第一篇:星火教育:六年级数学应用题解析与总结
星火教育:六年级数学应用题解析与总结
到了小学六年级,我们开始接触一类应用题,叫做工作总量问题。一般来说,题干会涉及到三个概念,叫做工作总量,工作时间和工作效率,这也是一类实际应用题。工作总量问题一般都会作为一道大题来考察,分值较高,所以同学们必须要弄明白这一类问题。下面,星火教育小编就来介绍一下工作总量的相关习题解法,希望对同学们有所帮助。
工作总量问题的基本公式
工作效率×工作时间=工作总量工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
点评:公式简单不一定问题简单,在应用题里,我们都是隐含一些基本的已知量,需要我们进一步去解答,下面给大家列举一些比较经典的题目。
星火教育官网:http:xinghuo100.com
工作总量应用题举例与解析
某工程队承接了3000米得修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用了30天完成任务,求引进新设备前平均每天修路多少米?
【解析】求的是新工效,工作总量为3000,一定是根据工作时间来列等量关系.本题的关键描述语是:“一共用30天完成了任务”;等量关系为:600米所用时间+剩余米数所用时间=30
方程式解答:
解:设引进新设备前平均每天修路x米,则引进新设备后每天修路2x米,根据题意得
600/✘+2400/2✘=30
解这个方程得x=60
经检验x=60是所列方程的根
答:引进新设备前平均每天修路60米。
星火教育官网:http:xinghuo100.com
学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?
设获得一等奖的学生有x人,二等奖的学生有y人,则有
一等奖人数+二等奖人数=总人数
一等奖人数*奖金+二等奖人数*奖金=总的奖金
x+y=22
200x+50y=2000
得
x=6
y=16
工作总量问题相对水流问题要简单一些,也更容易理解,但是,一些引申的题目可并不好解答,星火教育希望同学们可以认真分析题干,找出已知量与未知量,再根据相关的公式,才能求出最终的结果。
星火教育官网:http:xinghuo100.com
星火教育官网:http:xinghuo100.com
第二篇:最新六年级数学应用题
六年级数学应用题
1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米 ?
2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?
3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?
4、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?
5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米?
6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?
7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若
甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?
8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度? 解:
9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?
10、甲每小时行驶9千米,乙每小时行驶7千米。两者在相距6千米的两地同时向背而行,几小时后相距150千米?
11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?
解:
12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距? 解:
13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2,求二车的速度?
14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?
15、甲、乙两车分别从a b两地开出 甲车每小时行50千米 乙车每小时行40千米 甲车比乙车早1小时到 两地相距多少?
16、两辆车从甲乙两地同时相对开出,4时相遇。慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?
17、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米。A、B两地的最短距离多少米?最长距离多少米?
18、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?
19、甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行
了12小时,AB两地相距多少千米?
20、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的1.5倍,车开出几时相遇?
21、甲乙两车分别从A,B两地同时出发相向而行,甲每小时行80千米,乙每小时行全程的百分之十,当乙行到全程的5/8时,甲再行全程的1/6可到达B地。求A,B两地相距多少千米?
22、甲乙两辆汽车同时从两地相对开出,甲车每小时行驶40千米,乙车每小时行驶45千米。两车相遇时,乙车离中点20千米。两地相距多少千米?
23、甲乙两人分别在A、B两地同时相向而行,与E处相遇,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走,甲和乙分别到达B和A后立即折返,仍在E处相遇。已知甲每分钟走60米,乙每分钟走80米,则A和B两地相距多少米?
24、甲乙两列火车同时从AB两地相对开出,相遇时,甲.乙两车未行的路程比为4:5,已知乙车每小时行72千米,甲车行完全程要10小时,问AB两地相距多少千米?
25、甲乙两人分别以每小时4千米和每小时5千米的速度从A、B两地相向而行,相遇后二人继续往前走,如果甲从相遇点到达B地又行2小时,A、B两地相距多少千米?
26、客货两车同时从甲、乙两地相对开出,途中相遇后继续前进,各到达对方出发地后立即返回,途中第二次相遇,两次相遇地点间相距120千米客车每小时行60千米,货车每小时行48千米,甲乙两地相距多少千米?
27、一辆客车和一辆货车同时从A,B两地相对开出,5小时相遇,相遇后两车又各自继续向前行驶3小时,这时客车离B地还有180千米,货车离A地还有210千米,AB两地相距多少千米?
28、甲乙由AB两地相向出发,甲速是乙速的4/5,甲乙到达B,A地后,向AB相向返回,且甲速提高1/4乙速提高1/3,已知甲乙两次相遇点相距34km,求AB两地间距离?
29、小明5点多起床一看钟,6字恰好在时针和分针的正中间(即两针到6的距离相等),这时是5点几分?
30、一艘游船在长江上航行,从A港口到B港口需航行3小时,回程需要4小时30分钟,请问一只空桶只靠水的流动而漂移,走完同样长的距离,需用几小时?
第三篇:六年级数学应用题
六年级数学应用题大全
六年级数学应用题1
一、分数的应用题
1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?
2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?
3、修筑一条公路,完成了全长的2/3 后,离中点16.5千米,这条公路全长多少千米?
4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?
5、仓库里有一批化肥,第一次取出总数的25,第二次取出总数的1/3 少12袋,这时仓库里还剩24袋,两次共取出多少袋?
6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快
2/7,两车经过多少小时相遇?
第四篇:初一数学应用题及其解析
初一数学应用题及其解析大全
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完? 解:设还要运x次才能完 29.5-3*4=2.5x 17.5=2.5x x=7 答:还要运7次才能完。
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 解:设它的高是x米 x(7+11)=90*2 18x=180 x=10 答:它的高是10米。
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个? 解:设这9天中平均每天生产x个 9x+908=5408 9x=4500 x=500 答:这9天中平均每天生产500个。
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米? 解:设乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 答:乙每小时行40千米。
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 解:设平均成绩是x分 40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 答:平均成绩是83分。
6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒? 解:设平均每箱x盒 10x=250+550 10x=800 x=80 答:平均每箱80盒。
7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人? 解:设平均每组x人 5x+80=200 5x=160 x=32 答:平均每组32人。
8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
解:食堂运来面粉x千克 3x-30=150 3x=180 x=60 答:食堂运来面粉60千克。
9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
解:平均每行梨树有x棵 6x-52=20 6x=72 x=12 答:平均每行梨树有12棵。
10、一块三角形地的面积是840平方米,底是140米,高是多少米? 解:高是x米 140x=840*2 140x=1680 x=12 答:高是12米。
11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米? 解:设每件儿童衣服用布x米 16x+20*2.4=72 16x=72-48 16x=24 x=1.5 答:每件儿童衣服用布1.5米。12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁? 解:设女儿今年x岁 30=6(x-3)6x-18=30 6x=48 x=8 答:女儿今年8岁。
13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车? 解:设需要x小时 50x=40(x+2)50x=40x+80 10x=80 x=8 答:需要8小时。
14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元? 解:设苹果每千克x元 3x+2(x-0.5)=15 5x=16 x=3.2 答:苹果:3.2元,梨:2.7元。
15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达终点。甲几小时到达终点? 解:设甲x小时到达终点 50x=40(x+1)10x=40 x=4 答:甲4小时到达终点。
16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。解:设乙的速度x 2x+(2×15)+4x=60 2x+30+4x=60 6x=30 x=5 2(x+15)=4(15-x)解得x=5 答:乙的速度为5千米/小时 答:乙的速度5千米/时。
* 有甲乙两人,乙的速度是甲的五分之三,甲乙两人分别从ab两地同时出发,若相向而行,一小时相遇,若同向而,甲要几小时才追上乙? 1+3/5)/(1-3/5)=4(小时)
17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米? 解:设原来两根绳子各长x米 3(x-15)+3=x 3x-45+3=x 2x=42 x=21 答:原来两根绳子各长21米。
18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元? 解:设每只篮球x元 7x+10x/3=248 21x+10x=744 31x=744 x=24 答:每只篮球:24 元,每只足球:8元
19、运一批货物,一直过去两次租用这两台大货车情况:第一次 甲种车2辆,乙种车3辆,运了15.5吨 第二次 甲种车5辆 乙种车6辆 运了35吨货物 现租用该公司3辆甲种车和5辆乙种车 如果按每吨付运费30元 问货主应付多少元?
解:设甲可以装x吨,乙可以装y吨,则
2x+3y=15.5
5x+6y=35
得到x=4
y=2.5
得到(3x+5y)*30=735 答:货主应付735元
20、现对某商品降价10%促销.为了使销售总金额不变.销售量要比按原价销售时增加百分之几?
解:设原价销售时增加X%
(1-10%)*(1+X%)=1
X%=11.11% 答: 为了使销售总金额不变.销售量要比按原价销售时增加11.11%。21、1个商品降价10%后的价格恰好比原价的一半多40元,问该商品原价是多少? 解:设原价为x元
(1-10%)x-40=0.5x
x=100 答:原价为100元
22、有含盐8%的盐水40克,要使盐水含盐20%,则需加盐多少克? 解:设加盐x克
开始纯盐是40*8%克
加了x克是40*8%+x
盐水是40+x克
浓度20%
所以(40*8%+x)/(40+x)=20%
(3.2+x)/(40+x)=0.2
3.2+x=8+0.2x
0.8x=4.8
x=6
答:需加盐6克
23、某市场鸡蛋买卖按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中不慎碰碎了12个,剩下的蛋以每个0.28元售出,结果仍获利11.2元。问该商贩当初买进多少个鸡蛋? 解:设该商贩当初买进X个鸡蛋.根据题意列出方程:
(X-12)*0.28-0.24X=11.2
0.28X-3.36-0.24X=11.2
0.04X=14.56
X=364 答:该商贩当初买进364个鸡蛋.24、某车间有技工85人,平均每天每人可加工甲种部件15个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
解:设安排生产甲的需要x人,那么生产乙的有(85-x)人
因为2个甲种部件和3个乙种部件配一套,所以
所以生产的甲部件乘以3才能等于乙部件乘以2的数量
16*x*3=10*(85-x)*2
解得:x=25 答:生产甲的需要25人,生产乙的需要60人!
25、红光电器商行把某种彩电按标价的八折出售,仍可获利20%。已知这种彩电每台进价1996元。那么这种彩电每台标价应为多少元? 解:设标价为X元.80%X=1996×(1+20%)
80%X= 2395.2
X=2994 答: 这种彩电每台标价应为2994元。
26、某商店把某种商品按标价的8折出售,可获利20%。若该商品的进价为每件22元,则每件商品的标价为多少元? 解::设标价为X元.80%X=22×(1+20%)
80%X= 26.4
X=33 答: 每件商品的标价为33元。
27、在一段双轨铁道上,两列火车迎头驶过,A列车车速为20m/s,B列车车速为24m/s,若A列车全长180m,B列车全长160m,问两列车错车的时间为多少秒? 解:(180+160)/(20+24)=7.28秒 答: 两列车错车的时间为7.28秒
28、甲乙两名同学在同一道路上从相距5km的两地同向而行,甲的速度为5km/h,乙的速度为3km/h,甲同学带着一条狗,当甲追乙时,狗先追乙,再返回遇上甲,又返回追乙,……直到甲追到乙为止。已知狗的速度为15km/h,求此过程中,狗跑的总路程。
解:首先要明确,甲乙的相遇时间等于狗来回跑的时间
所以狗的时间=甲乙相遇时间=总路程/甲乙速度和
=5km/(5km/h+3km/h)=5/8h
所以狗的路程=狗的时间*狗的速度=5/8h*15km/h=75/8km 答:所以甲乙相遇狗走了75/8千米
29、一天小红和小亮2人利用温度差测量某山峰的高度,小红在山顶侧的温度是-1度 小亮此时在山脚下测得的温度是5度 已知该地
区的高度每增加100M,气温大约下降0.6度 这座山峰的高度是?
30、当气温每上升1度时,某种金属丝伸长0.002MM 反之,当温度每下降1度时,金属丝缩短0.002MM。把15度的金属丝加热到60度,在使它冷却降温到5度,金属丝的长度经历了怎样的变化? 最后的长度比原来长度伸长多少?
31、一种出租车的收费方式如下:4千米以内10元,4千米至15千米部分每千米加收1.2元,15千米以上部分每千米加收1.6元,某乘客要乘出租车去50千米处的某地.
(1)如果乘客中途不换车要付车费多少元?
(2)如果中途乘客换乘一辆出租车,他在何处换比较合算?算出总费用与(1)比较.
32、已知开盘是25.35,收盘是27.38,求开盘都收盘上涨的百分比.(27.38-25.35)×100%÷25.35≈8%
33、购票人 50人以下 50-100人 100人以上 每人门票价 12元 10元 8元
现有甲乙两个旅游团,若分别购票,两团应付门票费总计1142元,如合在一起作为一个团体购票,只要门票费864元。两个旅游团各有几人?
【解】 因为864>8×100,可知两团总人数超过100人,因而两团总人数为864÷8=108(人).因为108×10=1080<1142,108×12=1296>1142.所以每个团的人数不会都大于50人,也不会都小于50人,即一个团大于50人,另一个团少于50人.假设两团都大于 50人,则分别付款时,应付108×10=1080(元),实际多付了1142-1080=62(元).这是少于50人的旅游团多付的钱.因此,这个旅游团的人数为:62÷(12-10)=31(人),另一个旅游团人数为108-31=77(人).1,有一只船在水中航行不幸漏水。当船员发现时船里已经进了一些水,且水仍在匀速进入船内。若8人淘水,要用5小时淘完;若10人淘水,要用3小时淘完。现在要求2.5小时淘完,要用多少人淘水? 答案:11个人
解:设船的总容积为a,船进水的速度为b,人淘水的速度为c,设要用x人淘水能2.5小时淘完.8*c*5=1/2*a+5*b
(1)10*c*3=1/2*a+3*b
(2)x*c*2.5=1/2*a+2.5*b
(3)(1)-(2)得到b=5c(4),把b=5c代入(1)(2),然后(1)-(2)得到1/2a=15c(5)把(4)(5)代入(3),最后整理的x=11
34、快、慢两辆车从快到慢车,快车行到全程2/3,慢车距终点180千米,两车按原速继续行驶,快到到达终点,慢车行驶了全程6/7,求全程多少米? 答案:快车行完全程,慢车走了全程的6/7; 同比可知: 快车行完全程的2/3时,慢车应走了6/7*2/3(即4/7),还剩余3/7,全程的3/7也就是已知条件180,全程即为180/(3/7)=420!
35、某银行建立大学生助学贷款,6年期的贷款年利率为百分之六,贷款利息的百分之五十由国家财政贴补。某大学生预计6年后能一次性偿还2万元,则他现在可以贷款的数额是多少元?(精确的1元)答案:设他现在可以贷款的数额是x元。
0.5(0.06x*6)+x=20000
0.18x+x=20000
1.18x=20000
x≈16949
36、将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn与△ABC的面积关系。(字数不少于200)答案:连接A B1 ∵AC=AC1 ∴S△B1AC=S△B1AC1 又∵CB1=CB ∴S△B1AC=S△ABC ∴S△B1C1C=2S△ABC 同理可得S△AA1C1=S△BA1B1=2S△ABC ∴S△A1B1C1=7S△ABC 同理S△A2B2C2=7S△A1B1C1=49S△ABC ∴S△AnBnCn=7^nS△ABC
37、将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn与△ABC的面积关.答案:设三角形ABC三个角分别为α、β、γ按题意画出三角形DEF,则可得DEF的三个角分别为180-(180-α)/2-(180-β)/2=(α+β)/2 180-(180-γ)/2-(180-β)/2=(γ+β)/2 180-(180-α)/2-(180-γ)/2=(α+γ)/2 在三角形ABC内一定存在α+β<180 γ+β<180 α+γ<180 所以在三角形DEF中三个角都小于90所以DEF为锐角三角形
38、小红抄写一份材料,每分钟抄写30个字,若干分钟可以抄完,当她抄完这份材料的五分之二时,决定提高50%的效率,结果提前20分钟抄完,求这份材料有多少字?
解:设材料原先x分钟可以抄完,则有 30x=30*(2/5x)+30*(1+50%)*(3/5x-20)得出x=100
第五篇:初一数学应用题及其解析
初一数学应用题及其解析大全
2011-11-24 15:55 来源:百度知道 作者:佚名
[ 标签: 数学试题 数学练习题 ]
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完? 还要运x次才能完 29.5-3*4=2.5x 17.5=2.5x x=7 还要运7次才能完
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 它的高是x米 x(7+11)=90*2 18x=180 x=10 它的高是10米
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个? 这9天中平均每天生产x个 9x+908=5408 9x=4500 x=500 这9天中平均每天生产500个
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米? 乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?平均成绩是x分 40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83平均成绩是83分
6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱x盒 10x=250+550 10x=800 x=80平均每箱80盒
7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?平均每组x人 5x+80=200 5x=160 x=32平均每组32人
8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克? 食堂运来面粉x千克 3x-30=150 3x=180 x=60 食堂运来面粉60千克
9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?平均每行梨树有x棵 6x-52=20 6x=72 x=12平均每行梨树有12棵
10、一块三角形地的面积是840平方米,底是140米,高是多少米? 高是x米 140x=840*2 140x=1680 x=12 高是12米
11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米? 每件儿童衣服用布x米 16x+20*2.4=72 16x=72-48 16x=24 x=1.5 每件儿童衣服用布1.5米 12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁? 女儿今年x岁 30=6(x-3)6x-18=30 6x=48 x=8 女儿今年8岁
13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车? 需要x时间 50x=40x+80 10x=80 x=8 需要8时间
14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元? 苹果x 3x+2(x-0.5)=15 5x=16 x=3.2 苹果:3.2 梨:2.7
15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点? 甲x小时到达中点 50x=40(x+1)10x=40 x=4 甲4小时到达中点
16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。乙的速度x 2(x+15)+4x=60 2x+30+4x=60 6x=30 x=5 乙的速度5 17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米? 原来两根绳子各长x米 3(x-15)+3=x 3x-45+3=x 2x=42 x=21 原来两根绳子各长21米
18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元? 每只篮球x 7x+10x/3=248 21x+10x=744 31x=744 x=24 每只篮球:24 每只足球:8
19、运一批货物,一直过去两次租用这两台大货车情况:第一次 甲种车2辆,乙种车3辆,运了15.5吨 第二次 甲种车5辆 乙种车6辆 运了35吨货物 现租用该公司3辆甲种车和5辆乙种车 如果按每吨付运费30元 问货主应付多少元 解:设甲可以装x吨,乙可以装y吨,则 2x+3y=15.5 5x+6y=35 得到x=4 y=2.5 得到(3x+5y)*30=735
20、现对某商品降价10%促销.为了使销售总金额不变.销售量要比按原价销售时增加百分之几? 解:原价销售时增加X%(1-10%)*(1+X%)=1 X%=11.11% 为了使销售总金额不变.销售量要比按原价销售时增加11.11% 21、1个商品降价10%后的价格恰好比原价的一半多40元,问该商品原价是多少? 解:设原价为x元(1-10%)x-40=0.5x x=100 答:原价为100元
22、有含盐8%的盐水40克,要使盐水含盐20%,则需加盐多少克? 解:设加盐x克
开始纯盐是40*8%克
加了x克是40*8%+x 盐水是40+x克
浓度20% 所以(40*8%+x)/(40+x)=20%(3.2+x)/(40+x)=0.2 3.2+x=8+0.2x 0.8x=4.8 x=6 所以加盐6克
23、某市场鸡蛋买卖按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中不慎碰碎了12个,剩下的蛋以每个0.28元售出,结果仍获利11.2元。问该商贩当初买进多少个鸡蛋? 解:设该商贩当初买进X个鸡蛋.根据题意列出方程:(X-12)*0.28-0.24X=11.2 0.28X-3.36-0.24X=11.2 0.04X=14.56 X=364 答:该商贩当初买进364个鸡蛋.24、某车间有技工85人,平均每天每人可加工甲种部件15个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
解:设安排生产甲的需要x人,那么生产乙的有(85-x)人
因为2个甲种部件和3个乙种部件配一套,所以
所以生产的甲部件乘以3才能等于乙部件乘以2的数量
16*x*3=10*(85-x)*2 解得:x=25 生产甲的需要25人,生产乙的需要60人!
25、红光电器商行把某种彩电按标价的八折出售,仍可获利20%。已知这种彩电每台进价1996元。那么这种彩电每台标价应为多少元? 解:设标价为X元.80%X=1996×(1+20%)80%X= 2395.2 X=2994
26、某商店把某种商品按标价的8折出售,可获利20%。若该商品的进价为每件22元,则每件商品的标价为多少元? 解::设标价为X元.80%X=22×(1+20%)80%X= 26.4 X=33
27、在一段双轨铁道上,两列火车迎头驶过,A列车车速为20m/s,B列车车速为24m/s,若A列车全长180m,B列车全长160m,问两列车错车的时间为多少秒? 解:(180+160)/(20+24)=7.28秒
28、甲乙两名同学在同一道路上从相距5km的两地同向而行,甲的速度为5km/h,乙的速度为3km/h,甲同学带着一条狗,当甲追乙时,狗先追乙,再返回遇上甲,又返回追乙,……直到甲追到乙为止。已知狗的速度为15km/h,求此过程中,狗跑的总路程。解:首先要明确,甲乙的相遇时间等于狗来回跑的时间
所以狗的时间=甲乙相遇时间=总路程/甲乙速度和 =5km/(5km/h+3km/h)=5/8h 所以狗的路程=狗的时间*狗的速度=5/8h*15km/h=75/8km 所以甲乙相遇狗走了75/8千米
29、一天小红和小亮2人利用温度差测量某山峰的高度,小红在山顶侧的温度是-1度 小亮此时在山脚下测得的温度是5度 已知该地 区的高度每增加100M,气温大约下降0.6度 这座山峰的高度是?
30、当气温每上升1度时,某种金属丝伸长0.002MM 反之,当温度每下降1度时,金属丝缩短0.002MM。把15度的金属丝加热到60度,在使它冷却降温到5度,金属丝的长度经历了怎样的变化? 最后的长度比原来长度伸长多少?
31、一种出租车的收费方式如下:4千米以内10元,4千米至15千米部分每千米加收1.2元,15千米以上部分每千米加收1.6元,某乘客要乘出租车去50千米处的某地.
(1)如果乘客中途不换车要付车费多少元?
(2)如果中途乘客换乘一辆出租车,他在何处换比较合算?算出总费用与(1)比较.
32、已知开盘是25.35,收盘是27.38,求开盘都收盘上涨的百分比.(27.38-25.35)×100%÷25.35≈8%
33、购票人 50人以下 50-100人 100人以上 每人门票价 12元 10元 8元
现有甲乙两个旅游团,若分别购票,两团应付门票费总计1142元,如合在一起作为一个团体购票,只要门票费864元。两个旅游团各有几人? 【解】 因为864>8×100,可知两团总人数超过100人,因而两团总人数为864÷8=108(人).因为108×10=1080<1142,108×12=1296>1142.所以每个团的人数不会都大于50人,也不会都小于50人,即一个团大于50人,另一个团少于50人.假设两团都大于 50人,则分别付款时,应付108×10=1080(元),实际多付了1142-1080=62(元).这是少于50人的旅游团多付的钱.因此,这个旅游团的人数为:62÷(12-10)=31(人),另一个旅游团人数为108-31=77(人).1,有一只船在水中航行不幸漏水。当船员发现时船里已经进了一些水,且水仍在匀速进入船内。若8人淘水,要用5小时淘完;若10人淘水,要用3小时淘完。现在要求2.5小时淘完,要用多少人淘水? 答案:11个人
解:设船的总容积为a,船进水的速度为b,人淘水的速度为c,设要用x人淘水能2.5小时淘完.8*c*5=1/2*a+5*b(1)10*c*3=1/2*a+3*b(2)x*c*2.5=1/2*a+2.5*b(3)(1)-(2)得到b=5c(4),把b=5c代入(1)(2),然后(1)-(2)得到1/2a=15c(5)把(4)(5)代入(3),最后整理的x=11
34、快、慢两辆车从快到慢车,快车行到全程2/3,慢车距终点180千米,两车按原速继续行驶,快到到达终点,慢车行驶了全程6/7,求全程多少米? 答案:快车行完全程,慢车走了全程的6/7; 同比可知:
快车行完全程的2/3时,慢车应走了6/7*2/3(即4/7),还剩余3/7,全程的3/7也就是已知条件180,全程即为180/(3/7)=420!
35、某银行建立大学生助学贷款,6年期的贷款年利率为百分之六,贷款利息的百分之五十由国家财政贴补。某大学生预计6年后能一次性偿还2万元,则他现在可以贷款的数额是多少元?(精确的1元)答案:设他现在可以贷款的数额是x元。0.5(0.06x*6)+x=20000 0.18x+x=20000 1.18x=20000 x≈16949
36、将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn与△ABC的面积关系。(字数不少于200)答案:连接A B1 ∵AC=AC1 ∴S△B1AC=S△B1AC1 又∵CB1=CB ∴S△B1AC=S△ABC ∴S△B1C1C=2S△ABC 同理可得S△AA1C1=S△BA1B1=2S△ABC ∴S△A1B1C1=7S△ABC 同理S△A2B2C2=7S△A1B1C1=49S△ABC ∴S△AnBnCn=7^nS△ABC
37、将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn与△ABC的面积关.答案:设三角形ABC三个角分别为α、β、γ按题意画出三角形DEF,则可得DEF的三个角分别为180-(180-α)/2-(180-β)/2=(α+β)/2 180-(180-γ)/2-(180-β)/2=(γ+β)/2 180-(180-α)/2-(180-γ)/2=(α+γ)/2 在三角形ABC内一定存在α+β<180 γ+β<180 α+γ<180 所以在三角形DEF中三个角都小于90所以DEF为锐角三角形
38、小红抄写一份材料,每分钟抄写30个字,若干分钟可以抄完,当她抄完这份材料的五分之二时,决定提高50%的效率,结果提前20分钟抄完,求这份材料有多少字?
设材料原先x分钟可以抄完,则有 30x=30*(2/5x)+30*(1+50%)*(3/5x-20)得出x=100