七年级数学列方程解应用题的常用公式梳理

时间:2019-05-14 10:41:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级数学列方程解应用题的常用公式梳理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级数学列方程解应用题的常用公式梳理》。

第一篇:七年级数学列方程解应用题的常用公式梳理

关于一元一次方程所涉及的各种问题的公式 一元一次方程应用题

1.列一元一次方程解应用题的一般步骤

(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案. 2.和差倍分问题 增长量=原有量×增长率

现在量=原有量+增长量 3.等积变形问题

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

①圆柱体的体积公式

V=底面积×高=S•h= r2h

②长方体的体积

V=长×宽×高=abc 4.数字问题

一般可设个位数字为a,十位数字为b,百位数字为c.

十位数可表示为10b+a,百位数可表示为100c+10b+a.

然后抓住数字间或新数、原数之间的关系找等量关系列方程. 5.市场经济问题

(1)商品利润=商品售价-商品成本价(2)商品利润率= ×100%(3)商品销售额=商品销售价×商品销售量

(4)商品的销售利润=(销售价-成本价)×销售量

(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.

6.行程问题:路程=速度×时间

时间=路程÷速度

速度=路程÷时间

(1)相遇问题:

快行距+慢行距=原距

(2)追及问题:

快行距-慢行距=原距

(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 7.工程问题:工作量=工作效率×工作时间

完成某项任务的各工作量的和=总工作量=1 8.储蓄问题

利润= 本金×利润率

利息=本金×利率×期数

第二篇:数学列方程解应用题的常用公式

列方程解应用题的常用公式:(1)行程问题:

距离=速度·时间

时间距离速度=

速度距离时间=;(2)工程问题:

工作量=工效·工时

工时工作量工效=

工效工作量工时=;(3)比率问题:

部分=全体·比率

全体部分比率=

比率部分全体=;(4)顺逆流问题:

顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:

售价=定价·折·101,利润=售价-成本,%100×−=成本成本售价利润率;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=31πR2h 方程和方程组

(一)基本概念

方程:含有未知数的等式.方程的解:使方程左右两边相等的未知数的值.根据方程的解的定义,要判断一个数是不是方程的解,可将这个数分别代入方程左右两边进行计算,如果左右两边相等,那么这个数就是方程的解.(如果要求把检验的过程写出来,同学们应注意格式)

解方程:求方程的解的过程.一元一次方程:含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1的方程.二元一次方程:含有两个未知数,并且未知项的次数都是1的整式方程.二元一次方程组:两个二元一次方程合在一起构成的方程组.二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值.(二)基本方法

方程的两种基本变形:⑴方程两边都加上或减去同一个数或同一个整式,方程的解不变.⑵方程两边都乘以或都除以同一个不为零的数,方程的解不变.解一元一次方程的一般步骤和方法及注意事项:

变形名称

具体做法

注意事项

去分母

在方程两边都乘以各分母的最小公倍数

1.不要漏乘2.分子不是一个整体,去分母后应加上括号

去括号

先去小括号,再去中括号,最后去大括号

不要漏乘括号里的项

不要弄错符号

移项

把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)

移项要变号

不要丢项

合并同类项

把方程化成ax=b(a≠0)形式

字母及字母的指数不变

系数化成1 在方程两边都除以未知数的系数a,得到方程的解

不要把分子、分母搞颠到

解二元一次方程组:

⑴解二元一次方程组的基本思想是:消元

⑵解二元一次方程组消元时,常用的两种方法是:代入消元法和加减消元法.即:二元一次方程组一元一次方程

代入消元法的思路是:选择一个系数简单的方程变形,用一个未知数的代数式表示另一个未知数,然后代入另一个方程通过消去一个未知数,从而进行求解.加减消元法的思路是:使两个方程中对应的同类项系数变成相等或(互为相反数),然后把两个方程相减或(相加),通过消去一个未知数,从而进行求解.(三)方程和方程组的应用

1.方程和方程组的应用主要体现在两个方面:⑴解决一些纯数学的简单问题.⑵解决实际问题(即列方程或方程组解应用题).其一般步骤主要是:

⑴理解题意(审题)

⑵把问题转化为方程或方程组(即建立方程或方程组的数学模型)

⑶解方程或方程组

⑷检验并作答

即: 问题方程(组)解答

2.解决实际问题的分析和抽象通常包括:

⑴设元(用字母表示适当的未知数)

⑵找出问题所给出的数量的相等关系

⑶分析题意中的数量关系,列出相等关系需要的代数式.上述过程,应当注意的是:设元有直接设元和简接设元,恰当的设元,会给建立方程(组)带来方便。分析相等关系以及数量关系时,可借助一些方法比如“列表法”、“图示法”等帮助分析。另外在实际解决问题时,上面三项的顺序也并非固定的。

3.解实际问题的常见题型及数量关系:

⑴行程问题:路程=速度×时间 ⑵工程问题:工作总量=工作效率×工作时间

⑶浓度问题:溶质=溶液×浓度

⑷利率问题:本息和=本金+利息,利息=本金×利率×期数

⑸利润问题:利润=成本×利润率,利润=售价-成本

⑹价格问题:总价=单价×数量

⑺水流问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度

此外还有:等积变形问题、数字问题、比例问题、调配问题、与几何图形相关的问题、„等。

应当注意的是:我们列出这些类型,并非让同学们按类型去解应用题,努力地去掌握分析问题的本领,才是学好的关健。

二、多边形

(一)最简单的多边形-三角形

1.三角形及有关概念

三角形:由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.三角形的外角:三角形一边的延长线与三角形的另一边组成的角.如图1,∠ACD是△ABC的一个外角.三角形的中线:连结三角形的一个顶点和它对边中点的线段.如图2,AD是△ABC的中线,则BD=CD=BC

三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段.如图2,AE是△ABC的角平分线,则∠BAE=∠CAE=∠BAC 三角形的高:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段.如图2,AF是△ABC的高,则∠AFB=∠AFC=90°或AF⊥BC.请你分别在一个三角形中,画它的三条中线、三条角平分线、三条高,想一想,你能发现结论?

2.三角形的分类

⑴按角分类:

(2)按边分类:

三角形的按角分类很重要,在解决一些有关三角形的问题时,我们常将三角形按角分类,进行讨论.3.三角形的一般性质

⑴三角形的三边关系:三角形任意两边的和大于第三边

三角形任意两边的差小于第三边

⑵三角形角之间的关系:

三角形内角的关系:三角形内角的和等于180°

三角形外角与内角间的关系:

相等关系:三角形的一个外角等于和它不相邻的两个内角的和

不等关系:三角形的一个外角大于任何一个和它不相邻的内角

⑶三角形的边与角间的关系 :

在三角形中相等的边所对的角也相等(即:等边对等角)

在三角形中相等的角所对的边也相等(即:等角对等边)

此外,三角形还具有稳定性.即:如果一个三角形的三边确定,则这个三角形的形状和大小就完全确定了.(二)多边形

1.研究多边形的有关问题常将多边形转化为三角形的问题,常用的一种方法是,从多边形的一个顶点出发作多边形的对角线,如图3所示,那么

⑴从n边形的一个顶点出发可作

条对角线.⑵从n边形的一个顶点出发的对角线把n边形 分成 个三角形

此外,还可以怎样把多边形分割为三角形,请想一想?

2.多边形的内角和与外角和

⑴ n边形的内角和为:(n-2)—180°

⑵ n边形的外角和为:360°

注意:多边形的外角和是指:在多边形的每一个顶点处取一个外角相加,得到的和.3.正多边形的有关计算

正n边形的内角:方法一(n-2)—180°/n,方法二 180°-360°/n.正n边形的外角:360°/n..(三)多边形知识的一个应用:用正多边形铺地板

1.用多边形围绕一点拼成一个不留空隙又不重叠的平面图形的关键是:几个多边形的内角相加为360°.2.用一种正多边形能铺满地面的是:正三角形、正方形、正六边形.3.用两种正多边形能铺满地面的常见组合是:⑴正三角形与正方形 ⑵正三角形与正六边形 ⑶正八边形与正方形 ⑷正三角形与正十二边形

三、轴对称

(一)轴对称

1.轴对称图形与轴对称的概念

⑴定义

轴对称图形:一个图形沿某条直线对折,对折的两部分能够完全重合,那么这个图形就叫做轴对称图形.轴对称:把一个图形沿某条直线对折,如果它能够与另一个图形重合,就说这两个图形成轴对称.⑵区别和联系

区别:⑴ 轴对称是对两个图形说的,轴对称图形是对一个图形说的.⑵ 轴对称表示两个图形之间的对称关系,轴对称图形表示某个图形特性.联系:⑴ 定义中都有一条直线,都要沿这条直线折叠后重合.⑵ 可互相转化.把轴对称图形的两部分看成两个图形,就是轴对称;把轴对称的两个图形看成一个图形,就是轴对称图形.2.性质

⑴轴对称图形的对应线段相等,对应角相等.⑵轴对称图形的对称点的连线的垂直平分线,就是该图形的对称轴.⑶轴对称图形的对应线段或延长线相交,其交点一定在对称轴上(此条供了解).3.画法

如果图形是直线、线段、或射线组成时,那么在画它关于某条直线的对称图形时,只要画出图形中的特殊点的对称点,然后连结对称点,就可以画出关于这条直线的对称图形.画一个点的对称点分三步:作垂直---------顺延长--------取相等

(二)简单的轴对称图形

1.线段

垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫做中垂线

⑴线段是轴对称图形,对称轴是它本身所在的直线和它的垂直平分线.如图4所示.⑵线段的垂直平分线的性质:线段的垂直平分线上的点到这条线段两个端点的距离相等.如图5,直线CD垂直平分AB,P是CD上任意一点,则PA=PB 做一做:任意画一个三角形,分别画出它三边的垂直平分线,根据线段的垂直平分线的性质,你能得到什么结论?

.2.角

⑴角是轴对称图形,对称轴是它的角平分线所在的直线.如图6 所示

⑵角的平分线的性质:角平分线上的点到角两边的距离相等.如图7,OC平分∠AOB,点P是OC上任意一点,PD⊥OA,PE⊥OB,则PD=PE 做一做:任意画一个三角形,分别画出它的三条角平分线,根据角的平分线的性质,你能得到什么结论?

.3.等腰三角形

⑴定义:有两条边相等的三角形叫做等腰三角形.⑵性质:等腰三角形是特殊的三角形,一般三角形具有的性质它都具有,另外它还具有:

①等腰三角形是轴对称图形,对称轴是底边的垂直平分线,如图8.②等腰三角形两底角相等.(简称为:等边对等角)

③等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(简称为:等腰三角形“三线合一”的性质)

怎样运用等腰三角形“三线合一”的性质呢?

在等腰三角形中,只要已知一条线段是等腰三角形顶角的平分线、底边上的中线、底边上的高这三条线段中的其中一种线段,就可以得出这条线段也是另外两种线段.如图9,在△ABC中,下面的空格你能填出来吗?(括号里填根据)

Ⅰ.∵ AB=AC,AD⊥BC()

∴ ∠

=∠

,=

;()

Ⅱ.∵ AB=AC,AD是中线()

⊥,∠

=∠

;()

Ⅲ.∵ AB=AC,AD是角平分线()

⊥,=

.()

⑶识别:①方法一:根据定义,看一个三角形是否有两条边相等.②方法二:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称为:等角对等边)

4.等边三角形

⑴定义:三条边都相等的三角形叫做等边三角形.⑵性质:等边三角形是特殊的等腰三角形,因此它具有一般三角形,等腰三角形所具有的所有性质,另外它还有:①是轴对称图形,如图10所示.②等边三角形的各个内角都相等,并且每一个内角都等于60°.⑶识别:①方法一:根据定义,看一个三角形是否三边都相等.②方法二:三个角都相等的三角形是等边三角形.③方法三:有一个角是60°的等腰三角形是等边三角形.

第三篇:七年级数学列方程解应用题练习

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

列一元一次方程解应用题练习卷

1)5位教师和一群学生一起去公园,教师按全票的票价是每人7元,学生只收半价.如果买门票共花费206.50元,那么学生有多少人?

2)学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?

.3)变题: 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?

4)某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?

5)某人买了2000元的融资券,一种是一年期年利率为9%,另一种为两年期年利率为12%,分别在一年和两年到期时取出,共得利息450元,问两种融资券各买多少?

6)某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

7)某班有50名学生,在一次数学考试中,女生的及格率为80%,男生的及格率为75%,全班的及格率为78%,问这个班的男女生各有多少人?

8)某商品按定价销售,每个可获利45元,现在按定价的8.5折出售8个所能获得的利润与按定价每个减价35元出售12个所获得利润一样。问这种商品每个的进价、定价各是多少元?

9)已知甲种商品的原价是乙种商品原价的1.5倍,因市场变化,乙种商品提价的百分数是甲种商品降价百分数的2倍,调价后甲、乙两种商品单价之和比原单价之和提高了2%,求甲种商品的降价百分数和乙种商品的提价百分数。

10)某商品由A,B两种原料制成,其中A原料每千克50元,B原料每千克40元;调价后,A原料价格上涨10%,B原料价格下降15%,但核算后,产品成本不变。问生产11千克这种产品需A,B原料各多少千克?

11)买布问题:顾客用540卢布买了两种布料138俄尺,其中蓝布料每俄尺3卢布,黑布料每俄尺5卢布,两种布料各买了多少?

12)同类变式1:“希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

13)同类变式2:甲、乙两人合资办一个企业,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资额的比例为3:4,首年利润为38500元,问甲、乙两人可获得利润分别为多少元?

14)一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题。

15)有人问毕达哥拉斯,他的学校中有多少学生,他回答说:“一半学生学数学,四分之一学音乐,七分之一正休息,还剩3个女学生。”问毕达哥拉斯的学校中多少个学生。

16)七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?

17)有一些分别标有5,10,15,20,25„„的卡片,后一张卡片上的数比前一张卡片上的数大5,小明拿到了相邻的3张卡片,且这些卡片上的数之和为240。

(1)小明拿到了哪3张卡片?

(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和是63吗?

18)三个连续整数的和为72,则这三个数分别是多少?

19)某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组,且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数。

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

20)足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?

21)甲、乙、丙三个股东合资办一个公司,甲的资本为乙、丙两人资本的和的一半,1乙的资本为三人资本总数的,丙的资本是53万元,求这个公司资本总数是多少?

3222)某班数学兴趣小组,女生的人数比男生的人数的少2人,如果女生增加3人,31男生减少1人,那么女生的人数比全组人数的多3人。求原来男、女生人数。

23)商店里有种型号的电视机,每台售价1200元,可盈利20%,现有一客商以11500元的总价购买了若干台这咱型号的电视机,这样商店仍有15%的利润,问客商买了几台电视机?

亿库教育网

http://www.xiexiebang.com 百万教学资源免费下载

第四篇:列方程解应用题

列方程解应用题

【例1】水果店运来的西瓜的个数是白兰瓜的个数的2倍,如果每天卖白兰瓜40个,西瓜50 个,若干天后卖完白兰瓜时,西瓜还剩360个。水果店运来的西瓜和白兰瓜共多少个?

【例2】有甲、乙两桶油,若从甲桶倒入乙桶15千克,则两桶油质量相等;若从乙桶倒入甲桶48千克后,则甲桶油是乙桶油质量的4倍。甲桶原来有油多少千克?

【例3】甲乙丙三人,甲的年龄是乙的2倍时,丙是20岁,当乙的年龄是丙的2倍时,甲35岁,那么甲65岁时,丙是多少岁?

【例4】甲、乙、丙、丁四人今年分别是16、12、11、9岁。问,多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?

【例5】甲、乙、丙、丁四个人组成代表队参加数学比赛,甲得了88分,丙得了85分,丁得了90分,乙的分数比四个人的平均分多4分。问乙的成绩是多少?

【例6】414是三个数的和,这三个数分别能被5、6、7整除,所得的商相同。问;这三个数分别是多少?商是多少?

【例7】小余买了5元、1元2角、8角的三种邮票共20张,总值43元6角,其中5元和1元2角的邮票张数相同。问:小余三种邮票各购多少张?

【例8】某校五、六年级师生秋游去公园划竹筏,若每筏坐12人,则少3个竹筏;若每筏坐14人,则多出4个竹筏。问:公园一共有几个竹筏?五年级师生共多少人?

【例9】一架飞机所带燃料最多可飞行15.75小时。飞机去时顺风,飞行速度每小时1500千米,返回时逆风,速度是每小时1200千米。问:这架飞机最多飞出去多少千米就要往回飞?

【例10】一个三位数的数字是由大到小的顺序排列的三个连续整数,这个三位数除以3所得的商比这个三位数的百位数与个位数交换后所得新的三位数小238,求原来的三位数。

【例11】东西两镇相距3450米,甲、乙从东镇,丙从西镇同时出发相向而行,甲、乙、丙速度分别是每分钟45、50、60米,那么多少分钟后乙正好在甲、丙的中间?

【例12】小余买两种练习本若干本,单价分别是1元和1元5角,共付出12元,问:两种本子各买了多少本?

消去法解题

【例1】甲买了8盒糖和5盒蛋糕共用去171元,乙买了5盒糖和2盒蛋糕共用去90元。每盒糖和每盒蛋糕各多少元?

【例2】小明买了3只小鸭,7只小鸡和1只小兔,共付15.9元;小豪买了4只小鸭,10只小鸡和1只小兔共付了21元。如果小兰只买小鸭、小鸡、小兔各1只,则应付多少元?

【例4】8头梅花鹿和13只羊每天共吃青草182千克,13头梅花鹿和8只羊每天共吃青草217千克。问:1头梅花鹿和1只羊每天各吃青草多少千克?

列方程专项练习

1、一条鲨鱼头长3.5米,身长等于头长加尾长,尾长等于头长加身长的一半。问:这条鲨鱼有多长?

2、一道除法算式中,商是除数的7倍,除数是余数的4倍,商与除数、余数的和是528。问:被除数是多少?

3、用绳子量井深,将绳子2折则多出井外9米,将绳子3折则多出井外0.5米。问井有多深?

4、商店里有一批服装,卖掉90套女装后,剩下的服装中,男装是女装的2倍,又卖掉378套男装后,剩下的女装是男装的5倍。问:商店里原有男、女装各多少套?

5、一个两位数,十位上数字比个位上数字少2,如果十位上的数字扩大3倍,个位上的数字减去3,所得的两位数比原来的数大57,求原来的两位数。

6、五年级组织爬山活动,上山用了3小时到达离山顶还有22.5千米处,如果从山顶沿原路下山,就要用4小时,已知下山的速度是上山的2倍,问:从山脚到山顶的山路有多长?

7、王师傅加工一批零件,如果每天加工75个,就可以比原计划提前4天完成任务;如果每天加工50个就会比原计划推迟3天完成。王师傅希望能比原计划提前3天完成,他每天应加工多少个?

8、五年级组织去郊外活动,共有师生336人准备租车前往,现有56个座位的大客车和28个座位的小客车若干辆,要使每辆车都满座,问:需大、小客车各多少辆?

9、已知蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀。现有三种小虫共43只,共有294条腿和39对翅膀。问:每种小虫各有几只?

10、小明有面值分别为拾元、伍元、壹元的人民币49张共211元,拾元的张数比伍元的少8张。问:小明有拾元、伍元和壹元的各多少张?

11、有大兔、中兔和小兔共97只,一餐午饭共吃掉蘑菇854个,已知每只大兔子吃13个,每只中兔子吃9个,每只小兔子吃6个。已知中兔比大兔多4只。问:兔场有大、中、小兔子各多少只?

12、甲仓库有大米76吨,乙仓库有大米46吨,现在甲仓库每天进大米5吨,乙仓库每天进大米29吨,多少天后乙仓库的大米是甲仓库的3倍?

13、同学们乘车郊外游玩,如果每辆车坐60人,就余下25人的座位;如果每辆坐55人,就空出10人的座位。问:车有多少辆,有多少同学?

14、五(1)班甲组同学擦玻璃,如果每人擦12块,还剩18块;如果每人擦14块,还剩6块。问:每人擦多少块正好擦完?

15、果蔬农场将855千克的圣女果分装在大小两种纸箱里,每只大箱装6千克,每只小箱装4.5千克。装箱后清点箱数,得知小箱比大箱的3倍还多8箱。问:一共装了多少大箱?多少小箱?

16、牧场上的青草每天匀速生长,已知这片草可供15头牛吃20天,或者供84只羊吃10天,如果4只羊吃草量相当于1头牛的吃草量。那么现有9头牛和96只羊一起吃,可以吃几天?

17、一个六位数的左端数字是1,如果把左端的数字1移到右端,所得的新数是原数的3倍,求原数是几?

18、兔妈妈给小兔们分蘑菇,如果每只小兔分6个,就会多出48个蘑菇;如果每只小兔分8个蘑菇,就有一只小兔分不到。问:一共就有多少蘑菇?

19、果园里有梨树若干棵,苹果树是梨树的3倍。如果每天给15棵苹果树和9棵梨树修枝,当梨树全部修枝后,还剩96棵苹果树没有修枝。问:果园里有苹果树、梨树各多少棵?

20、一个两位数,各位数字之和的4倍正好比这个数少9,这个两位数最大是多少?

21、运一批西瓜,如果用2辆大卡车和6辆小卡车运,15次可以运完;如果用9辆大卡车和5辆小卡车运,5次可以运完。现在只有4辆小卡车运,问:多少次可以运完?

22、学校教务处购买2台打印机和10个U盘共用去2360元,如果用一台打印机换回8个U盘,可以少花62元。问:打印机和U盘单价各是多少?

23、有一个两位数,十位数字比个位数字大2,如果把个位上的数字与十位上的数字对调,所得的两位数比原数小18,求这个两位数是多少?

24、三个连续自然数,它们的和为108,求这三个数。

25、一个三位数、各个数位上的数字相加之和是9,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字小1,求这个三位数。

第五篇:列方程解应用题

《列方程解应用题》教学实录及评析

执教者:郭江海评析者:李汝凤

教学内容:人教版9册P114例4,做一做,练习二十八1—2,4,8题。教学目标:

1、学生会用方程解答“已知比一个数的几倍多(少)几是多少,求这个数”的应用题。会灵活选用算术与方程解答一倍量已知与未知的应用题。

2、培学生从不同角度思考同一个问题的能力。

3、体验数学与现实生活的联系,培养学生的应用意识和解决简单实际问题的能力。

4、能过对挫折的体验,培养学生质疑的习惯和对数学的兴趣。教学重点和难点:从已知条件中找数量间相等的关系,列出方程。

一、创设情境,复习旧知

师:最近少年文艺团的小团员遇到了一个难题,想请你们帮帮忙,你们愿意吗? 生:愿意!

出示题目:少年文艺团舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人,合唱队有多少人?

学生独立解答,同桌探讨解题思路,生板演。

师:请一位同学说说计算列式。

生:23×3+15

=69+15

=84(人)

师:请你说说解题思路。

生:我是从这一句中知道的“合唱队的人数比舞蹈队的3倍多15人”也就是“舞蹈队的3倍多15人,是合唱队”只要舞蹈队人数×3加上15人就求出,合唱队的人数。

师:请你们用线段图表示这道题,该如何表示呢?

生:我知道舞蹈队的人数为倍数,先画1倍数,然后合唱队的人数是他的3倍多15人,就画3个倍数的长度再加上15人。

师:根据学生的回答板演并画出线段图,并标出问题。

师:从这个线段图中可以知道,1倍数已知,也就是23的3倍多15的数十多少,因此很快列出算式。

师:现在小文艺团长又遇到了一个小麻烦,想请你们帮助解答,你们有信心吗? 生:有!

出示题目:少年文艺团合唱团有84人,比舞蹈队的3倍还多15人,舞蹈队有多少人?

师:你们能比较一下两道题的已知条件和问题有哪些相同的点、不同点吗? 生1:“比舞蹈队人数3倍多15人”这句话是相同的。

生2:他们都是有舞蹈队、合唱队两个数量之间的关系问题。

生3:他们不同的地方是,已知条件与问题调换位置。

师:同学们观察的真仔细,这道题目就是我们以前见过的“已知比一个数的几倍多几是多少”求这个数的应用题,今天我们就来学习列方程解应用题。

(评:把学生熟悉的情境引入课堂,使数学与生活有机地结合起来,使学生在课的开始就感觉到应用题在生活中的重要性,使学生感受到我们生活的每一个角落都有数学,我们学的是有用的数学,从而以积极的状态投入新知的探究。)

二、探究新知,引入新课

师:请同学们选用自己喜欢的方法来解这道题。

让学生独立解答,选择学生不同的解法,学生板演。

生1:(84-15)÷3=23(人)

生2:84÷3+15=43(人)

生3:(84+15)÷3=33(人)

生4:解:设舞蹈队的人数为X人。

3X+15=84

3X=84-15

X=23

生5:还可以这样列方程:84-3X=15

师:这道题出现多种方法解答。我们先来画线段图。请一位同学说说该怎么画线段图?

生:这道题的线段图与前面的一题的线段图大致一样只不过1倍数变成了问题了。

根据学生回答,画线段图。

师:请你们根据线段图说说以上的几种列式的方法谁对谁错?

生1:我觉得第二个同学的列式是错误的,因为他是把舞蹈队的人数的3倍的人数看成84人,实际上舞蹈队人数的3倍不是84人而是比84还少15人。

生2:根据刚才说的我觉得第三个同学说的也是错的,应该说是舞蹈队人数的3倍,是合唱队人数少15人。用算术解来完成,先求3倍是多少用(84-15)÷3 生3:根据前面两个同学的分析,第一个同学完成的是正确的,合唱队的人数十舞蹈队的3倍多15人,也就是X的3倍多15人方程就很容易列出来了。

师:这节课我们就是学习列方程解这类应用题,我们就一起来探讨一下这类应用题的思路。我请个同学说说,你是怎样解这道题的?

生1:我是抓住列方程解应用题的关键是找等量关系式。找等量关系式中的一种方法,找到题中的关键句。

师:那你能不能说说这道题里的关键句?

生1:合唱队比舞蹈队的3倍多15人。我用合唱队的人数—舞蹈队的人数×2=15,列出方程:84-3X=15

生2:我也是找这句关键句,但是我是反过来说舞蹈队的3倍多15人是合唱队的人数,列出方程:3X+15=84

师:同学们做的很好,能抓住学习的重点,今天这种类型的应用题就可以抓住关键句来找等量关系式。刚才我们弄清了列方程算理。现在我们来比较一下算术解和方程解。

生1::我觉得这道题要用算术解不好做,因为算术解还要考虑3倍的数是多少?需要逆向思考。

生2:我觉得方程解比较好做,因为方程只要顺着题意来做,不要拐弯抹角,变逆思考为顺思考。

生3:我觉得方程简便,不要写解和设,我觉得方便。

师:通过刚才的比较,我们发现方程比算术解易思考,不容易出错。在今后的学习中我们要注意“几倍多几”的应用题,要先判断1倍数是已知,还是未知,“它知”用算术解容易,“未知”用方程解容易思考。

(评析:力求让学生去发现和概括出规律性的知识,无论在体会列方程解应用题的优越性,还是在多种方法的择优上,等等,都尽量让学生充分地体验,使学生在分析、对比中,探索规律,不仅拓宽了学生的思维空间,更体现了学生的数学学习活动是一个生动活泼、主动的和富有个性的过程。)

三、实践应用,巩固新知

1、找等量关系(课件出示)

(1)今年养兔的只数比去年的3倍少8只

(2)红毛衣的件数比蓝毛衣的2倍还多13件

(3)买3个篮球比4个排球多用去5元

(4)比小孩服装的5倍少3套是大人服装。

2、任意地选择两个条件,提出一个问题,组成一道应用题,然后把它解答出来,看谁做得又快又多。

师:请一名学生说说该怎么列式。并说说它的等量关系式。

生:今年养兔34只,今年养兔的只数比去年的3倍少8只,去年养兔多少只? 生:这道题的等量关系式是今年养兔的只数×3-8=去年养兔只数。

师:那你怎么这么快就找到等量关系式?

生:我找到了关键句,所以就能很快的找到等量关系式,并列出方程。

3、游戏(机动)

师:指名问学生几岁?×××同学的年龄是我女儿的3倍少1岁,猜猜我的女儿几岁?

请同桌两人做这个游戏,利用你爸爸、妈妈或其他人的年龄编题,让你的同桌猜一猜。

4、对比练习,灵活选择方法

A、各出一道题目“一倍数已知”与“一倍数未知”的应用题

师:下面俩道题,请同学们选择适当的方法解答。

生自己解答,两生板演,集体订正。

师:请你们把两道题里的关键句画出来。两题的关键句是一样的也就是两道题的数量关系式一样,为什么第一题选择方程而第二题选择算术方法呢?请四人小组讨论交流一下。

生1:1倍数已知用算术方法简单。1倍数未知的时候用方程解简单一些。师:是不是请你们验证一下。

出示两道题目,只选方法不必计算列式。

(评析:采用分层练习,力求在练习过程中,既巩固新知,又发展学生的数学思维,使学生在发散性、多维度的思维活动中提高解决实际问题的能力,培养学生的创新意识。)

四、全课小结

1、师:谈谈这节课你有什么收获?

2、师:通过刚才的练习,你觉得解答我们今天学习的这类应用题的关键是什么? 学生发言,师归纳总结。

(评析:通过总结,学生进一步明确了找关键句中的等量关系是解题的关键。)课后反思:

1、列简易方程解应用题是中学学习方程解应用题的基础,对

于小学生来说是不容易的,由于小学生仍处于从形象思维向抽象思维过渡的关键时刻,所以如何做好过渡,是值得我们研究的。本节课采用画线段图,帮助分析数量关系。并在教学中指导学生画图,这样利用线段图使数量关系明显地显现出来,有助于帮助学生设未知数,找等量关系式和列出方程。

3、教会多种学习方法。本节课除了画线段图帮助学生理解以

外,还要考虑指导学生学习方法如: 阅读法,在教会学生阅读的方法,找等量关系式,在教学新知识时我采用不同的读法例如:“合唱队比舞蹈队的3倍多15人”也可以这样读“舞蹈队人数的3倍多15人是合唱队的人数”采用不同的阅读方法就出现不同的方程。还有使用比较法,让学生比较相同的数量关系的应用题,如何选择不同的方法,放手让学生讨论思考得出结论。这些方法对今后学生的继续学习数学是十分必要的,并且这样有利于学生的成长,让学生能轻松的遨游在数学学习的海洋中。

总评:本节课教师能够努力营造宽松、民主和谐的学习环境,引导学生积极参与学习过程。重视师生、生生间的交流、小组讨论、同桌合作,给学生提供自主的活动空间和交流的机会,引领学生通过自己的探索来获取知识,改变以往教师教和学生学的方式。如解题的一般步骤与方法探讨,从准备的演练至例题的尝试,再到方法的归纳无不体现着“以学生为本”的思想理念。整个教学过程,学生学得轻松活泼、积极主动,成为学习的主体;教师教得轻松自如,适时点拨,真正起到一个引导者、促进者的作用

下载七年级数学列方程解应用题的常用公式梳理word格式文档
下载七年级数学列方程解应用题的常用公式梳理.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    列方程解应用题

    《列方程解应用题》教学反思 默认分类 2009-10-22 13:50:15 阅读86 评论0 字号:大中小加强题意内化的教学重点应该放在如何提高学生把应用题中的各种信息进行筛选,压缩成以数......

    初中数学列方程解应用题

    列方程解应用题 一元一次方程应用题: 1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出......

    《列方程解应用题》说课稿

    《列方程解应用题》说课稿 一、说教材 1、教材内容: 今天我说课的内容是人教版新课标教材五年级上册第60页例3,内容是——列方程解应用题。 2、教材及一般学情分析: 从内容安排......

    《列方程解应用题》教案

    《列方程解应用题》教案 执教:黑龙江省大庆市直机关第三小学张巍巍 教案背景: 针对五年级学生对列方程解应用题掌握起来有一定的难度这一问题,我们把《列方程解应用题》作为一......

    列方程解应用题2

    一、用方程表示下面的关系,不必解答 1、明明买一套衣服,裤子88元,一共用去150元,衣服多少元? 方程: 2、一个书架上有93本书,借出55本,还剩多少本? 方程: 3、买了3瓶饮料,一共用去15元,每......

    《列方程解应用题》教案

    《列方程解应用题》教学 执教:光泽县杭西小学 龚志华 教案背景: 复习课老师们都不爱上,因为内容要自己设计,又都是旧知识,怕孩子学起来没有积极性。为抛砖引玉我决定还是引导老......

    列分式方程解应用题

    学习课题】列分式方程解应用题 学习目标、1. 能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤。 学习重点、列分式方程解应用题.。 学习难点、根据题意,找出等量......

    列方程解应用题练习题大全

    1、共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒? 2、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积多少万平方米? 3、宁夏的同心......