第一篇:“抽屉原理”课堂教学实录 文档
“抽屉原理”课堂教学实录
教学目标:
1.初步了解抽屉原理,会用抽屉原理解决简单的实际问题。2.经历“放苹果”的探究过程,发展学生的概括能力与类推能力。3.在理解与灵活应用“抽屉原理”的过程中感受数学的魅力。教学过程:
一、揭示课题
师:今天我们学什么内容?(学生看着银幕上的课题齐声:放苹果)数学课放苹果干什么?
生:放苹果有什么规律。
生:放苹果一定与数学知识有关。
师:对啊!看看同学们在放苹果的过程中能不能发现有趣的数学原理。
二、实践探究
(一)探究1
(多媒体出示)把3个苹果放入2个抽屉,想一想有几种不同的放法?
学生陷入沉思。
师:小巧在动手放苹果之前有一个大胆的猜想。
(多媒体出示文字与配音)不管怎么放,一定有一个抽屉有2个或2个以上的苹果。
1.说明小巧的猜想
师:你明白小巧这句话的意思吗? 说说你的理解 生:不管怎么放,一定有一个抽屉有2个苹果。生:还可能有一个抽屉有2个以上的苹果。
师:把3个苹果放入2个抽屉(板书),会用除法算式表示吗? 生:3÷2=1(个)„„1(个)(教师板书算式)师:算式中的2个1分别表示什么?
生:表示每个抽屉里放1个苹果,还剩1个苹果。
师:那么剩下的1个苹果还得放,所以一定有什么情况出现?
生:每个抽屉里放1个苹果,还剩1个苹果,把剩下的1个苹果,随便放到哪个抽屉里,这个抽屉就有2个苹果。
师:哦,你说得太棒了!(教师板书:1+1=2)师:为什么还会出现有一个抽屉有2个以上的苹果呢? 生:如果有一个抽屉不放,那另一个抽屉就有3个苹果了。2.验证小巧的设想(1)动手放苹果
师:刚才同学们讨论了小巧的猜想,发现有道理。现在我们用乒乓球代替苹果,用纸杯代替抽屉,自己动手放一放,用实验验证小巧的猜想是否正确。请大家记录摆放的结果。
(多媒体出示)记录方法: 如果一个抽屉里放1个,另一个抽屉里放2个,可以简记为 1,2;„„
教师请一组学生操作课件,在电脑中摆放苹果,并做好记录,写在黑板上。
(2)学生小组活动(3)得出结论
师:看着实验的纪录,你得出什么结论与大家分享?
生:我们组有4种放法„„(教师加以板书:1,2;2,1;0,3;3,0)
生:不管怎么放,一定有一个抽屉有2个或2个以上的苹果。师:哪几种放法说明有一个抽屉有2个苹果? 生:1,2;2,1
师:哪几种放法说明有一个抽屉有2个以上的苹果? 生:0,3;3,0
师:对于验证小巧的猜想来说,可以不考虑抽屉的不同,所以1,2与2,1两种放法,其实只是一种情况,我们保留其中的一种。0,3;3,0也一样。(教师檫去2,1;3,0)
师:通过动手放一放,我们验证了小巧的设想是正确的,一定有一个抽屉有2个或2个以上的苹果。
(二)探究2
师:把4个苹果放入3个抽屉(板书),会出现什么情况?小巧的猜想还成立吗?
1.小组合作,自己动手放一放,并做好记录。同时,请一组学生操作电脑放苹果。记录在黑板上。
2.讨论
(1)检查记录中的数据,删除相同情况(黑板上保留:①1,1,2;②0,1,3;③0,0,4;④0,2,2)
(2)讨论放法①1,1,2 师:这种放法用算式怎样表示? 生:4÷3=1(个)„„1(个)生:剩下一个还要放,1+1=2(个)(3)讨论余下的三种放法
师:第②、第③、第④种放法说明什么?
生:说明一定有一个抽屉有2个或2个以上的苹果。
师:可是第④种放法有2个抽屉里各有2个苹果,这句话应该怎样修改一下?
学生思考片刻,教师提示:把“一定”换一个词。生:把“一定”改成“至少”就可以了。
生:至少有一个抽屉有2个或2个以上的苹果,说明还可以有几个抽屉里2个或2个以上的苹果。
教师把板书中的“一定”改为“至少”,让学生再读这句话,体会“一定”与“至少”的不同之处,同时感悟“至少有一个抽屉有2个或2个以上的苹果”,这句话能概括所有4种放法。
(三)探究3
师:把5个苹果放入4个抽屉(教师板书),猜猜可能有什么结果? 生:至少有一个抽屉有2个或2个以上的苹果。师:认同这一结论的同学举举手。师:能否用算式说明?
生:5÷4=1(个)„„1(个)1+1=2(个)教师板书 师:这个算式摆放出的苹果是怎样的? 生:(1,1,1,2)
师:能否举2个例子说明把5个苹果放入4个抽屉,至少有一个抽屉有2个或2个以上的苹果。
生:(0,2,2,1)、(0,1,3,1)、(0,0,2,3)„„
(四)小结
师:同学们放了三次苹果,研究了苹果数与抽屉数之间的关系。那苹果数与抽屉数之间有什么关系?
生:苹果数大于抽屉数。教师板书:苹果数>抽屉数 生:苹果数比抽屉数多1。
师:如果把抽屉数用字母n表示,那么苹果数可以怎么表示? 生:n+1
师:其实这个原理早在200多年前就被德国数学家发现了。(多媒体出示)把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有2个或2个以上的苹果。
德国数学家“狄里克雷”,从这么平凡的事情中发现了规律。人们为了纪念他,就把这个规律用他的名字命名,叫“狄里克雷原理”,又叫“抽屉原理”,还称为 “鸽巢原理”。
师:为什么“抽屉原理”,还可以称为 “鸽巢原理”?
生:可以把鸽巢看作抽屉,把鸽子看作苹果,所以“抽屉原理”,也可以称为 “鸽巢原理”
师:说得很好,抽屉原理可以广泛地运用于生活中,一般可以把某一样东西看作苹果或抽屉。
三、初步运用
(一)说一说
1(.多媒体出示)101只兔子放入100个笼子,那么_______________。生:至少有一个笼子有2个或2个以上的兔子。师:能告诉大家你把什么看作抽屉,把什么看作苹果? 生:我把笼子看作抽屉,把兔子看作苹果。
师:运用学到的抽屉原理解决了兔子与笼子的问题。
2.出示:爸爸买来5条金鱼,小凤数了数,共有4个品种,姐姐听了后说:“至少有2条金鱼是同一个品种的。”姐姐说得对不对?为什么?
生:姐姐说得对。师:你能说说理由吗?
生:可以把金鱼看作“苹果”,把品种看作“抽屉”。根据抽屉原理,可以得出:至少有一个品种有2条或2条以上的金鱼。
(二)填一填
1.(多媒体出示)扑克牌去掉大、小怪,剩下的都是4种花色。任意取
张,至少有2张是同一种花色的。
生:任意取5张扑克牌,至少有2张是同一种花色的。因为有4种花色。
师:再说清楚些,把什么看作抽屉,什么看作苹果?
生:共有4种花色,把它看作抽屉,牌看作苹果。牌比4种花色多1时,至少有2张是同一种花色的。
2.(多媒体出示)小胖掷数点块,至少掷
次,其中至少有两次的点数相同。
生:把1到6的点数它看作6个抽屉,至少掷7次,其中至少有两次的点数相同。
3.操场上有同学在比赛掷沙包,小亚数了一下人数说:“这里至少有两人的生日在同一个月”,至少有____人在比赛掷沙包。
(三)玩一玩
1.出示:抢位子游戏规则: ①每个人必须都坐下;
②一张椅子上允许坐一个以上的人。2.学生活动。
师:现在有3个位子,老师至少请几人来玩,才会出现抽屉原理的情况?
生:4人,因为把椅子看作抽屉,人数看作苹果,人数比椅子数多1。
活动开始:大家击掌,4位同学围着椅子转,掌声停,4位同学抢着坐下。
师:用一句话说说他们就坐的情况。
生:至少有一个椅子有2人或2个以上的人。
师:5人抢3把椅子,6人、7人抢3把椅子,会有什么样的结论呢?请感兴趣的同学课后继续研究。
抽屉原理教学实录评议
一、“思维定向”的由来
《放苹果》即抽屉原理是二期课改小学数学教材新引进的课题。其内容抽象、费解,在三年级教学是个难点。如何突破?作了多次探索。
第一次,按照课本的设计教学,探究3个苹果放入2个抽屉就遇到了困难。学生很容易得出有4种情况,但让他们自己概括结论非常困难。学生首先想到是抽屉里的苹果数最多是3,最少是0。分析原因,很简单,学生很难用“一定有”、“至少”这样的语言来陈述。
怎样才能让三年级学生自己说出教师期望的结论呢?我们尝试了多种方法,发现由抢位子游戏引入,学生比较容易说出“3人抢2个座位,一定有一个座位坐2个人”,还要让学生再次探究3个苹果放入2个抽屉。感觉有些重复。
这次教学诊断,我仍上这一内容,尝试改变由学生放苹果后得出结论的常规做法,创设“小巧”这一学生喜爱的人物形象参与教学活动,由她的“猜想”给学生“思维定向”,让学生在解读小巧“猜想”的过程中初步理解抽屉原理。从课堂实效来看,这一设计达到了预期的目标。
同一课题的多次实践,使我真切感悟:学生的数学语言也有最近发展区。
二、“实验结果”为何简化
第一次教学时,按照“教参”的提示,对几个抽屉用不同颜色加以区别,这样“把4个苹果放入3个抽屉”的实验结果就有12种情况,虽然通过小组合作与交流,能够避免遗漏,但时间花费过多,毕竟现在一节课只有35分钟。而且,要让学生观察12种情况概括结论,又是勉为其难。于是想到,既然教材对几个苹果不加区分,对抽屉是否也可以不加区分呢?查阅了很多资料,其中多数对抽屉也不加区分的。
那么,选择什么时机提出简化建议呢?比较来比较去,还是在得出3个苹果放入2个抽屉的4种情况以后,将4种情况简化为2种,比较适宜。
看来,不能依赖“教参”,立足学生与教学实际,该删繁就简就删繁就简。
三、教材之外还需充实什么
一师附小是“愉快教育”的发源地,为了让学生愉悦地学习,除了将教材上的卡通人物参与进来之外,在设计补充练习时,我还精心挑选了一些学生学习生活的情境,并配上插图。改进以后的练习组合,学生兴趣盎然。
抽屉原理的来历,可以介绍给学生,抽屉原理的别名“鸽巢原理”附带出现,既有利于增添趣味,又能为后面抽屉原理的应用做出铺垫。
现在的小学生,一年级就开始学习英语,用字母表示数不感困难,所以小结时用上了字母,这样抽屉数与苹果数之间的关系,一目了然。
前几次教学,发现尽管抽屉原理的理解起来并不容易,但学生兴趣很浓,因为它和学生以前学的数学知识大不一样。另外题材丰富的练习让学生初步看到抽屉原理应用的广泛性,从中感受了抽屉原理的魅力。所以,这次在课的结尾,利用抢位子的游戏活动,在形成“高潮”的同时,通过教师的追问:7人抢3个椅子呢?孕伏了拓展,让学有余力的学生继续探究“(kn+1)个苹果放入n个抽屉,至少有一个抽屉有(k+1)个苹果”。
多次教学抽屉原理的最大感悟是,顺应学生认知特点的教学才是有效的教学。
教师师点评:
听了该老师的说课,被她不断反思、孜孜以求的精神所感动。这节课的创意、改进,主要的上面已经说到,也说得很明白。要点评只能再深入说两点和补充一点。
一、“思维定向”有道理
对于成人来讲,本课讨论的抽屉原理(抽屉原理的最简单形式),内容简明朴素,几乎不言自明。但对于小学三年级学生,理解起来确有难度。因为抽屉原理的实质,是揭示了一种存在性,比较抽象。
至于抽屉原理的发现与精练表述,明显超出了一般人的数学敏感性和抽象概括能力。要不然,为什么如此平凡、简单的现象,直到19世纪才被狄利克雷首先明确提出呢?如同苹果往地上掉了千百年,直到落在牛顿头上,才深究出万有引力定律。这一联想、类比可能不够确切,但近年来确实有一些脱离学生实际一相情愿的“探究—发现”的泛化现象。难怪教师会发出要把握学生的最近发展区、要顺应学生认知特点的感慨,其实这些都是有效教学应当采纳的基本策略。
美国心理学家布鲁纳有句名言:“任何学科都能够用在智育上是正确的方式,有效地教给任何发展阶段的任何儿童”[1]且不说这一假设是否武断,作为发现法的倡导者,布鲁纳说的也只是“教给”,而不是“发现”。
既然要让三年级小学生通过将3个苹果放入2个抽屉的操作,面对4种情况自发地发现并概括出抽屉原理,有点勉为其难,那么采用适当的方式给出抽屉原理的“猜想”,着力启发学生理解,便是可取的。心理学的研究早就告诉我们,“思维定向”对于探究学习和问题解决常常是必要的。
二、“抢位子”引入未必最佳
非常佩服老师的教学创新意识及其努力,想到了“抢位子游戏”的引入方法。通过游戏活动,学生比较容易自发地概括出“一定有一个座位坐2个人”,与预设结论只差“至少”和“2个以上”。因为抢位子游戏一般不会让一个位子空在那里,大家都不去坐。所以(n+1)人抢n个座位坐,通常只有一种情况,即一个座位坐2人,其他座位坐1人。学生想不到“至少”和“2个以上”情有可原。由此判断抢位子游戏未必就是最佳引入。
三、“逐步理解”可供借鉴
抽屉原理看似简单,但要让小学生建构起自己的实质性理解,还是很有挑战性的。教师采取了“分散难点”的教学策略:
第一步,先使学生理解“一定有一个抽屉里有2个苹果”; 第二步,再使学生理解“一定有一个抽屉里有2个或2个以上苹果”;
第三步,再使学生理解“至少有一个抽屉里有2个或2个以上苹果”。
事实上,第一步所得出的算式
3÷2=1(个)„„1(个)
1+1=2(个)
已经能够说明抽屉原理n=2的特例了,因为它相当于抽屉原理的反证法:
如果每个抽屉至多只放进一个苹果,那么苹果的总数至多是n,而不是题设的比n多。
但对于小学生而言,后面的两步不能说多余。否则他们会对“为什么还有2个以上”、“为什么要强调至少”心存疑虑。
同样,讨论n=4,5时,教师分三种情况一一举例说明,也可以认为是分散难点,各个击破。
如此说来,教师将命题分解,引导、启发学生“逐步理解”的教学策略可供借鉴。
最后,有必要指出,我个人并不赞成在三年级上学期教学抽屉原理。尽管苏老师的教学实践似乎印证了布鲁纳的上述假设,但对于其他老师以及他们的全体学生来说,这个内容教与学的难度都显得大了。再说,我们的数学课程标准义务教育阶段没有这个知识点(高中阶段的拓展内容有抽屉原理,当然会更展开、深入些)。据此认为,把它推后安排,视为拓展内容,作选学处理,可能比较合适。只是因为这节课上得不错,同时也应该是苏老师和她的一师附小数学教师团队长期教学探索的结晶之一,所以有感而发。
第二篇:抽屉原理
抽屉原理
把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。一般地,我们将它表述为:
第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
使用抽屉原理解题,关键是构造抽屉。一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。
例1 从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定:
(1)有2个数互质;
(2)有2个数的差为50;
(3)有8个数,它们的最大公约数大于1。
证明:(1)将100个数分成50组:
{1,2},{3,4},…,{99,100}。
在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。
(2)将100个数分成50组:
{1,51},{2,52},…,{50,100}。
在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。
(3)将100个数分成5组(一个数可以在不同的组内):
第一组:2的倍数,即{2,4,…,100};
第二组:3的倍数,即{3,6,…,99};
第三组:5的倍数,即{5,10,…,100};
第四组:7的倍数,即{7,14,…,98};
第五组:1和大于7的质数即{1,11,13,…,97}。
第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。
例2 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。
证明:因1996÷4=499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。
得到500个余数r1,r2,…,r500。由于余数只能取0,1,2,…,499这499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:11…100…0,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。
例3 在一个礼堂中有99名学生,如果他们中的每个人都与其中的66人相识,那么可能出现这种情况:他们中的任何4人中都一定有2人不相识(假定相识是互相的)。
分析:注意到题中的说法“可能出现……”,说明题的结论并非是条件的必然结果,而仅仅是一种可能性,因此只需要设法构造出一种情况使之出现题目中所说的结论即可。
解:将礼堂中的99人记为a1,a2,…,a99,将99人分为3组:
(a1,a2,…,a33),(a34,a35,…,a66),(a67,a68,…,a99),将3组学生作为3个抽屉,分别记为A,B,C,并约定A中的学生所认识的66人只在B,C中,同时,B,C中的学生所认识的66人也只在A,C和A,B中。如果出现这种局面,那么题目中所说情况
/ 7
就可能出现。
因为礼堂中任意4人可看做4个苹果,放入A,B,C三个抽屉中,必有2人在同一抽屉,即必有2人来自同一组,那么他们认识的人只在另2组中,因此他们两人不相识。
例4 如右图,分别标有数字1,2,…,8的滚珠两组,放在内外两个圆环上,开始时相对的滚珠所标数字都不相同。当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。
分析:此题中没有直接提供我们用以构造抽屉和苹果的数量关系,需要转换一下看问题的角度。
解:内外两环对转可看成一环静止,只有一个环转动。一个环转动一周后,每个滚珠都会有一次与标有相同数字的滚珠相对的局面出现,那么这种局面共要出现8次。将这8次局面看做苹果,再需构造出少于8个抽屉。
注意到一环每转动45°角就有一次滚珠相对的局面出现,转动一周共有8次滚珠相对的局面,而最初的8对滚珠所标数字都不相同,所以数字相同的滚珠相对的情况只出现在以后的7次转动中,将7次转动看做7个抽屉,8次相同数字滚珠相对的局面看做8个苹果,则至少有2次数字相对的局面出现在同一次转动中,即必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。
例5 有一个生产天平上用的铁盘的车间,由于工艺上的原因,只能控制盘的重量在指定的20克到20.1克之间。现在需要重量相差不超过0.005克的两只铁盘来装配一架天平,问:最少要生产多少个盘子,才能保证一定能从中挑出符合要求的两只盘子?
解:把20~20.1克之间的盘子依重量分成20组:
第1组:从20.000克到20.005克;
第2组:从20.005克到20.010克;
……
第20组:从20.095克到20.100克。
这样,只要有21个盘子,就一定可以从中找到两个盘子属于同一组,这2个盘子就符合要求。
例6 在圆周上放着100个筹码,其中有41个红的和59个蓝的。那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?
分析:此题需要研究“红筹码”的放置情况,因而涉及到“苹果”的具体放置方法,由此我们可以在构造抽屉时,使每个抽屉中的相邻“苹果”之间有19个筹码。
解:依顺时针方向将筹码依次编上号码:1,2,…,100。然后依照以下规律将100个筹码分为20组:
(1,21,41,61,81);
(2,22,42,62,82);
……
(20,40,60,80,100)。
将41个红筹码看做苹果,放入以上20个抽屉中,因为41=2×20+1,所以至少有一个抽屉中有2+1=3(个)苹果,也就是说必有一组5个筹码中有3个红色筹码,而每组的5个筹码在圆周上可看做两两等距,且每2个相邻筹码之间都有19个筹码,那么3个红色筹码中必有2个相邻(这将在下一个内容——第二抽屉原理中说明),即有2个红色筹码之间有19个筹码。
下面我们来考虑另外一种情况:若把5个苹果放到6个抽屉中,则必然有一个抽屉空着。这种情况一般可以表述为:
/ 7
第二抽屉原理:把(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
例7 在例6中留有一个疑问,现改述如下:在圆周上放有5个筹码,其中有3个是同色的,那么这3个同色的筹码必有2个相邻。
分析:将这个问题加以转化:
如右图,将同色的3个筹码A,B,C置于圆周上,看是否能用另外2个筹码将其隔开。
解:如图,将同色的3个筹码放置在圆周上,将每2个筹码之间的间隔看做抽屉,将其余2个筹码看做苹果,将2个苹果放入3个抽屉中,则必有1个抽屉中没有苹果,即有2个同色筹码之间没有其它筹码,那么这2个筹码必相邻。
例8 甲、乙二人为一个正方形的12条棱涂红和绿2种颜色。首先,甲任选3条棱并把它们涂上红色;然后,乙任选另外3条棱并涂上绿色;接着甲将剩下的6条棱都涂上红色。问:甲是否一定能将某一面的4条棱全部涂上红色?
解:不能。
如右图将12条棱分成四组:
第一组:{A1B1,B2B3,A3A4},第二组:{A2B2,B3B4,A4A1},第三组:{A3B3,B4B1,A1A2},第四组:{A4B4,B1B2,A2A3}。
无论甲第一次将哪3条棱涂红,由抽屉原理知四组中必有一组的3条棱全未涂红,而乙只要将这组中的3条棱涂绿,甲就无法将某一面的4条棱全部涂红了。
下面我们讨论抽屉原理的一个变形——平均值原理。
我们知道n个数a1,a2,…,an的和与n的商是a1,a2,…,an这n个数的平均值。平均值原理:如果n个数的平均值为a,那么其中至少有一个数不大于a,也至少有一个不小于a。
例9 圆周上有2000个点,在其上任意地标上0,1,2,…,1999(每一点只标一个数,不同的点标上不同的数)。求证:必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999。
解:设圆周上各点的值依次是a1,a2,…,a2000,则其和
a1+a2+…+a2000=0+1+2+…+1999=1999000。
下面考虑一切相邻三数组之和:
(a1+a2+a3)+(a2+a3+a4)+…+(a1998+a1999+a2000)+(a1999+a2000+a1)+(a2000+a1+a2)
=3(a1+a2+…+a2000)
=3×1999000。
这2000组和中必至少有一组和大于或等于
但因每一个和都是整数,故有一组相邻三数之和不小于2999,亦即存在一个点,与它紧相邻的两点和这点上所标的三数之和不小于2999。
例10 一家旅馆有90个房间,住有100名旅客,如果每次都恰有90名旅客同时回来,那么至少要准备多少把钥匙分给这100名旅客,才能使得每次客人回来时,每个客人都能用自己分到的钥匙打开一个房门住进去,并且避免发生两人同时住进一个房间?
解:如果钥匙数小于990,那么90个房间中至少有一个房间的钥匙数少房间就打不开,因此90个人就无法按题述的条件住下来。
/ 7
另一方面,990把钥匙已经足够了,这只要将90把不同的钥匙分给90个人,而其余的10名旅客,每人各90把钥匙(每个房间一把),那么任何90名旅客返回时,都能按要求住进房间。
最后,我们要指出,解决某些较复杂的问题时,往往要多次反复地运用抽屉原理,请看下面两道例题。
例11 设有4×28的方格棋盘,将每一格涂上红、蓝、黄三种颜色中的任意一种。试证明:无论怎样涂法,至少存在一个四角同色的长方形。
证明:我们先考察第一行中28个小方格涂色情况,用三种颜色涂28个小方格,由抽屉原理知,至少有10个小方格是同色的,不妨设其为红色,还可设这10个小方格就在第一行的前10列。
下面考察第二、三、四行中前面10个小方格可能出现的涂色情况。这有两种可能:
(1)这三行中,至少有一行,其前面10个小方格中,至少有2个小方格是涂有红色的,那么这2个小方格和第一行中与其对应的2个小方格,便是一个长方形的四个角,这个长方形就是一个四角同是红色的长方形。
(2)这三行中每一行前面的10格中,都至多有一个红色的小方格,不妨设它们分别出现在前三列中,那么其余的3×7个小方格便只能涂上黄、蓝两种颜色了。
我们先考虑这个3×7的长方形的第一行。根据抽屉原理,至少有4个小方格是涂上同一颜色的,不妨设其为蓝色,且在第1至4列。
再考虑第二行的前四列,这时也有两种可能:
(1)这4格中,至少有2格被涂上蓝色,那么这2个涂上蓝色的小方格和第一行中与其对应的2个小方格便是一个长方形的四个角,这个长方形四角同是蓝色。
(2)这4格中,至多有1格被涂上蓝色,那么,至少有3格被涂上黄色。不妨设这3个小方格就在第二行的前面3格。
下面继续考虑第三行前面3格的情况。用蓝、黄两色涂3个小方格,由抽屉原理知,至少有2个方格是同色的,无论是同为蓝色或是同为黄色,都可以得到一个四角同色的长方形。
总之,对于各种可能的情况,都能找到一个四角同色的长方形。
例12 试卷上共有4道选择题,每题有3个可供选择的答案。一群学生参加考试,结果是对于其中任何3人,都有一道题目的答案互不相同。问:参加考试的学生最多有多少人?
解:设每题的三个选择分别为a,b,c。
(1)若参加考试的学生有10人,则由第二抽屉原理知,第一题答案分别为a,b,c的三组学生中,必有一组不超过3人。去掉这组学生,在余下的学生中,定有7人对第一题的答案只有两种。对于这7人关于第二题应用第二抽屉原理知,其中必可选出5人,他们关于第二题的答案只有两种可能。对于这5人关于第三题应用第二抽屉原理知,可以选出4人,他们关于第三题的答案只有两种可能。最后,对于这4人关于第四题应用第二抽屉原理知,必可选出3人,他们关于第四题的答案也只有两种。于是,对于这3人来说,没有一道题目的答案是互不相同的,这不符合题目的要求。可见,所求的最多人数不超过9人。
另一方面,若9个人的答案如下表所示,则每3人都至少有一个问题的答案互不相同。
所以,所求的最多人数为9人。练习13
1.六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说得对吗?为什么?
2.现有64只乒乓球,18个乒乓球盒,每个盒子里最多可以放6只乒乓球,至少有几个
/ 7
乒乓球盒子里的乒乓球数目相同?
3.某校初二年级学生身高的厘米数都为整数,且都不大于160厘米,不小于150厘米。问:在至少多少个初二学生中一定能有4个人身高相同?
4.从1,2,…,100这100个数中任意选出51个数,证明在这51个数中,一定:
(1)有两个数的和为101;
(2)有一个数是另一个数的倍数;
(3)有一个数或若干个数的和是51的倍数。
5.在3×7的方格表中,有11个白格,证明
(1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格;
(2)只有一个白格的列只有3列。
6.某个委员会开了40次会议,每次会议有10人出席。已知任何两个委员不会同时开两次或更多的会议。问:这个委员会的人数能够多于60人吗?为什么?
7.一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这条流水线才能工作。总共有8个工人在这条流水线上工作。在每一个工作日内,这些工人中只有5名到场。为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?
8.有9名数学家,每人至多能讲3种语言,每3人中至少有2人能通话。求证:在这9名中至少有3名用同一种语言通话。
练习13
1.对。解:因为49-3=3×(100-86+1)+1,即46=3×15+1,也就是说,把从100分至86分的15个分数当做抽屉,49-3=46(人)的成绩当做物体,根据第二抽屉原理,至少有4人的分数在同一抽屉中,即成绩相同。
2.4个。解:18个乒乓球盒,每个盒子里至多可以放6只乒乓球。为使相同乒乓球个数的盒子尽可能少,可以这样放:先把盒子分成6份,每份有18÷6=3(只),分别在每一份的3个盒子中放入1只、2只、3只、4只、5只、6只乒乓球,即3个盒子中放了1只乒乓球,3个盒中放了2只乒乓球……3个盒子中放了6只乒乓球。这样,18个盒子中共放了乒乓球
(1+2+3+4+5+6)×3=63(只)。
把以上6种不同的放法当做抽屉,这样剩下64-63=1(只)乒乓球不管放入哪一个抽屉里的任何一个盒子里(除已放满6只乒乓球的抽屉外),都将使该盒子中的乒乓球数增加1只,这时与比该抽屉每盒乒乓数多1的抽屉中的3个盒子里的乒乓球数相等。例如剩下的1只乒乓球放进原来有2只乒乓球的一个盒子里,该盒乒乓球就成了3只,再加上原来装有3只乒乓球的3个盒子,这样就有4个盒子里装有3个乒乓球。所以至少有4个乒乓球盒里的乒乓球数目相同。
3.34个。
解:把初二学生的身高厘米数作为抽屉,共有抽屉
160-150+1=11(个)。
根据抽屉原理,要保证有4个人身高相同,至少要有初二学生
3×11+1=34(个)。
4.证:(1)将100个数分成50组:
/ 7
{1,100},{2,99},…,{50,51}。
在选出的51个数中,必有两数属于同一组,这一组的两数之和为101。
(2)将100个数分成10组:
{1,2,4,8,16,32,64}, {3,6,12,24,48,96},{5,10,20,40,80}, {7,14,28,56},{9,18,36,72}, {11,22,44,88},{13,26,52}, {15,30,60},…, {49,98}, {其余数}。
其中第10组中有41个数。在选出的51个数中,第10组的41个数全部选中,还有10个数从前9组中选,必有两数属于同一组,这一组中的任意两个数,一个是另一个的倍数。
(3)将选出的51个数排成一列:
a1,a2,a3,…,a51。
考虑下面的51个和:
a1,a1+a2,a1+a2+a3,…,a1+a2+a3+…+a51。
若这51个和中有一个是51的倍数,则结论显然成立;若这51个和中没有一个是51的倍数,则将它们除以51,余数只能是1,2,…,50中的一个,故必然有两个的余数是相同的,这两个和的差是51的倍数,而这个差显然是这51个数(a1,a2,a3,…,a51)中的一个数或若干个数的和。
5.证:(1)在其余4列中如有一列含有3个白格,则剩下的5个白格要放入3列中,将3列表格看做3个抽屉,5个白格看做5个苹果,根据第二抽屉原理,5(=2×3-1)个苹果放入3个抽屉,则必有1个抽屉至多只有(2-1)个苹果,即必有1列只含1个白格,也就是说除了原来3列只含一个白格外还有1列含1个白格,这与题设只有1个白格的列只有3列矛盾。所以不会有1列有3个白格,当然也不能再有1列只有1个白格。推知其余4列每列恰好有2个白格。
(2)假设只含1个白格的列有2列,那么剩下的9个白格要放入5列中,而9=2×5-1,由第二抽屉原理知,必有1列至多只有2-1=1(个)白格,与假设只有2列每列只1个白格矛盾。所以只有1个白格的列至少有3列。
6.能。
解:开会的“人次”有 40×10=400(人次)。设委员人数为N,将“人次”看做苹果,以委员人数作为抽屉。
若N≤60,则由抽屉原理知至少有一个委员开了7次(或更多次)会。但由已知条件知没有一个人与这位委员同开过两次(或更多次)的会,故他所参加的每一次会的另外9个人是不相同的,从而至少有7×9=63(个)委员,这与N≤60的假定矛盾。所以,N应大于60。
7.20轮。
解:如果培训的总轮数少于20,那么在每一台机器上可进行工作的工人果这3个工人某一天都没有到车间来,那么这台机器就不能开动,整个流水线就不能工作。故培训的总轮数不能少于20。
另一方面,只要进行20轮培训就够了。对3名工人进行全能性培训,训练他们会开每一台机器;而对其余5名工人,每人只培训一轮,让他们每人能开动一台机器。这个方案实施后,不论哪5名工人上班,流水线总能工作。
8.证:以平面上9个点A1,A2,…,A9表示9个数学家,如果两人能通话,就把表示他们的两点联线,并涂上一种颜色(不同的语言涂上不同颜色)。此时有两种情况:
(1)9点中有任意2点都有联线,并涂了相应的颜色。于是从某一点A1出发,分别与
/ 7
A2,A3,…,A9联线,又据题意,每人至多能讲3种语言,因此A1A2,A1A3,…,A1A9中至多只能涂3种不同的颜色,由抽屉原理知,这8条线段中至少有2条同色的线段。不妨设A1A2与A1A3是同色线段,因此A1,A2,A3这3点表示的3名数学家可用同一种语言通话。
(2)9点中至少有2点不联线,不妨设是A1与A2不联线。由于每3人中至少有两人能通话,因此从A1与A2出发至少有7条联线。再由抽屉原理知,其中必有4条联线从A1或A2 出发。不妨设从A1出发,又因A1至多能讲3种语言,所以这4条联线中,至少有2条联线是同色的。若A1A3与A1A4同色,则A1,A3,A4这3点表示的3名数学家可用同一种语言通话。
/ 7
第三篇:抽屉原理
《抽屉原理》教学设计
教材分析:现行小学教材人教版在十一册编入这一原理,旨在于让学生初步了解“抽屉原理”(也就是初步接触第一原理),会用“抽屉原理”解决实际有关“存在”问题;通过猜测、验证、观察、分析等数学活动,让孩子建立数学模型,发现规律;使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
学情分析:使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。教学目标:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过操作发展学生的类推能力,形成比较抽象的数学思维。
3、通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程
一、游戏引入
3个人坐两个座位,3人都要坐下,一定有一个座位上至少坐了2个人。
这其中蕴含了有趣的数学原理,这节课我们一起学习研究。
二、新知探究
1、把4枝铅笔放进3个文具盒里,不管怎么放,总有一个文具盒里至少放进()枝铅笔先猜一猜,再动手放一放,看看有哪些不同方法。用自己的方法记录(4,0,0)(3,1,0)(2,2,0)(2,1,1)你有什么发现?
不管怎么放总有一个文具盒里至少放进2枝铅笔。总有是什么意思?至少是什么意思
2、思考
有没有一种方法不用摆放就可以知道至少数是多少呢?
1、3人坐2个位子,总有一个座位上至少坐了2个人2、4枝铅笔放进3个文具盒中,总有一个文具盒中至少放了2枝铅笔5枝铅笔放进4个文具盒中,6枝铅笔放进5个文具盒中。99支铅笔放进98个文具盒中。是否都有一个文具盒中
至少放进2枝铅笔呢? 这是为什么?可以用算式表达吗?
4、如果是5枝铅笔放到3个文具盒里,总有一个文具盒至少放进几枝铅笔?把7枝笔放进2个文具盒里呢? 8枝笔放进2个文具盒呢? 9枝笔放进3个文具盒呢?至少数=上+余数吗?
三、小试牛刀 1、7只鸽子飞回5个鸽舍,至少有几只鸽子要飞进同一个鸽舍里?
2、从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有几张是同花色的?
四、数学小知识
数学小知识:抽屉原理的由来最先发现这些规律的人是谁呢?最先是由19世纪的德国数学家狄里克雷运用于解决数学问题的,后人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”,还把它叫做
“抽屉原理”。
五、智慧城堡
1、把13只小兔子关在5个笼子里,至少有多少只兔子要关在同一个笼子里?
2、咱们班共59人,至少有几人是同一属相?
3、张叔叔参加飞镖比赛,投了5镖,镖镖都中,成绩是41环。张叔叔至少有一镖不低于9环。为什么?
4、六年级四个班的学生去春游,自由活时有6个同学在一起,可以肯定。为什么?
六、小结
这节课你有什么收获?
七、作业:课后练习
第四篇:抽屉原理
抽屉原理
【知识要点】
抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。
把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人人皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。
原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。
原理2:把m个元素任意放入n(n<m)个集合,则一定有一个集合呈至少要有k个元素。
其中 k= 商(当n能整除m时)
商+1(当n不能整除m时)
原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。【解题步骤】
第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。
第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。
第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。【例题讲解】
例
1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业
求证:这5名学生中,至少有两个人在做同一科作业。证明:将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。即至少有两名学生在做同一科的作业。
例
2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉
若要符合题意,则小球的数目必须大于3 大于3的最小数字是4 故至少取出4个小球才能符合要求 答:最少要取出4个球。
例
3、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。
解:把50名学生看作50个抽屉,把书看成苹果 根据原理1,书的数目要比学生的人数多 即书至少需要50+1=51本 答:最少需要51本。
例
4、在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。
解:把这条小路分成每段1米长,共100段
每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果 于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果 即至少有一段有两棵或两棵以上的树
例5、11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本 试证明:必有两个学生所借的书的类型相同
证明:若学生只借一本书,则不同的类型有A、B、C、D四种
若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种 共有10种类型
把这10种类型看作10个“抽屉” 把11个学生看作11个“苹果”
如果谁借哪种类型的书,就进入哪个抽屉
由抽屉原理,至少有两个学生,他们所借的书的类型相同
例
6、有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜 试证明:一定有两个运动员积分相同 证明:设每胜一局得一分
由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能 以这49种可能得分的情况为49个抽屉 现有50名运动员得分 则一定有两名运动员得分相同
例
7、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?
解:根据规定,同学拿球的配组方式共有以下9种:
{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝} 以这9种配组方式制造9个抽屉 将这50个同学看作苹果
50÷9=5.……5
由抽屉原理2:k=商+1可得,至少有6人,他们所拿的球类是完全一致的
第五篇:抽屉原理
抽屉原理
一、起源
抽屉原理最先是由19 世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的.这个原理可以简单地叙述为“把10个苹果,任意分放在9 个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”.这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果.抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用.二、抽屉原理的基本形式
定理1,如果把n+1 个元素分成n 个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素.证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1 个元素,从而n 个集合至多有n 个元素,此与共有n+1 个元素矛盾,故命题成立.在定理1 的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名.同样,可以把“元素”改成“鸽子”,把“分成n 个集合”改成“飞进n 个鸽笼中”.“鸽笼原理”由此得名.解答抽屉原理的关键:
假设有3 个苹果放入2 个抽屉中,则必然有一个抽屉中有2 个苹果,她的一般模型可以表述为:
第一抽屉原理:把(mn+1)个物体放入n 个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。
若把3 个苹果放入4 个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:
第二抽屉原理:把(mn-1)个物体放入n 个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
抽屉原理一
把4 只苹果放到3 个抽屉里去,共有4 种放法,不论如何放,必有一个抽屉里至少放进两个苹果。
同样,把5 只苹果放到4 个抽屉里去,必有一个抽屉里至少放进两个苹果。
更进一步,我们能够得出这样的结论:把n+1 只苹果放到n 个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。
利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所 学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。
抽屉原理二
这里我们讲抽屉原理的另一种情况。先看一个例子:如果将13 只鸽子放进6 只鸽笼里,那么至少有一只笼子要放3 只或更多的鸽子。道理很简单。如果每只鸽笼里只放2 只鸽子,6 只鸽笼共放12 只鸽子。剩下的一只鸽子无论放入哪 只鸽笼里,总有一只鸽笼放了3 只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。
抽屉原理2:将多于m×n 件的物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。
说明这一原理是不难的。假定这n 个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m 件,这样,n 个抽屉中可放物品的总数就不会超过m×n 件。这与多于m×n 件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n 个抽屉中每 个都放入m 件物品,共放入(m×n)件物品,此时再放入1 件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m +1)件物品。这就说明了抽屉原理2。
不难看出,当m=1 时,抽屉原理2 就转化为抽屉原理1。即抽屉原理2 是抽屉原理1 的推广。我们很容易理解这样一个事实:把3 只苹果放到两个抽屉中,肯定有一个抽屉中有2 只或2 只以上的苹果。用数学语言表达这一事实,就是:将n+1 个元素放入n 个集合内,则一定有一个集合内有两个或两个以上的元素(n 为正整数)。
这就是抽屉原理,也称为“鸽笼(巢)”原理。这一原理最先是由德国数学家狄里克雷明确提出来的,因此,称之为狄 里克雷原理。
抽屉原理还有另外的常用形式:
抽屉原理2:把m 个元素任意放入n(n < m)个集合里,则一定有一个集合里至少有k 个元素,其中:
抽屉原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。
抽屉原理又叫重叠原则,抽屉原则有如下几种情形。
抽屉原则①:把n+1 件东西任意放入n 只抽屉里,那么至少有一个抽屉里有两件东西。
抽屉原则②:把m 件东西放入n 个抽屉里,那么至少有一个抽屉里至少有[m/n]件东西。
抽屉原则③:如果有无穷件东西,把它们放在有限多个抽屉里,那么至少有一个抽屉里含无穷件东西。利用抽屉原则解题时,其关键是如何利用题中已知条件构造出与题设密切相关的“抽屉”。