第一篇:初中数学应用题归纳总结公式一览表
初中数学应用题归纳
列出方程(组)解应用题的一般步骤是:
1审题:弄清题意和题目中的已知数、未知数;2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系;3设未知数:据找出的相等关系选择直接或间接设置未知数 4列方程(组):根据确立的等量关系列出方程 5解方程(或方程组),求出未知数的值;6检验:针对结果进行必要的检验;
7作答:包括单位名称在内进行完整的答语。
一,行程问题
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式 路程=速度×时间;
路程÷时间=速度;
路程÷速度=时间
关键问题:确定行程过程中的位置.相遇问题:速度和×相遇时间=相遇路程 追击问题:追击时间=路程差÷速度差 流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水 速=(顺水速度-逆水速度)÷2
二、利润问题
现价=原价*折扣率
折扣价=现价/原价*100% 每件商品的利润=售价-进货价=利润率*进价 毛利润=销售额-费用
利润率=(售价--进价)/进价*100% 标价=售价=现价 进价=售价-利润 售价=利润+进价
三、计算利息的基本公式
储蓄存款利息计算的基本公式为: 利息=本金×存期×利率
税率=应纳数额/总收入*100% 本息和=本金+利息
税后利息=本金*存期*利率*(1-税率)
税后利息=利息*税率
利率-利息/存期/本金/*100% 利率的换算 :
年利率、月利率、日利率三者的换算关系是:
年利率=月利率×12(月)=日利率×360(天);
月利率=年利率÷12(月)=日利率×30(天);
日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1+x)n =b或a(1-x)=bn 六 工程问题
工作效率=总工作量/工作时间 工作时间=总工作量/工作效率
七 赛事,票价问题
赛事
单循环赛:n(n-1)/2 淘汰赛:n个球队,比赛场数为n-1场次 票价则对应的不一样的赛制乘以对应的单价。
第二篇:数学应用题公式
小学数学应用题公式:
1.速度×时间=路程
2.单价×数量=总价
路程÷速度=时间
总价÷单价=数量
路程÷时间=速度
总价÷数量=单价
3.工作效率×工作时间=工作总量
4.正方形的周长=边长×4.用字母表示:C=4a
工作总量÷工作效率=工作时间
正方形的面积=边长×边长.用字母表示:s=a²
工作总量÷工作时间=工作效率
5.正方形的表面积=棱长×棱长×6.用字母表示:S=6a²
正方形的棱长总和=(长+宽+高)x4
正方形的体积=棱长×棱长×棱长.用字母表示:v= a³
6.长方形的表面积=(长×宽+长×高+宽×高)×2
长方形的体积=长×宽×高
长方形的棱长总和=(长+宽+高)×4 7.三角形的面积=底×高÷2 用字母表示:s=ah÷2
三角形的高=面积 ×2÷底
三角形的底=面积 ×2÷高
8.平行四边形的面积=底×高
用字母表示:s=ah 9.梯形的面积=(上底+下底)×高÷2
10.C=πd=2πr
d=c÷π
r=C÷2÷π
半圆的周长=πr+2 r=πr+ d S圆=πR²
11.路程=速度和×相遇时间
相遇时间=路程÷速度和
速度和=路程÷相遇时间
12.加法结合律:a + b = b + a
乘法交换律:a × b = b × a
乘法结合律:a × b × c = a ×(b × c)
乘法分配律:a × b + a × c = a ×(b + c)
13.有余数的除法: 被除数=商×除数+余数
14.非封闭图形植树问题:(1)两端都栽:距离÷间隔数 +1=棵数
(2)一端栽:距离÷间隔数=棵数
(3)两端都不栽: 距离÷间隔数-1=棵数
15.封闭图形植树问题:(1)只栽一端:棵树=间隔数
(2)正方形线路上植树: 棵数=(每边的棵数-1)×边数
第三篇:小学数学应用题常用公式
小学数学应用题常用公式大全
1、【和差问题公式】(和+差)÷2=较大数;
(和-差)÷2=较小数。
2、【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】
总数量÷总份数=平均数。
5、【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
6、【反向行程问题公式】
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
9、【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
11、【盈亏问题公式】
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏÷(两次每人分配数的差)=人数。
(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈÷(两次每人分配数的差)=人数。
(例略)
12、【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(个)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
13、【植树问题公式】
(1)不封闭线路的植树问题:
间隔数+1=棵数;(两端植树)
路长÷间隔长+1=棵数。
或间隔数-1=棵数;(两端不植)
路长÷间隔长-1=棵数;
路长÷间隔数=每个间隔长;
每个间隔长×间隔数=路长。
(2)封闭线路的植树问题:
路长÷间隔数=棵数;
路长÷间隔数=路长÷棵数
=每个间隔长;
每个间隔长×间隔数=每个间隔长×棵数=路长。
(3)平面植树问题:
占地总面积÷每棵占地面积=棵数
14、【求分率、百分率问题的公式】
比较数÷标准数=比较数的对应分(百分)率;
增长数÷标准数=增长率;
减少数÷标准数=减少率。
或者是
两数差÷较小数=多几(百)分之几(增);
两数差÷较大数=少几(百)分之几(减)。
15、【增减分(百分)率互求公式】
增长率÷(1+增长率)=减少率;
减少率÷(1-减少率)=增长率。
比甲丘面积少几分之几?”
解这是根据增长率求减少率的应用题。按公式,可解答为
百分之几?”
解这是由减少率求增长率的应用题,依据公式,可解答为
16、【求比较数应用题公式】
标准数×分(百分)率=与分率对应的比较数;
标准数×增长率=增长数;
标准数×减少率=减少数;
标准数×(两分率之和)=两个数之和;
标准数×(两分率之差)=两个数之差。
17、【求标准数应用题公式】
比较数÷与比较数对应的分(百分)率=标准数;
增长数÷增长率=标准数;
减少数÷减少率=标准数;
两数和÷两率和=标准数;
两数差÷两率差=标准数;
18、【方阵问题公式】
(1)实心方阵:(外层每边人数)2=总人数。
(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。
或者是
(最外层每边人数-层数)×层数×4=中空方阵的人数。
总人数÷4÷层数+层数=外层每边人数。
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一先看作实心方阵,则总人数有
10×10=100(人)
再算空心部分的方阵人数。从外往里,每进一层,每边人数少2,则进到第四层,每边人数是
10-2×3=4(人)
所以,空心部分方阵人数有
4×4=16(人)
故这个空心方阵的人数是
100-16=84(人)
解二直接运用公式。根据空心方阵总人数公式得
(10-3)×3×4=84(人)
19、【利率问题公式】利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。
(1)单利问题:
本金×利率×时期=利息;
本金×(1+利率×时期)=本利和;
本利和÷(1+利率×时期)=本金。
年利率÷12=月利率;
月利率×12=年利率。
(2)复利问题:
本金×(1+利率)存期期数=本利和。
例如,“某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”
解(1)用月利率求。
3年=12月×3=36个月
2400×(1+10.2%×36)
=2400×1.3672
=3281.28(元)
(2)用年利率求。
先把月利率变成年利率:
10.2‰×12=12.24%
再求本利和:
2400×(1+12.24%×3)
=2400×1.3672
=3281.28(元)(答略)
20、流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
21、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
21、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
22、比例应用题公式
比例尺=图上距离÷实际距离
图上距离=实际距离*比例尺
实际距离=图上距离÷比例尺
积一定,两个相关联的量成反比例;
商一定,两个相关联的量成正比例
时间一定,速度之比=路程之比
速度一定,时间之比=路程之比
路程一定,速度之比=时间之比在反比
第四篇:初中数学应用题归纳
数学应用题公式总结
一.行程问题
行 程 问 题 要 点 解 析
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2基本题型:已知路程(相遇问题、追击问题)、时间(相遇时间、追击时间)、速度(速度和、速度差)中任意两个量,求出第三个量。
二、利润问题
每件商品的利润=售价-进货价
毛利润=销售额-费用
利润率=(售价--进价)/进价*100%
三、计算利息的基本公式
储蓄存款利息计算的基本公式为:利息=本金×存期×利率
利率的换算 :
年利率、月利率、日利率三者的换算关系是:
年利率=月利率×12(月)=日利率×360(天);
月利率=年利率÷12(月)=日利率×30(天);
日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则
它们的数量关系可表示为:a(1x)b或a(1x)b nn
第五篇:初中数学应用题归纳
数学应用题
〖知识点〗
列方程(组)解应用题的一般步骤、列方程(组)解应用题的核心、应用问题的主要类型 〖大纲要求〗能够列方程(组)解应用题
内容分析
列出方程(组)解应用题的一般步骤是:
1审题:弄清题意和题目中的已知数、未知数;2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系;3设未知数:据找出的相等关系选择直接或间接设置未知数 4列方程(组):根据确立的等量关系列出方程 5解方程(或方程组),求出未知数的值;6检验:针对结果进行必要的检验;
7作答:包括单位名称在内进行完整的答语。
一,行程问题
行 程 问 题 要 点 解 析
基本概念:行程问题是研究物体运动的,它FCAB 研究的是物体速度、时间、行程三者之间的 关系。
基本公式:路程=速度×时间;路程÷时间=
ED 速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请
写出其他公式)
追击问题:追击时间=路程差÷速度差(写出
其他公式)
流水问题:顺水行程=(船速+水速)×顺水
时间 逆水行程=(船速-水速)×逆水
时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
基本题型:已知路程(相遇问题、追击问题)、时间(相遇时间、追击时间)、速度(速度和、速度差)中任意两个量,求出第三个量。
二、利润问题
每件商品的利润=售价-进货价
毛利润=销售额-费用
利润率=(售价--进价)/进价*100%
三、计算利息的基本公式
储蓄存款利息计算的基本公式为:利息=本金×存期×利率
利率的换算 :
年利率、月利率、日利率三者的换算关系是:
年利率=月利率×12(月)=日利率×360(天);
月利率=年利率÷12(月)=日利率×30(天);
日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
初中阶段几个主要的运用问题及其数量关系
1、行程问题
·基本量及关系:路程=速度×时间 ·相遇问题中的相等关系:
一个的行程+另一个的行程=两者之间的距离 ·追及问题中的相等关系:
追及者的行程-被追者的行程=相距的路程 ·顺(逆)风(水)行驶问题 顺速=V静+风(水)速 逆速=V静-风(水)速
2、销售问题 ·基本量:
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为: a(1+x)n =b或a(1-x)=bn
成本(进价)、售价(实售价)、利润(亏损额)、利润率(亏损率)·基本关系:
利润=售价-成本、亏损额=成本-售价、利润=成本×利润率 亏损额=成本×亏损率
3、工程问题 ·基本量及关系:
工作总量=工作效率×工作时间
4、分配型问题
此问题中一般存在不变量,而不变量 正是列方程必不可少的一种相等关系。1.(2012年泰安市)一项工程,甲、乙两公司合作,12天可以完成,共需付工费102 000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲、乙公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司施工费较少?
解析:(1)设甲公司单独完成此工程需x天,则乙公司单独完成此项工程需1111.5x天.根据题意,得.解得x=20.x1.5x12经检验,知x=20是方程的解,且符合题意,1.5x=30.答:甲、乙两公司单独完成此工程各需要20天、30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1500)元.根据题意,得12(y+y-1500)=102 000.解得y=5000.甲公司单独完成此工程所需施工费:20×5000=100 000(元),乙公司单独完成此工程所需施工费:30×(5000-1500)=105 000(元),所以甲公司的施工费较少.2.(2012年达州市)为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天.如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()
A.111 B.111 x10x40x14x10x40x14111C.111 D.x10x14x40x10x40x14解析:工程问题通常将工程总量视为1,设规定的时间为x天,则甲、乙单独完成分别需要(x+10)、(x+40)天,两队平均每天完成的工作量为1、1;甲、x10x40乙合作则只需要(x-14)天,两队合作平均每天完成的工作量为1,用工作量相
x14等可列出方程得,111.故选x10x40x14B.3.为了减轻学生的作业负担,烟台市教育局规定:初中学段学生每晚的作业总量不超过1.5小时.一个月后,九(1)班学习委员亮亮对本班每位同学晚上完成作业的时间进行了一次通缉,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)该班共有多少名学生?(2)将①的条形图补充完整.(3)计算出作业完成时间在0.5~1小时的部分对应的扇形圆心角.(4)完成作业时间的中位数在哪个时间段内?
(5)如果九年级共有500名学生,请估计九年级学生完成作业时间超过1.5小时的有多少人?
4.(2012娄底市)为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是()
A.289(1﹣x)2=256 B.256(1﹣x)2=289 C.289(1﹣2x)=256 D.256(1﹣2x)=289 解析:本题考查求平均变化率的方法.设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.设平均每次降价的百分率为x,则第一降价售价为289(1﹣x),则第二次降价为289(1﹣x)2,由题意得:289(1﹣x)2=256.故选A.
评注:对于连续两次增长或降低的问题,可以直接套用式子.若初始数值为a,连续两次增长或降低后的数值为b,平均增产率或降低率相同,可建立方程:a(x1)2=b.
5.一艘船以25千米/时的速度向正北方向航行,在A处看灯塔S在船的北偏东300,2小时后航行到B处,在B处看灯塔S在船的北偏东450,求灯塔S到B处的距离。
解:SCABSAB300SBC450设SBx,2x2 AB25250 BCSCRtSAC中:tan300SCAC
2x3232x502 x25(62)
6.“5·12”汶川大地震后,灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可生产帐篷178顶.(1)每条成衣生产线和童装生产线每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?
解:(1)设每条成衣生产线和童装生产线平均每天生产帐篷x、y顶,则
x2y1052x3y178x41解得y32
(2)由3(441532)9721000知,即使工厂满负荷全面转产,也不能如期完成任务.
可以从加班生产、改进技术等方面进一步挖掘生产潜力,或动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献. 7.2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A、B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:
(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱? 解:(1)根据题意,得
15xx2600x120(15x)500020解得5x3
所以满足条件的x为5或6。
所以共有两种购票方案:
方案一:A种票5张,B种票10张。方案二:A种票6张,B种票9张。(2)方案一购票费用为
6005120104200(元
方案二购票费用为
所以方案一更省钱.
8.某公司在A、B两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)请填写下表,并写出y与x之间的函数关系式;
(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省? 600612094680(元)
解:(1)
y500x400(16x)300(15x)600(x3)400x9100.因为x30且15x0,即3x5。
又y随x增大而增大,所以当x=3时,能使运这批挖掘机的总费用最省。运送方案是A地的挖掘机运往甲地3台,运往乙地13台;B地的挖掘地运往甲地12台,运往乙地0台。
9.荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一型号汽车每辆租车费用相同.
(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元,通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.
解:(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元,由题意,得
x2y2500x800,解得2xy2450y850
(2)设租用甲型汽车z辆,由题意,得
16z18(6z)100800z850(6z)5000 解得2z4。
因为z是整数,所以z=2或3或4.
所以共有3种方案,分别是
方案一:租用甲型汽车2辆,租用乙型汽车4辆;
方案二:租用甲型汽车3辆,租用乙型汽车3辆;
方案三:租用甲型汽车4辆,租用乙型汽车2辆.
三个方案的费用依次为5000元,4950元,4900元,所用最低费用为4900元.答:略.
10.某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.
(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔
21记本数量的3,又不少于B种笔记本数量的3,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.
①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;
②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时花费是多少元? 解:(1)设能买A种笔记本x本,则依题意,得 12x+8(30-x)=300,解得x=15.
故能购买A、B两种笔记本各15本.(2)①依题意,得w=12n+8(30-n),即w=4n+240.
2n(30n)3且有n1(30n)3 15n12解得2。
所以w(元)关于n(本)的函数关系式为w=4n+240,自变量n的取值范围是15n122且n为整数.
②对于一次函数w=4n+240.
15n12 因为w随n的增大而增大且2,n为整数,故当n=8时,w的值最小.
此时30-n=22,w=4×8+240=272元.
故当买A种笔记本8本、B种笔记本22本时,所花费用最少,为272元.