第一篇:六年级数学(圆柱、圆锥、比例)举一反三练习
六年级数学(圆锥与圆柱、比例)举一反三练习题
圆柱与圆锥
例1妈妈把一些土豆放在底面直径是20厘米的圆柱形容器里清洗,这时容器里的水深30厘米;拿出土豆后,水面下降了3厘米。这些土豆的体积是多少立方厘米?
思路导航
要求土豆的体积,只要求出下降的这部分水的体积。水在容器中的形状是圆柱体,底面直径20厘米,高
3综合练习
1、一个底面直径为16厘米的圆柱形
量杯,里面装水。当把一个铁球浸没在量杯的水中时,量杯内水的高度由原来的15厘米上升到18厘米。求铁球的体积。比例
例4博物馆展出了一个高为29.6厘米的秦代将军俑模型,他的高度与实际高度的比是1:10.这个将军的实际身高是多少?
思路导航
要求这个将军的实际高度是多少,我们可以设这个将军的实际高度是X厘米,根据条件列出比例式,再解比例。
解:设这个将军的实际高度是X厘米。厘米。
解:3.14×(20÷2)²×3=3.14×100×3=942(平方厘米)答:这些土豆的体积是942立方厘米。
练习1一个底面直径是12厘米的圆柱形水桶里装着水,把一个底面直径是8厘米、高10厘米的铁制圆锥体完全浸在水中。当圆锥体从桶中取出后,桶内的水将下降多少厘米?
例2把一块棱长为6厘米的正方体橡皮泥,捏成高为10厘米的圆锥体。捏成的圆锥体的底面积是多少? 思路导航
要求捏成的圆锥体的底面积是多少,实际上只要明白这个圆锥的体积就是这个正方体橡皮泥的体积。解:6³×3÷10=64.8(平方厘米)答:捏成的圆锥体的底面积是64.8平方厘米。
练习2把一个底面积是6.28平方分米、高9分米的圆柱体铁块,熔铸成一个底面积是12.56平方分米的圆锥体。圆锥体的高是多少分米?
例3 把一个底面周长为9.42厘米的圆柱体,斜着截去一段(如图)。求剩下图形的体积是多少。(单位:厘米)
思路导航
要求剩下的图形的体积是多少,实际上可以用两个同样的图形拼成一个大圆柱,只要求出大圆柱的体积,就不难求出这个图形的体积了。
解:9.42÷3.14÷2=1.5(厘米)3.14×1.5²×(4﹢6)÷2=70.65÷2=35.325(立方厘米)答(略)
练习3求下图钢材的体积。(单位:厘米)
2、把一个底面半径为5分米、高为9.6
分米的圆锥形零件,改铸成底面半径为4分米的圆柱形零件。铸成零件的高是多少分米?
3、一个直角三角形的三边分别是3厘
米、4厘米、5厘米。如果以边长为5厘米的一边作轴,将三角形旋转一周,得到什么形体?它的体积是多少?
4、砌一个圆柱形的沼气池,底面直径
是3米,深2米。在池的周围与底面抹上水泥。
(1)沼气池的占地面积是多少平
方米?
(2)抹水泥部分的面积是多少平
方米?
(3)这个沼气池可以容纳多少立
方米的沼气?
29.6:X=1:10
X=296 答:(略)练习4 100千克花生可榨油40千克。(1)现在要榨油8.4吨,需要花生多少吨?
(2)现在有花生5000千克,可榨油多少千克?
练习5一种农药,药液与水的比是1:250。
(1)现有药液80千克,需加水多少千克?
(2)现有水300千克,可配制农药多少千克?
练习6一个梯子的面积是12平方米,它的上底是3厘米,下底是5厘米,高是多少厘米?(列方程解答)
练习7小明下午某一时间在教学楼前测得自己的身高与影子的长度是2:3,这是教学楼的影子长18米。教学楼的高度是多少米?
第二篇:六年级数学圆柱、圆锥和球
第二单元:圆柱、圆锥和球
教学内容:圆柱的认识。教学目标:
1.使学生认识圆柱,掌握圆柱的特征。
2.使学生认识圆柱的底面、侧面和高。教学过程:
1.复习引新。
我们以前学过的正方体、长方体都是由平面围成的立体图形。今天,我们再来研究一种新的立体图形——圆柱。
2.学习新知。
教师可以出示一些圆柱的实物,也可以让学生把自己准备的圆柱实物拿出来一起来研究。
教师可以提出以下的问题:
你还能举出生活中圆柱的例子吗?
[订正:饭店门前的柱子、灯管、药瓶、易拉罐、铅笔等。]
同学们说的这些物体的形状都是圆柱体,简称圆柱(本书所讲的圆柱都是直圆柱)。
教师拿出一个形状是圆柱的物体,请学生观察。
请同学们思考下面的问题:
(1)圆柱的上、下两个面是什么图形?
(2)用手摸一摸圆柱周围的面,你发现了什么?
(3)圆柱两个底面之间的距离叫什么?
[订正:(1)圆柱的上、下两个面叫做底面。它们是完全相同的两个圆。
(2)圆柱有一个曲面,叫做侧面。
(3)圆柱两个底面之间的距离叫做高。]
教学圆柱的认识时,要让学生拿着圆柱形物体观察和摆弄,可以通过看一看,摸一摸等直观方法,同长方体的表面进行比较,使学生认识到两者之间的差别,从而认识圆柱的侧面是曲面。
这时,教师可以让学生拿出剪子,和教师一起来把罐头盒的商标纸像下图所示那样,沿着它的一条高剪开,再打开,看看商标纸是什么形状。
并提问:你发现了什么?
[订正:让学生发现到展开的商标纸是一个长方形。圆柱的侧面是一个曲面,可以展开成一个长方形或是一个正方形平面。]
让学生观察:将这张长方形的纸包在圆柱的侧面上。
并提问:
(1)长方形的长与圆柱底面的周长有什么关系?
(2)长方形的宽与圆柱的高有什么关系?
让学生分析、比较,概括出:长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高。
3.巩固练习。
(1)说一说,你见到过哪些物体是圆柱形的。
[订正:药盒、纸筒、铁棍、水管、烟囱等。]
(2)指出下图中哪个是圆柱体。
[订正:①不是 ②是 ③不是 ④是]
4.综合提高性练习。(供学有余力的学生完成)
按照课本第147页的图样,做一个圆柱体,再量出它的底面直径和高各是多少厘米。
5.质疑。
今天我们学习了什么?圆柱侧面展开是什么图形?
6.布置作业。(略)
课后反思:本节课中的练习有利于培养学生的创新精神和实践能力。
圆柱的表面积
教学内容
教材33页、34页例
1、例
2、例3及做一做,练习七第2-5题。素质教育目标
(一)知识教学点
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
(二)能力训练点
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算。教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题。教具学具准备
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。教学步骤
一、铺垫孕伏
1.口答下列各题(只列式不计算)。
(1)圆的半径是5厘米,周长是多少?面积是多少?
(2)圆的直径是3分米,周长是多少?面积是多少?
2.长方形的面积计算公式是什么?
3.教师出示圆柱体模型,指同学说出它有什么特征?
二、探究新知
1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。
(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。
(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。
2.教学例1
(1)出示例1,指同学读题,找出已知条件和所求问题。
学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。
板书:3.14×0.5×1.8
=1.75×1.8
≈2.83(平方米)
答:它的侧面积约是2.83平方米。
(2)反馈练习:完成做一做41页第1题。
学生独立解答,然后订正。
3.教学圆柱的表面积
(1)教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。
(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
4.教学例2
(1)投影片出示例题
2、圆柱的几何图形和表面积的展图。
(2)指同学读题,找出已知条件和所求问题。
(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。
(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。
教师巡视指导,注意检查学生的计算结果和计量单位是否正确。
做完后订正,订正时让学生说出有关的计算公式。
(5)反馈练习:完成做一做第2题。
指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。
5.教学例3
(1)出示例3,指名读题,找出已知条件和所求问题。
(2)教师提示:解答这道题应注意什么?
启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。
(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。
(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。
(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。
(6)“四舍五入”法与“进一法”有什么不同。
通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。而进一法也是看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。
6.阅读课本33页、34页。
三、巩固发展
1.完成练习七第2题。
指两名学生板演,教师巡视指导,然后订正。
2.完成练习七第3题的前两题。
学生在练习本上做,教师巡视指导,然后订正。
3.完成练习七第5题。
(1)每组一个茶叶筒,学生分组进行测量。
(2)教师巡视,指导学生测量的方法。
(3)学生独立解答。(让学生分别计算出有盖的和无盖的茶叶筒的表面积)然后订正。
四、全课小结
教师:这节课我们所研究的例
1、例
2、例3都是有关圆柱表面积的计算问题。(教师板书课题:圆柱的表面积)圆柱的表面积在实际应用时要注意什么呢?
教师引导学生归纳出:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求一个侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。
五、布置作业练习七第3题的第3小题、第4题。
课后反思:本课时的教学通过师生的共同参与,让学生体验了数学的探索性和挑战性。
圆柱的体积
教学内容
教材36、37页例
4、例5及做一做,练习八第1、2题。素质教育目标
(一)知识教学点
1.理解圆柱体体积公式的推导过程,掌握计算公式。
2.会运用公式计算圆柱的体积。
(二)能力训练点
1.能运用圆柱体的体积公式解决一些实际问题。
2.通过圆柱体体积公式的推导,培养学生的分析推理能力。
(三)德育渗透点
通过把圆柱体切割后,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。教学重点
圆柱体体积的计算。教学难点
理解圆柱体体积公式的推导过程。教具学具准备
1.推导圆柱体体积的圆柱体教具一套,学生学具每人一套。
2.投影片、电脑软件。教学步骤
一、铺垫孕伏
1.提问:
(1)什么叫体积?怎样求长方体的体积?
(2)圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?
2.导入:
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的知识长方形来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积)
二、探究新知
1.教学圆柱体的体积公式
(1)教师演示:
同学们看老师手中的这个圆柱,我先把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。
下面请同学们拿出自己的学具动手拼一拼,看拼起来是什么形体。
(2)学生操作(教师要注意巡视指导)
(3)启发学生观察、思考、讨论:
①圆柱体切开后可以拼成一个什么形体?(近似的长方体)
②通过刚才的实验你发现了什么?(教师要注意启发、引导)
a.拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。
b.拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。
c.近似长方体的高就是圆柱的高,没有变化。
(4)教师演示,学生观察。
同学们,刚才我们把圆柱的底面平均分成了16份,切割后再拼起来,拼成了一个近似的长方体,下面请同学们仔细观察:(教师边利用电脑出示图形边提问)
①如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
②如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
③如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
(利用电脑使学生直观地认识到,分的份数越多,拼起来就越近似于长方体)
(5)启发学生说出通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形体越近似于长方体。
②平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
(学生回答时,教师要注意启发、点拨。如果学生回答有困难,可把演示的三个近似的长方体,放在同一画面,让学生观察比较)
(6)启发学生思考回答:
为什么要把圆柱体拼成近似的长方体?你从中发现了什么?
①圆柱体与近似的长方体,形状不同,体积相同。
②我们学过长方体的体积公式,如果把圆柱体转化成近似的长方体,圆柱体的体积就可以计算了。
(7)推导圆柱的体积公式:
①学生分组讨论:圆柱体的体积怎样计算?
②学生汇报讨论结果,并说明理由。
因为长方体的体积等于底面积乘以高。(板书:长方体的体积=底
↓
面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积
↓),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘以高。(板书:=、×)
③用字母表示圆柱的体积公式。(板书:V=sh)
④启发学生回答:求圆柱的体积必须具备哪两个条件?
(8)反馈练习:
口答,只列式不计算:
①底面积是10,高是2,体积是()
②底面积是3,高是4,体积是()
2.教学例4。
(1)出示例4。
(2)学生独立进行计算。(教师巡视,注意发现学生计算中存在的问题)
(3)订正。(如发现有50×2.1的,让学生板演讲解,使学生自己明白错误的原因,从而加深印象。如果发现计算没有出现错误,也可让学生板演,并正确地表述)
(4)反馈练习:完成38页做一做第1题。
一名学生在小黑板上做,其余学生在练习本上做,然后订正。
3.启发学生思考回答:计算圆柱的体积,还可能有哪些情况?(学生回答时,要让学生说出计算思路)
(1)已知圆柱的底面半径和高,求体积。
(2)已知圆柱的底面直径和高,求体积。
(3)已知圆柱的底面周长和高,求体积。
反馈练习:完成38页做一做第2题,学生口述解题思路,不计算。
4.教学例5
(1)出示例5。
(2)引导学生分析题意:
①这道题已知什么?求什么?
②要求水桶的容积,应先求什么?再求什么?
(3)求水桶的底面积:(学生在练习本上解答,然后订正)
板书:(1)水桶的底面积:
(4)求水桶的容积:(让学生填在书上的空白处,然后订正)
板书:(2)水桶的容积:
3.14×25
=7850(立方厘米)
≈7.9(立方分米)
答:这个水桶的容积大约是7.9立方分米。
5.阅读课本36页、37页。
三、巩固发展
1.完成练习八第1题。
投影出示题目内容,学生口答。
2.完成练习八第2题的第1小题。
学生独立解答,集体订正,并说解题思路。
3.一个圆柱形水池,半径是10米,深1.5米。这个水池占地面积是多少?水池的容积是多少立方米?
学生独立解答,然后订正。
四、全课总结
通过本节课的学习,你有什么收获?(启发学生从两个方面谈:圆柱体体积公式的推导方法和公式的应用)
五、布置作业 练习八第二题的后两个小题。
课后反思:本节课进一步发展了学生的空间观念,而且还进一步提高了学生学习数学的兴趣。
圆 锥
教学内容:认识圆锥 圆锥的体积。教学目标:
1.使学生认识圆锥,掌握它的特征;认识圆锥的底面和高。
2.使学生理解并掌握圆锥体体积的计算公式,并能正确计算圆锥体体积。
3.通过操作、观察,发展学生的空间思维能力,培养学生的观察能力,学会解决一些与计算圆锥形物体的体积有关的实际问题。教学过程:
1.复习旧知识,引出新问题。
(1)出示圆柱体。
这是什么物体?它的体积怎样计算?
(2)投影出示圆锥体。(先将第一组和第二组图重合在一起,然后再抽拉出第一组成为透视图。)
上面这些物体的形状都是圆锥体,简称圆锥。
(3)出示圆锥模型。
请同学们观察圆锥有哪些特点。
圆锥的底面是个圆,圆锥的侧面是个圆曲面。从圆锥的顶点到底面圆心的距离是圆锥的高(用h表示)。
请同学们阅读课本,自学测量圆锥高的方法。再按照书上介绍的步骤将圆锥模型的侧面展开,就能得到一个扇形(如下图)。
2.指导探索圆锥体积计算公式。
刚才同学们认识了圆锥体,圆锥体的体积是多少?下面我们就共同研究一下圆锥体体积的计算方法。
引导学生把圆锥体同与它等底等高圆柱体联系起来,教给操作方法。
让学生拿出已经准备好的圆柱体、圆锥体、沙土,请同学们利用手中的学具探讨圆锥体积计算方法,看圆柱和圆锥有什么关系。
圆柱和圆锥同底等高,将空圆锥体装满沙子,向空圆柱体倒了三次正好装满。圆柱体体积是和它同底等高圆锥体体积的3倍。也可以说,圆锥体积
引导学生观察、比较、讨论。
(1)圆锥体和圆柱体的高相等、底相同,它们的体积有什么关系?
学生经过认真观察、讨论,师生归纳:
圆柱的体积=底面积×高 V=Sh
通过学具的操作、演示,注意渗透联系的思维方法和同底等高的思想,并通过观察、比较,找到圆锥和圆柱之间的联系,从而使学生在参与中获得知识。
3.巩固知识,运用公式。
(1)教师出示刚才演示过的学具圆锥体,提问:要求这个圆锥体的体积,必须知道什么条件?
[订正:圆锥的底面积和高,或圆锥底面的半径和高。]
请学生到前面量出圆锥教具的底面半径和高,然后让全班学生在练习本上求出该圆锥体的体积。
(2)一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
=76(立方厘米)
答:这个零件的体积是76立方厘米。]
(3)一个圆锥的底面面积是 25平方分米,高是 9分米,它的体积是多少?
答:它的体积是75立方分米。]
(4)一个圆锥的底面直径是20厘米,高是9厘米,体积是多少?
答:它的体积是942立方厘米。]
4.综合提高性练习。(供学有余力的学生完成)
自己动手做一个圆锥,你能想办法算出它的体积吗?说说侧量和计算的方法。
[订正:通常先用软尺量出底面圆的周长,再求出底面半径和面积,然后用学过的方法测量高(或其他可行的方法)。这样就可以求出圆锥的体积。]
5.质疑。
今天我们学习了什么?说一说,如何计算出圆锥的体积?
6.布置作业。(略)
课后反思:学生解决实际问题的能力有所提高。
圆锥的体积
教学内容
教材42-43页 例2及做一做,练习九3-5题。素质教育目标
(一)知识教学点
1.使学生理解求圆锥体积的计算公式。
2.会运用公式计算圆锥的体积。
(二)能力训练点
1.能运用圆锥体积公式解决一些实际问题。
2.通过圆锥体积公式的推导实验,增强学生的操作能力和观察能力。
(三)德育渗透点
通过圆锥体积公式推导的教学,引导学生探索知识的内在联系,渗透转化思想。教学重点
圆锥体体积计算公式的推导过程。教学难点
正确理解圆锥体积计算公式。教具学具准备
1.每组学生准备两个大小不等的圆柱体容器和两个大小不等的圆锥体容器(其中有一个圆柱体容器和圆锥体容器等底等高)。
2.投影仪、投影片 教学步骤
一、铺垫孕伏
1.提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。
2.导入:
同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)
二、探究新知
1.指导探究圆锥体积的计算公式。
(1)教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒入圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量、看它们之间有什么关系,并想一想,通过实验你发现了什么?
(2)学生分组实验:(教师要注意指导学生实验操作中的技巧问题)
(3)学生汇报实验结果:(边演示边说明)
①圆柱和圆锥的底相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。
②圆柱和圆锥的底不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。
③圆柱和圆锥的底相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。
„„
(4)最后引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍,或圆锥的体积是和它等底等高圆柱体积的1/3。
(5)引导学生推导圆锥的体积公式:
板书:
(6)启发学生思考:要求圆锥的体积,必须知道哪两个条件?
(7)反馈练习:
口答,只列式不计算:
圆锥的底面积是5,高是3,体积是()
圆锥的底面积是10,高是9,体积是()
2.教学例1
(1)投影出示例1。
(2)学生独立计算,并把计算结果填在课本上,然后订正。
板书:例1
答:这个零件的体积是76立方厘米。
(3)反馈练习:完成课本44页做一做第1题。
学生在练习本上做,集体订正。
3.启发学生思考讨论:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)(学生回答时,要让学生说出计算思路)
(1)已知圆锥的底面半径和高,求体积。
(2)已知圆锥的底面直径和高,求体积。
(3)已知圆锥的底面周长和高,求体积。
4.反馈练习:完成课本44页做一做第2题。
一名学生板演,其他学生在练习本上做,订正时让学生说明解题思路。
5.教学例2
(1)投影出示例2,引导学生分析题意:
①这道题已知什么?求什么?
②要求小麦的重量,必须先求什么?
③要求小麦的体积应怎么办?
④这道题应先求什么?再求什么?最后求什么?
(2)学生独立解答,然后把计算的步骤填写在课本50页例2的空白处,最后集体订正。
板书:(1)麦堆底面积:
=3.14×4
=12.56(平方米)
(2)麦堆的体积:
12.56×1.=15.072(立方米)
(3)小麦的重量:
735×15.072
=11077.92
≈11078(千克)
答:这堆小麦大约重11078千克。
(3)教师说明:小麦每立方米的重量随着含水量的大小而不同,要经过测量才能确定,735千克并不是一个固定的常数。
(4)教学如何测量麦堆的底面直径和高。
①启发学生根据自己的生活经验来讨论、谈想法。
②教师补充介绍。
a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径。也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径。
b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得。(投影出示示意图)
6.阅读课本44-45页。
三、巩固发展
1.完成练习九第3题。
指定3名同学做在小黑板上,其他同学在练习本上做,做完后订正。
2.完成练习九第5题。
投影出示题目,学生独立填完,然后订正。订正时让学生讲出相对应的计算公式。
3.判断对错,并说明理由。
(1)圆柱的体积相当于圆锥体积的3倍。()
(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2∶1。()
(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米。()
四、全课小结
通过本节的学习,你学到了什么知识?(引导学生从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
五、布置作业练习九第4题。
课后小记:在本节课的课堂教学中让学生合作探究,发现规律,激发了学生的学习兴趣。不足之处是学生在计算中马虎现象太严重。
球(选学内容)
教学内容:教科书第46~47页的内容。
教具准备:教师演示用的球模型一个,最好是空心的,打开后将一个半球的平面用纸粘牢,并用两条线段表示球的两条直径相交于一点上(如右图)。也可以用其他可以切开的球形物体代替,如把一个近似球形的萝卜削成球状。地球仪一个,米尺一把,切刀一把,夹板两块;每个学生准备一个球形物体,及一个可以切开的球形物体,切刀一把。
教学过程:
一、复习
1.复习圆的特征。
出示圆的几何图形。然后向学生提问:
(1)圆的中心叫什么?
(2)指名画出圆的半径,用字母表示。
(3)指名画出圆的直径,用字母表示。
(4)圆的直径与半径有什么关系?
学生回答后教师板书:
直径=半径的2倍
d=2r
2.指名说出下列各立体图形的名称以及它们的特征。(着重说出每个立体图形是由几个什么样的图形围成的。)
二、新课
1.导入课题。
教师说明:我们已经认识了长方体、正方体、圆柱和圆锥这几种立体图形,了解了它们的特征。今天我们再来认识一种立体图形——球。
板书课题:球。
2.研究球的特征。
教师逐个出示乒乓球、皮球、排球、足球、滚珠等实物,让学生观察它们的形状有什么共同点。然后,指出它们都是球。现在我们来研究球的特点。
(1)认识球面。
请学生把自己搜集的球拿出来,放在手心上,用另一只手摸一摸。教师提问:你有什么感觉吗?它与长方体、正方体、圆柱、圆锥的区别在什么地方?
在学生讨论的基础上,教师说明:球的表面不像长方体和正方体那样有几个平面,也不像圆柱和圆锥那样有平面也有曲面,而是只有一个曲面,这个曲面叫做球面(板书:球面)。
(2)通过实验认识球的重要特征。
教师说明:除去球面不同于我们学过的其他立体图形以外,球还有什么更重要的特征吗?下面我们一起来做个实验,看谁能有所发现。
①在两块互相平行的木板中间夹一个大球。(见教科书第53页图)请一名学生将米尺的零刻度对准一块夹板的内边缘,看另一块夹板的内边缘对准的是哪一个刻度,将这个刻度报告给大家。
②教师一边轻轻转动夹板中间的球(注意不要碰撞夹板),一边请学生注意观察米尺的刻度,让刚才看刻度的学生再次向大家报告米尺的刻度。
③提问:你发现两块木板间的距离有什么变化吗?学生回答后,教师继续提问:“你知道这是什么原因吗?”(引导学生回答,球面和两块木板相交的两个点之间的距离总是相等的。)
(3)认识球心、球的半径和直径。
①教师仿照教科书在黑板上画出球的直观图。指出:“球和圆类似,也有一个中心。”然后在直观图的中心画一个点,说明它叫做球心。(板书:球心)并用字母“O”表示。教师把球的模型平均分成两半(或把削成球状的萝卜平均切成两半,指出球心的位置)。
②两次出示半球模型,指出球的半径,然后指名学生用米尺量一量半径的长度,提问:“想一想,球有多少条半径?”
③教师边在直观图上描画,边口述:“通过球心,并且两端都在球面上的线段,叫做球的直径。”让学生在半球模型上指出哪些是直径。
提问:球的直径有多少条?
指名测量球的直径的长度,然后提问:
“球的直径长度都相等吗?”
“球的直径长度和半径长度有什么关系?”
引导学生回答球的直径长度等于半径长度的2倍。教师将复习圆的知识时板书的“直径=半径的2倍”及“d=2r”下面各画一条红线,强调球的直径与半径的关系和圆的直径与半径的关系相同。
提问学生:你能说明刚才转动木板中间的球,两块木板间的距离没有变化的原因吗?引导学生回答:因为两块互相平行的木板间夹的球和木板相交的两点之间的长度都是通过球心的直径的长度,这些直径的长度都相等,所以在夹板中转动球时,不会改变两块夹板中间的距离。
④研究把球切开的截面形状和大小。
教师举起一个削成球状的萝卜,用切刀随便切一刀,将截面展示给学生。提问:把一个球形物体切开,切开的面是什么形状?
在学生回答后,教师再任意切一刀(但是不与先切的截面相交),又出现了圆形截面,再给学生看,提问:
想一想:怎样切得到的圆的面积最大?用你自己的球形物体试试看。
学生操作,教师注意巡视,了解情况,请一名操作正确的学生汇报自己的实验结果,阐述观点,教师同时进行演示。得出:通过球心切开时,得到的圆的面积最大。
3.介绍地球仪。
(1)教师说明我们居住的地球,它的形状就是一个近似的球。
(2)观察地球仪。
教师出示大地球仪,学生如果有地球仪也可以拿出。指出地球仪上哪一条线是赤道(可以把地球仪的赤道用红纸条围出)。赤道绕地球一周是一个近似的圆。
(3)计算赤道周长。
教师说明赤道是绕地球一周所围成的圆,半径大约是6400千米。让学生独立在练习本上计算出赤道一周大约长多少千米,然后集体订正。
三、小结和练习
1.提问:
“今天我们学习了什么新知识?”
“球有什么特点?什么是球的半径?什么是球的直径?”
“说说你见到过的球形物体的名称。”
2.做第47页“做一做”第2题。
先让学生思考如何解答,再进行实物操作,看看自己想出的答案是否正确。
课后反思:本课体现了让学生在现实情境中体验和理解数学的教学理念,使学生在生动活泼的情境中掌握了必要的基础知识和基本技能。
第三篇:六年级数学圆柱圆锥练习题
“圆柱圆锥”练习题
姓名成绩
一、填充题:
(1)一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的(),圆柱的体积是圆锥体积的().
(2)一个直圆柱底面半径是1厘米,高是2.5厘米。它的侧面积是()平方厘米。
(3)一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是()厘米。
(4)一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。这个圆锥体的高是()分米。
(5)一个圆柱底面周长是6.28分米,高是1.5分米,它的表面积是()平方分米,体积是
()立方分米。
(6)一个圆锥体的底面周长是12.56分米,高是6分米,它的体积是()立方分米。
(7)一个圆锥体底面直径和高都是6厘米,它的体积是()立方厘米。
(8)一根长2米的圆木,截成两段后,表面积增加48平方厘米,这根圆木原来的体积是()立方厘米。
(9)一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是()立方厘米。
(10)一个圆锥的底面直径是圆柱底面直径的,如果它们的高相等,那么圆锥体积是圆柱体的()。
(11)圆锥的底面半径是6厘米,高是20厘米,它的体积是()立方厘米。
(12)等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米.
(13)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆柱的体积是()立方分米,圆锥的体积是()立方分米.
(14)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米。
(15)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。
(16)一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是()分米。
第四篇:六年级数学下册圆柱圆锥专项练习-苏教版
六年级数学下册圆柱圆锥专项练习
姓名:
得分:
一、填空。
1.5080立方分米=()立方米()立方分米
3升50毫升=()升
2.8平方米=()平方厘米
27毫升=()立方分米
2.把一个圆柱体的侧面展开,得到个长31.4厘米、宽10厘米的长方形。这个圆柱体的侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米。
3.等底等高的圆柱和圆锥,它们的体积之差是6.28
dm³,体积之和是()dm³。
4.一个圆柱和一个圆惟,体积相等,高也相等,圆锥底面积为24平方厘米,圆柱的底面积为()平方厘米,如果它们的体积和底面积都相等,那么当圆柱高是3厘米时,圆锥的高应该是()厘来,5.把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体(如图),表面积比原来增加了200平方厘米,已知圆柱高20厘米,圆柱的体积是()立方厘米。
6.以一个边长是10厘米的正方形的一条边为轴旋转一周,它的体积是()立方厘米;以一个直角边是6厘米的等腰直角三角形的一条直角边为轴,旋转一周它的体积是()立方厘米。
7.在一个高24厘米的圆锥形量杯里装满了水,如果将这些水倒入与它等底的圆柱形量杯中,水面高()厘米。
8.把一个棱长是10
分米的正方体木块削成一个最大的圆柱,需要削去()立方分米的木块。
9.自来水管的内直径是2cm,水管内水的流速是每秒8cm,一位同学去洗手,走时忘记关掉水龙头,5分钟浪费()升水。
10.有一个圆柱形玻璃容器,内直径是20厘米,它里面盛有一些水,浸入一个圆锥形铁块(铁块完全被淹没)后水位上涨0.3厘米,这个铁块的体积是()立方厘米。
11.把一根长4米的圆柱形的钢材截成两根,表面积增加了0.28平方分米,如果每立方分米钢材重7.8千克,这根钢材重()千克。
12.一根圆柱形的木料长6米,把它锯成4段小圆柱,表面积增加了12平方分米,这根木料的体积是()立方分米,如果锯成4段用了12分钟,那么用同样的速度把它锯成8段要用()
分钟。
二、选择。
1个圆柱的侧面展开是一个正方形,这个圆柱的底面半径和高的比是()
A.1:πB.1:2πC.:1
D2π:1
2.把一段重9千克的圆柱形钢材截成一个和它等高等底的圆锥体零件,截去部分重()千克。
A.9
B.6
C.3
D.2
3.用丝带捆扎种圆柱形礼品盒,如右图。捆扎这种礼品盒用长为()的丝带比较合适。
A.13
dm
B.26
dm
C.27
dm
4.下面是两位同学把同样的圆柱平均分成两份的两种不同切法。甲切后表面积比原来增加(),乙
切后表面积比原来增加()
A.πr²
B.2rh
C.2πr²
D.2πrh
E.4rh
5.一个圆柱和一个圆锥底面直径相等,圆锥的高是圆柱高的3倍,圆锥的体积是15立方米,圆柱的体积是()立方米。
A.45
B.15
C.5
D.3
6.包装盒的长是32厘米,宽是4厘米,高是1厘米。圆柱形零件的底面直径是2厘米,高是1厘米。这个包装盒内最多能放()
个圆柱形零件。
A.32
B.25
C.16
D.8
7.一个圆柱和一
个圆锥的底面积相等,体积的比是3:
1,那么高的比是()。
A.3:
B.1:
C.1:3.D.1:2
8.一个圆柱,如果直径扩大到原来的2倍,高缩小到原来的,那么侧面积()。
A.和原来一样大B.扩大到原来的2倍C.扩大到原来的4倍D.无法确定
9.高是18厘米的圆锥形容器装满水,把这些水全部倒入与它等底等高的圆柱形容器中,这时水面离杯口()厘米。
A.6
B.12
C.9
D.18
10.一个圆锥的体积是2512立方厘米,底面积是12.56平方厘米,它的高是(A.2厘米
B.5厘米
C.6厘
11.圆锥和圆柱半径的比为3:2,体积的比为3:4,那么圆锥和圆柱高的比是()
A.9:8
B.9:16
C.4:3
D.1:1
12.一个圆锥的底面半径和高都扩大3倍,则它的侧面积扩大(),体积扩大()。
A.3倍B.6倍C.9倍D.27倍
三、按计算下面图形的体积。
四、解决问题。
1.一台压路机的前轮宽2米,高1.2米
(1)压路机前轮滚动一圈可以压路多少米?
(2)如果它每分钟向前滚动10圈,那么它5分钟可以压路多少平方米?
2.建一个圆柱形的游泳池,底面直径是16米,高是1.5米,要在它的四周和底面抹水泥,每平方米用水泥10千克。
(1)它的容积是多少?
(2)共需要多少千克水泥?
3.在一个直径是20
cm的圆柱形容器里,放入
一个底面半径是3
cm的圆锥形铁块,全部浸没在水中,这时水面上升0.3
cm。圆锥形铁块的高是多少厘米?
4.右下图是一块长方形的铁皮,利用图中阴影部分刚好能做成一个油桶。求这个油桶的容积。(接头处忽略不计)
5.瓶子里装着一些水(如图1),把瓶子倒放后(如图2)所示,瓶底的面积是0.6平方分米你能算出它的容积是多少升吗?
6.一个圆柱的高是5厘米,若高增加2厘米,圆柱体的表面积就增加25.12平方厘米,原来圆柱体的体积是多少立方厘米?
7.把一个底面半径为5分米、高为96分米的圆锥形钢材,改铸成底面直径为4分米的圆柱形零件,铸成的圆柱形零件的高是多少分米?
8.一根长2m,横截面直径是40cm的圆柱形木头浮在水面上淘淘发现它正好有一半露出水面。
(1)这根木头与水接触面的面积是多少平方厘米?
(2)木头露出水面部分的体积是多少立方厘米?
第五篇:六年级下册圆柱和圆锥应用题练习
六年级下册圆柱和圆锥应用题练习
(1)一个圆柱形蓄水池,直径10米,深2米。这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?
(2)做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?
(3)压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。如果每分转动5周,每分可以压多大的路面?
(4)大厅里有10根圆柱,圆柱底面直径1米,高8米。在这些圆柱的表面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?
(5)一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?
(6)把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?
(7)将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面积是多少平方米?
(8)一个蓄水池是圆柱形的,底面面积为31.4平方分米,高2.8分米,这个水池最多能容多少升水?
(9)一个圆柱体的高是37.68厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少?(保留整数)
(10)一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,桶的装满了水,求水面高是多少分米?
(11)一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少
(12)把一根长1.5米的圆柱形钢材截成三段后,如图,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?
(13)把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?
(15)砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?
(16)一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重1.5吨,这堆沙重多少吨?
(17)一个无盖的圆柱形水桶,底面直径20厘米,高30厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)
(18)大厅内有8根同样的圆柱形木柱,每根高5米,底面周长是3.2米,如果每千克油漆可漆4.5平方米,漆这些木柱需油漆多少千克?
(19)一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺0.04厘米厚,可以铺多少米长?
(20)一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?
(21)一个圆柱的侧面积是37.68平方分米,底面半径3分米,它的高是多少分米?
(22)一节铁皮烟囱长1.5米,直径是0.2米,做这样的烟囱500节,至少要用铁皮多少平方米?(23)一个没有盖的圆柱形铁皮桶,底面周长是18.84分米,高是12分米,做这个水桶大约需要多少平方分米的铁皮?(用进一法保留整十数)
(24)一个圆柱的底面半径是2分米,高是1.8分米,它的体积是多少?
(25)一个圆柱的底面周长是94.2厘米,高是3分米,它的体积是多少立方厘米?(26)一个圆柱的体积是3140立方厘米,底面半径是10厘米,它的高是多少厘米?
(27)两个底面积相等的圆柱,一个圆柱的高是7分米,体积是54立方分米,另一个圆柱的高5分米,另一个圆柱的体积是多少立方分米?
(28)一个圆柱形粮囤,从里面量底面半径是4米,高是2米,每立方米粮食约重500千克,这个粮囤大约能盛多少千克粮食?
(29)一个圆柱形水箱,从里面量底面周长是18.84米,高3米,它最多能装多少立方米水?(30)一个圆柱形蓄水池的底面半径是10米,内有水的高度是4.5米,距离池口50厘米,这个蓄水池的容积是多少立方米?
(31)一个圆柱形机器,体积是125.6立方厘米,底面半径是2厘米,这个圆柱的高是多少厘米?(32)一个圆柱形玻璃缸,底面直径20厘米,把一个钢球放入水中,缸内水面上升了2厘米,求这个钢球的体积。
(33)一个底面半径是4厘米,高是9厘米的圆柱体木材,削成一个最大的圆锥,这个圆锥的体积是多少立方厘米?削去部分的体积是多少?(34)一个圆锥形沙堆,底面积是16平方米,高是2.4米,如果每立方米沙重1.7吨,这堆沙重多少吨?
(35)
15、一个圆锥形沙堆,底面周长是12.56米,高是4.8米,用这堆沙在10米宽的公路上铺2厘米厚,能铺多少米长?
(36)一个圆柱形油桶,从里面量的底面半径是20厘米,高是3分米。这个油桶的容积是多少?(37)一个圆柱,侧面展开后是一个边长9.42分米的正方形。这个圆柱的底面直径是多少分米?(38)一个圆柱铁皮油桶内装有半捅汽油,现在倒出汽油的后,还剩12升汽油。如果这个油桶的内底面积是10平方分米,油桶的高是多少分米?
(39)一只圆柱形玻璃杯,内底面直径是8厘米,内装药水的深度是16厘米,恰好占整杯容量的。这只玻璃杯最多能盛药水多少毫升?
(40)有两个底面半径相等的圆柱,高的比是2:5。第二个圆柱的体积是175立方厘米,第二个圆柱的体积比第一个圆柱多多少立方厘米?
(41)一个圆柱和一个圆锥等底等高,体积相差6.28立方分米。圆柱和圆锥的体积各是多少?(42)东风化工厂有一个圆柱形油罐,从里面量的底面半径是4米,高是20米。油罐内已注入占容积的石油。如果每立方分米石油重700千克,这些石油重多少千克?
(43)一个无盖的圆柱形铁皮水桶,底面直径是30厘米,高是50厘米。做这样一个水桶,至少需用铁皮多少平方厘米?最多能盛水多少升?(得数保留整数)
(44)一个圆锥形沙堆,高是1.8米,底面半径是5米,每立方米沙重1.7吨。这堆沙约重多少吨?(得数保留整数)
(45)一个圆锥与一个圆柱的底面积相等。已知圆锥与圆柱的体积的比是 1:6,圆锥的高是4.8厘米,圆柱的高是多少厘米?
(46)把一个体积是282.6立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高?
(47)在一个直径是20厘米的圆柱形容器里,放入一个底面半径3里米的圆锥形铁块,全部浸没在水中,这是水面上升0.3厘米。圆锥形铁块的高是多少厘米?
(48)把一个底面半径是6厘米,高是10厘米的圆锥形容器灌满水,然后把水倒入一个底面半径是5厘米的圆柱形容器里,求圆柱形容器内水面的高度?(49)做一种没有盖的圆柱形铁皮水桶,每个高3分米,底面直径2分米,做50个这样的水桶需多少平方米铁皮?
(50)学校走廊上有10根圆柱形柱子,每根柱子底面半径是4分米,高是2.5分米,要油漆这些柱子,每平方米用油漆0.3千克,共需要油漆多少千克?
(51)一个底面周长是43.96厘米,高为8厘米的圆柱,沿着高切成两个同样大小的圆柱体,表面积增加了多少?
(52)一个圆柱体木块,底面直径和高都是10厘米,若把它加工成一个最大的圆锥,这个圆锥的体积是多少立方厘米?
(53)用铁皮制成一个高是5分米,底面周长是12.56分米的圆柱形水桶(没有盖),至少需要多少平方分米铁皮?若水桶里盛满水,共有多少升水?
(54)一根圆柱形钢材,截下1米。量的它的横截面的直径是20厘米,截下的体积占这根钢材的,这根钢材原来的体积是多少立方分米?
(55)一个底面积是125.6平方米的圆柱形蓄水池,容积是314立方米。如果再深挖0.5米,水池容积是多少立方米?