第一篇:高一数学《直线的点斜式方程》教学反思
高一数学《直线的点斜式方程》教学反思
《直线的点斜式方程》教学反思
教学反思:
这是我在兴宁跟岗学习中,有教学实录的一节课。也是自己感觉上的比较成功的一节课。本节的知识内容是在学生学习了直线的点斜式方程的基础上引进的,通过点斜式方程的学习,学生已具备独立推导的能力。通过自主探究,体验方程的生成过程,通过“设点——找等量关系——列方程——整理并检验”的探究过程,让学生充分体验到了成功的喜悦,也为以后“曲线与方程”的教学做了铺垫。从而 提高了学生分析问题、解决问题的能力,增强了学生的自信心。学生独立思考并在学案上完成,教师点评并表扬学生。另外教学过程中,我留给学生充分的思考与交流的时间,让学生开阔思路,培养学生的逻辑能力,突显强调每种形式方程的特征,并让学生领悟记忆。引导学生小结2斜截式和点斜式方程的适用范围;3斜截式和点斜式方程的特征,并板书方程。
本节课的思想方法:1.分类讨论思想;2.数形结合思想;研究问题的思维方式:1.逆向思维; 2.特殊到一般、一般到特殊的化归思想。并在教学过程中设置在补充的例题练习中有几道易错题,学生在练习中的“错误体验”将会有助于加深记忆,所以可将应用公式的前提条件等学生容易忽略的环节,以便达到强化训练的目的。这样教学设计,不仅关注学生的思考过程,还要关注学生的思考习惯,为了激发学生探究问题的兴趣,通过例题2让学生观察、动手实践,、积极主动的探究,理解斜截式和点斜式方程之间是否可以互化,答案是否唯一。使学生落实基础知识,增强分析和解决问题的能力,同时通过师生共同探究和交流,每一位学生获得了知识和情感的体验。本节的推理逻辑性较强,让学生动手、动脑、动笔去推导方程,让学生参与一个 “开放性例题”的设置,让学生体会到数学的严谨性,并获得数学活动的经验,提高自己的逻辑思维能力。
作为老师,我有必要在一些细节上更加完善地做好细节工作,比如每个环节衔接的打磨等。同时还必须注意对学生综合能力的培养,包括独立发现问题、解决问题,回过头来再寻求更好解决途径的过程。
第二篇:直线方程的点斜式方程教学反思
直线方程的点斜式方程教学反思
灵石一中 曹志福
关于“直线的倾斜角和斜率“的教学设计花了我很长的时间,设计了多个方案,想在”倾斜角“和”斜率“的概念形成方面给予同学更多的空间,也用几何画板做了几个课件,但觉得不是非常理想,以至于到了上课的时间仍旧没有满意的结果。但由于备课的时间还是非常的充分的,上课还是比较游刃有余的。但上是上了,感觉还是有点不好。
其一,对“倾斜角”概念的形成过程的教学过程中,发现普通班和重点班在表达能力上的区别还是比较明显的,当问到“经过一个定点的直线有什么联系和区别时?”普通班所花的时间明显要比重点班多,但这也表明自己的问题设计还缺乏针对性。如果按照“平面上任意一点--->做直线(3条以上)---->说明区别和联系--->加上直角坐标系---->说明区别和联系”的顺序来设计问题,回答起来可能难度更低一点,同时也更加突出直角坐标系的作用。
其二,对通过的直线的斜率的求解教学,通过给出实际问题,引出疑问引起大家的思考的方式会更加自然一些。比如,一开始便推出“比较过点A(1,1),B(3,4)的直线和通过点A(1,1),C(3,4.1)的直线”的斜率的大小”,然后得到直观的感受:直线的斜率和直线上任意两个点的坐标有关系。再推导本问题中的两条直线的斜率公式,最后得到一般的公式。
其三,”不是所有的直线都有斜率”以及斜率公式具备特定前提条件,在学习之处,要指出,但不要过分强调,更符合学生的认知规律,使学生的知识结构能够逐步完善,知识能力螺旋上升。
其四,课堂评价也非常重要。
第三篇:高一数学教学设计:《直线的点斜式方程》
学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。查字典数学网小编准备了高一数学教学设计,供大家参考!高一数学教学设计:《直线的点斜式方程》
一、内容及其解析1.内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课.学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线.本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线.2.解析:直线方程属于解析几何的基础知识,是研究解析几何的开始.从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题.从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础.对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义.从本节来看,学生对直线既是熟悉的,又是陌生的.熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程.直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位.二、目标及其解析1.目标掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程.2.解析①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率.知道建立直线方程就是将确定直线的几何要素用代数形式表示出来.②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率.③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想.④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想.⑤在建立直线方程的过程中,体会数形结合思想.在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想.三、教学问题诊断分析1.学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别.2.学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做.因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质.3.由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的.这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的.四、教法与学法分析
1、教法分析新课标指出,学生是教学的主体.教师要以学生活动为主线.在原有知识的基础上,构建新的知识体系.本节课可采用启发式问题教学法教学.通过问题串,启发学生自主探究来达到对知识的发现和接受.通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神.并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法.2、学法分析改善学生的学习方式是高中数学课程追求的基本理念.学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累.独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程.为学生形成积极主动的、多样的学习方式创造有利的条件.以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯.通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃.让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力.五、教学过程设计问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?[设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率.问题2:建立直线方程的实质是什么?[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来.也就是将直线上点的坐标满足的条件用方程表示出来.引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤.问题2.1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?(过与两点的直线的斜率为)[设计意图]让学生寻找确定直线的条件,体会动中找静.问题2.2如何将上述条件用代数形式表示出来?[设计意图]让学生理解和体会用坐标表示确定直线的条件.用代数式表示出来就是,即.问题2.3为什么说是满足条件的直线方程?[设计意图]让学生初步感受直线与直线方程的关系.此时的坐标也满足此方程.所以当点在直线上运动时,其坐标满足.另外以方程的解为坐标的点也在直线上.所以我们得到经过点,斜率为的直线方程是.问题2.4:能否说方程是经过,斜率为的直线方程?[设计意图]让学生初步感受直线(曲线)方程的完备性.尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔.问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力.问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?[设计意图]引导学生掌握解析几何取点的方法.引导学生求出直线的点斜式方程注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的.为以后学习曲线与方程打好基础.教学中让学生感觉到这一点就可以.不必做过多解释.问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?[设计意图]让学生初步感受解析几何求曲线方程的步骤.①设点---用表示曲线上任一点的坐标;②寻找条件----写出适合条件;③列出方程----用坐标表示条件,列出方程④化简---化方程为最简形式;⑤证明----证明以化简后的方程的解为坐标的点都是曲线上的点.例1分别求经过点,且满足下列条件的直线的方程,并画出直线.⑴倾斜角⑵斜率⑶与轴平行;⑷与轴平行.[设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件.注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角.⑵与的区别.后者表示过,且斜率为k的直线方程,而前者不包括.⑶当直线的倾斜角时,直线的斜率,直线方程是.⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是.练习:1..2.已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为.[设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程.问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程.[设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程.将斜率与定点代入点斜式直线方程可得:说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距.这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程.注(1)截距可取任意实数,它不同于距离.直线在轴上截距的是.(2)斜截式方程中的k和b有明显的几何意义.(3)斜截式方程的使用范围和斜截式一样.问题7:直线的斜截式方程与我们学过的一次函数的类似.我们知道,一次函数的图像是一条直线.你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?[设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质.函数图像是以形助数,而解析几何是以数论形.练习:1..2.直线的斜率为2,在轴上的截距为,求直线的方程.[设计意图]让学生明确截距的含义.3.直线过点,它的斜率与直线的斜率相等,求直线的方程.[设计意图]让学生进一步理解直线斜截式方程的结构特征.4.已知直线过两点和,求直线的方程.[设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔.例2:已知直线,试讨论(1)与平行的条件是什么?(2)与重合的条件是什么?(3)与垂直的条件是什么?说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画.②教学中从两个方面来说明,若两直线平行,则且反过来,若且,则两直线平行.③若直线的斜率不存在,与之平行、垂直的条件分别是什么?练习:问题8:本节课你有哪些收获?要点:(1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别.(2)两种形式的方程要在熟记的基础上灵活运用.总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。希望上面的高一数学教学设计,能受到大家的欢迎!
第四篇:直线点斜式方程公开课心得体会
直线点斜式方程公开课心得体会
岳麓实验中学 曾文龙 我略感压力的公开课在星期三下午终于结束了,感觉好像放下了一颗大的石头,心中无比的轻松。感谢师傅屈卫国老师和梁先军老师对我的悉心指导,这次和师傅同备一堂公开课,对我在教学各个环节都有很大帮助,为自己教学的成长又向前迈出了一步,但自己回过头来反思,还是有很多问题有待改进,现总结反思如下:
一、对一节课上课内容的把握,有没有突出重点。我上的内容是直线的点斜式方程,从上星期接到通知就开始着手准备,我的设计思路是:①先从画直线开始,已知直线上一点和其斜率,可以唯一确定一条直线。②利用斜率公式,探讨直线上点和直线方程的纯粹性和完备性。③知识生成,导出直线点斜式方程。④讨论与坐标轴垂直等特殊情况及点斜式方程公式应用。整体的内容思路得到了师傅的肯定。但对内容的编排设置不太合理,实用性不强,前部分内容理论性太强,在课堂上学生难以理解,后部分例题太集中,与前面脱节,造成练习不到位,为课堂整体高效打了个折扣。师傅屈老师给了我很好的建议,在探究直线点斜式方程的过程中,可由特殊到一般,由一条具体的直线开始,如:过点直线l过点P0(3,2)且斜率为3,点P(x,y)是l上不同于P0的一点,则x、y满足怎样的关系式?得出点斜式方程后,强调以点和斜率求直线方程,反过来已知直线点斜式方程得出直线的斜率和过的已知点。举一反三,重点突出,学生目标明确,上课实效确实很好。
二、对学情的掌握,备学生我还要加强。让学生学有所获的一堂课才是一堂好课,在备课的细节中备学生充分考虑学生情况,一切按照自己的设想,将课件和教案准备好了,甚至还预想上到这一部分时,学生会产生什么样的的问题,其实在心中将课堂已经预演过数遍,在和师傅去探讨,将自己的想法讲出来,师傅点出一些具体数学语言组织与措辞对学生的影响,其实学生上课的困惑往往与老师备课的不到位有联系。在讲点斜式特殊情况:直线与x轴平行时,求点斜式方程。原先我备课时是:直线的倾斜角为0°时,求直线方程。看似一样,但学生理解不同,倾斜角本身就是学生难理解的概念,而讲与x轴平行更直观,学生更容易接受。备课细致到位,充分考虑学生的认知水平和学情,备好一堂课才是上好一堂课的基础。
三、树立课堂信心,对课堂节奏的把握,学生动态的理解,我还有很多需要体会与学习的地方。如何在课堂上与学生同步,是我上完公开课后的第一点反思的地方。虽然前面花了时间精心去准备,自己对上好这课堂也是信心十足,但上完后,仔细一回思,感觉整个课堂都是我在牵着学生的鼻子走,一切都是按照自己预先的设想来,虽然也有照顾到学生,但整体还是自己预设性太强。以后的课堂还要进一步考虑学生的发展,其实上课时可以将自己定位成学生,假如你和学生一起来探究这个问题,你会怎么做。从学生的思维和角度出发,从学生上课产生的疑问出发。和学生同步,也体现了复合式的师生主体主导观。
另外还有一些问题,上课前段有点紧张,状态不到位,上课语速过快等,评课老师也给出一些很中肯的意见,对学生上课表现、展示及时的评价,提问的语言组织技巧。这些都是我以后需要努力的方向。
上课确实是一门遗憾的艺术,通过这次“师徒同备一堂课”活动,我真的收获很多。教学真的是用心、用脑的大胆实践过程。在每一个教学环节中多动脑筋,多实践,多反思,课才能上得越来越好!
第五篇:直线点斜式方程公开课教案
直线的点斜式方程
备课人:曾文龙
一、教学目标 知识与技能:(1)理解直线方程的点斜式的形式特点和适用范围;
(2)能正确利用直线的点斜式公式求直线方程。
过程与方法:(1)在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;(2)学生通过探究直线点斜式方程形成过程,锻炼严谨的数学思维。
情感态度价值观:进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
二、教学重难点
重点:理解并掌握直线的点斜式方程形式特点和适用范围。难点:能正确利用直线的点斜式方程求直线方程
三、教学过程 Ⅰ 问题提出
1.已知直线上两点P能否求出直线的斜率?特别的什么样的直线 1(x1,y1),P2(x2,y2),没有斜率?
ky2y(x1x2)
x2x1直线垂直于x轴(即倾斜角为90°)时斜率不存在
2.在平面直角坐标系中,已知直线的斜率能否确定其位置? 3.如果不能,再附加一个什么条件,直线的位置就确定了?
已知直线上的一点和直线的倾斜角(斜率)可以唯一确定一条直线。
4.既然直线上一点P0(x0,y0)和其斜率k可以唯一确定一条直线,那么能否用它们来 表示这条直线的方程? Ⅱ新知探究
直线的点斜式方程
引例
已知直线l过点P0(3,2)且斜率为3,点P(x,y)是l上不同于P0的一点,则x、y 满足怎样的关系式?
y23 x3归纳
已知直线l经过点P0(x0,y0),且斜率为k,设点P(x,y)是直线l上不同于P0的任 意一点,那么x、y应该满足什么关系式?
yy0yyk(xx)k00xx0OyPP0x问题1
直线l上点P(x,y)满足kyy0,即yy0k(xx0),那么直线l上每一
xx0个点的坐标都满足这个方程吗?
问题2
满足方程yy0k(xx0)的点是否都在直线l上?为什么?
知识生成:我们把方程yy0k(xx0)为叫做直线的点斜式方程,它表示经过点
P0(x0,y0),斜率为k的一条直线。
点斜式
yy0k(xx0)公式特点:同类坐标之差,k与横坐标相乘 几何特点:点P0和斜率k确定直线
适用范围:已知点和斜率,求直线方程,斜率不存在时不能用。练一练:①求经过点P(1,2),斜率为3的直线点斜式方程。
解
将点P(1,2),斜率k3代入点斜式方程得
y23(x1)所以直线方程为:y23x3
②求过点P(2,4),且倾斜角为45的直线点斜式方程。
解 斜率ktan451,将点P(2,4)代入点斜式方程得
y4x2
③已知直线方程为y33(x4),则这条直线经过的已知点及倾斜角分别是
A(4,3);60° B(-3,-4);30° C(4,3);30° D(-4,-3);60°
④ 方程yk(x2)表示一条什么样的直线?
经过点(2,0)且不垂直x轴的直线
想一想:经过点P0(3,2),且与x轴平行的直线方程是什么?
分析:此时直线倾斜角为0,ktan00,所以直线方程为y20,即y2,归纳
当直线l与y轴垂直时,直线的方程是什么?
y
yy00或yy0 问题3
x轴所在的直线方程是什么?
y0
想一想:经过点P0(3,2),且与y轴平行的直线方程是什么?
OP0x
分析:此时直线倾斜角为90,直线斜率不存在,方程不能用点斜式来表示,直线方程
y 为 x3
归纳
当直线l与x轴垂直时,直线的方程是什么?
P 0
xx00或xx0 问题4
y轴所在的直线方程是什么?
x0
问题5 所有直线是否都可以用点斜式表示?哪些直线不行?
当直线斜率不存在时,不能用点斜式表示
Ⅲ 例题讲解
例1 直线l经过点P1(2,3),P2(1,6),求直线方程?
例2 求下列直线的方程
(1)经过点A(2,5),且与直线y2x7平行的直线方程(2)经过点B(1,1),且与x轴平行的直线方程(3)经过点C(1,1),且与x轴垂直的直线方程
练习:教材P95页 1,2 作业:教材P100页习题3.2 A组(1)、(2)、(4),5, 10 Ⅳ小结
1.本节课我们学习了哪些知识点?
2.直线点斜式、斜截式的形式特点和适用范围是什么?
点斜式:
O x yy0k(xx0)
xx00或xx0 当斜率不存在时:直线方程为: