在观念层面的探讨不少,真正落实到课堂教学实践的却不多。可喜的是,在张老师的这一节课中,我们看到了另一种努力,以及由此而带来的变化。透过课堂,我们似乎触及到了数学更为丰厚的内涵,感受到数学教学可能呈现的更为开阔的景象。
对于“交换律”,一贯的教学思路是:结合具体情境,得出某一具有交换律特征的实例,由此引发猜想,并借助举例验证猜想、形成结论,进而在解释和应用的过程中进一步深化认识。本课,在宏观架构上并未作太大开拓。然而,在保持其整体架构的基础上,这一堂课在更多细节上所给予的突破却是十分显见。我们不妨重历课堂,去找寻这些细节,并探寻细节背后的意蕴所在。由“3+4=4+3”得出“交换两数的位置,和不变”的猜想,似乎再自然不过了。然而,教师略显突兀的介入,以“交换的位置,和不变”的细微变化,确又发人于深思。正如案
例中所提及的,“一个例子究竟能说明什么”,是得出结论?还是仅仅是触发猜想和验证的一根引线?这里关乎知识的习得,更关乎方法的生成,关乎学生对于如何从事数学思考的思考。
“验证猜想,需要怎样的例子”的探讨,更是折射出了张老师独特的教学智慧。曾经,在太多的课堂里,我们目睹这样的情形:学生举例三、四,教师引导学生匆匆过场,似乎也有观察、也有比较、也有提炼。然而,我们却很少琢磨:观察也好、提炼也罢,它究竟该建立在怎样的基石之上再换言之,在“简洁”和“丰富”之间,谁才是“举例验证猜想”时应该遵循的规则。张老师的尝试与表达无疑是对传统教学的一种突破。“举例”不应只追求简约,例子的多元化、特殊性恰恰是结论准确和完整的前提。没有老师适时的点拨与引导,学生如何才能有此深度体验?无此体验,我们如何能说,学生已经历过程,并已感悟思想与方法?
触及我深思的问题还在于,是什么原因触发了这一节课将原来的“加法交换律”置换成了“交换律”?是内容的简单扩张?是教学结构的适度调整?随后的课堂,给了我清晰的答复。“加法结合律”只是一个触点,“减法中是否也会有交换律?”“乘法、除法中呢?”等新问题,则是原有触点中诞生的一个个新的生长点。统整到一起时,作为某一特定运算的“交换律知识”被弱化了,而“交换律”本身、“变与不变”的辩证关系、“猜想-实验-验证”的思考路线、由“此知”及“彼知”的数学联想等却一一获得突显,成为超越于知识之上的更高的数学课堂追求。这何尝不是一种有意义、有价值的探索?
课堂的结尾,我们依然看到了教师对传统保守思路的背叛。确定的、可靠的结论已经不再是这一堂课的终极追求,结论的可增殖性、结论的重新表达、问题的不断生成和卷入,仿佛成为了这堂课最后的价值取向。即便是颠覆原有的结论,也在所不惜。在这里,我们再一次看到了教师对于数学知识的“战略性”忽视,因为,教师心有大气象。
数学是什么,数学可以留下些什么,数学可以形成怎样的影响力?答案并不唯一。但我以为,数学可以在人的内心深处培植理性的种子,她可以让你拥有一颗数学的大脑,学会数学地思考,学会理性、审慎地看待问题、关注周遭、理解世界,这恰是这节课给予我们的最大启迪。而数学的文化特性,恰也在于此。