《分数与除法》教学反思

时间:2019-05-13 01:36:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《分数与除法》教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《分数与除法》教学反思》。

第一篇:《分数与除法》教学反思

《分数与除法》教学反思

《分数与除法》这节课是北师大版数学,五年上册69页——70页内容,主要内容是揭示分数与除法的关系,中间包括假分数与带分数的互化。这部分知识的理解与掌握不但可以加深对分数意义的理解,而且为后面学习的分数的基本性质以及比、百分数打下基础,在整个教材中起到承上启下的重要作用。

分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下几方面考虑。

1.通过实际操作感悟新知识,在教学过程中,首先让数学回到生活中,使学生在生活中学数学。机智的头脑,敏锐的眼睛,善于发现生活中的细节。我设计了这样的教学情境,在上课开始我由一块蛋糕引入:把一块蛋糕平均分给2个小朋友,每人能分到几块蛋糕?这就为新课的内容做好了引入。课的最后,我又通过在“花店剪彩带”这一现实生活情景,让学生小组合作动手剪彩带。

2.营造氛围,合作探究。我在教学中始终为学生营造了主动探究的氛围,“把7块蛋糕平均分给3个小朋友,每人分得多少块蛋糕?分数与除法有什么关系,你发现了什么?在小组里交流,并探讨分母不能是0”等等,我精心设计的这些问题或提出的学习要求,使得学生情绪高涨,促进学生在主动探究中意识到自己的智慧和力量。正是因为有了这种主动探究的氛围,所以学生才会表现出愿学、乐学的情绪,才会在活动中自主地去想、去说、去发现。

3.利用好教具,发挥其直观的作用。在教学中合理利用一些教具,能收到不同寻常的效果。这节课就是在课前经过仔细的推敲琢磨,认为确实至少应该运用一些教具上课,才能使学生通过直观更清楚认识所学内容,所以我做了一些纸卡让学生能根据图片直观的判断是非。如1块饼的3/4,3块饼的1/4,通过这些教具很显眼地表现出来了。

4.重视学法指导,让学生主动发现问题。在探索新知过程中,启发学生,3块饼平均分给4个小朋友,你认为应该怎样分?”让学生自己说自己的学习方法,并让学生自己动手分一分,还师生之间进行了交流,学生在操作过程中动用多种感官,通过积极思维,获取知识,主动发现了问题,更能贴近学生的认识实际,在交流中不仅知道了学生的学习方法,了解他们的学习思路,更为重要的是肯定了他们的方法,让更多的学生能运用正确的学习方法,更科学的学习。

总之,在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。

第二篇:《分数与除法》教学反思

《分数与除法》教学反思

《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商,《分数与除法》教学反思。

在这节课的教学中,我觉得有以下几方面值得我去思考:

一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,教学反思《《分数与除法》教学反思》。在教学“把3张饼平均分给4个同学,每个同学应分多少张饼?”时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

第三篇:分数与除法教学反思 (模版)

李家完小卫学兵

本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商,分数与除法教学反思。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

设计意图:

1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张,教学反思《分数与除法教学反思》。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

第四篇:分数与除法教学反思

分数与除法教学反思

分数与除法教学反思1

这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,理解分数与除法的关系,会用分数来表示两数相除的商,能运用分数与除法的关系,解决一些简单的问题。

在引入课题之前,先复习旧知。课件呈现几道简单的口算题,以唤醒学生对整数除法的记忆,为探索新知做铺垫。在探索新知时,课件呈现猪八戒化斋的故事,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的'复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:猪八戒又化了3张饼,每人分多少张?学生又拿出学具自主探究,再演示。学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。

当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

分数与除法教学反思2

本节课在学习分数的意义基础上进行教学的。分数的意义是从部分与整体的关系揭示的。分数与除法可以表示两个整数相除(除数不能为0)的商揭示分数的另一方面的意义,以加深和扩展学生对分数意义的'理解,同时为学习假分数以及把假分数化为整数或带分数作准备。

成功之处:

夯实分数的意义的第二种情况。在教学例1时,将除法的意义与分数的意义联系起来。实际上把1个蛋糕平均分给3人,求每人分得几个,就是应用整数除法的意义来列算式,只不过结果是依据分数的意义得出来的。而在例2的教学中,首先通过学生把3块饼平均分给4个小朋友,每个小朋友分几块,也是应用平均分的除法意义列出算式,然后让学生实际分一分,学生通过动手操作得出三种不同的分法:一是把第1个饼平均分成4份,每个小朋友分得1/4块,再把第2、3个饼同样均分,最后每人分得3个1/4块,把它们拼在一起,得到1个饼的3/4;第二种是把3个饼摞在一起,平均分成4份,每个小朋友分得3个饼的1/4,拼在一起就是1个饼的3/4;第三种是把每个饼平均分成4份,一共分了12份,把12份平均分给4个小朋友,每个小朋友分3份,也就是3个1/4份,即3/4块。通过两个例题的教学,明确列式与整数除法的意义相同,在计算时依据被除数÷除数=被除数/除数,

不足之处:

学生在求一个数是另一个数的几分之几时,列式总是出错,被除数和除数容易颠倒。

改进措施:

1.加强求一个数是另一个数的几分之几的列式训练。

2.在教学中还要加强分数意义的两种情况的对比,让学生明确分数不仅表示部分与整体之间的关系,还表示实际数量。

分数与除法教学反思3

教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题3÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个“为什么”简直就是废话中的废话。整个班级躁动不安,是清明假期来临的缘故吧。看着即将发怒的老师,孩子们安静下来一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看来大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。“授人以鱼,不如授人以渔。”我接着说,“大家都知道3除以4得四分之三,那3除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?”果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。

一、通过操作,感悟算理。

我叫学生拿出课前准备好的三个圆,让学生在小组内用自己喜欢的方式来验证对3除以4这一结果的猜想。孩子们或静下心来仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法

(一):把三个圆一个一个分,每次得四分之一,分3次,就得3个四分之一,就是四分之三张饼。方法

(二):把三个圆叠起来,平均分成4份,得到3张饼的四分之一,也是3个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证3÷4用分数四分之三来表示结果。还有学生想出了方法

(三):3除以4得0.75,0.75化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。

二、再次说理,悟出关系。

在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把3块饼平均分给5个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的`被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。

三、对比练习,深化知识。

出示:

把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。

把三块饼平均分给7个小朋友,每人分得几分之几块。

让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位“1”平均分成几份,每份就是单位“1”的几分之一,是份数与单位“1”的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1 的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。

在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以“渔”永远比授生以“鱼”来的重要的多!

作者简介

刘璐,中国共产党党员,大学本科学历,艳梅名师工作室研修员。20xx年参加工作至今,一直担任小学数学教学工作。多次参加教学比武,分获市特等奖,县特等奖,县一等奖。数次被评为乡优秀教师,获县嘉奖。20xx年一师一优课获部级优课。坚持用“爱”和“知识”去呵护每一位学生,期待每个课堂都能充满“童真”.

分数与除法教学反思4

观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数 / 除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:(1)分母能不能为0?(2)用字母如何表示它们的关系?(3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数 / 除数的'关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少??通过争辩,明确分数和除法的各自意义,提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。

“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

一、以解决问题入手,感受分数的价值。

从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

二、分数意义的拓展与除法之间关系的理解同步。

当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

分数与除法教学反思5

分数与除法的关系是在分数的意义后进行教学的,使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。但凡教过分数与除法的关系的老师都知道内容很简单,如果单纯地从形式上去教学它们的关系:一个分数的分子当于除法中的被除数,分母相当于除数,相信学生一定学得很扎实,但这样一来3÷4=的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:

1、通过实际操作感悟新知识

新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的'学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。

2、在问题不断地解决与生成中探索新知识

探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

本节课的教学着重让学生在以下几方面理解:

1、分数与除法之间有着密切的联系,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一个数。

2、一个分数,不但可以从分数的意义上理解,也可以从分数与除法的关系上理解。如:四分之三可以理解为把单位“1”平均分成4份,表示其中的3份的数;也可以理解为把3平均分成4份,表示这样一份的数。

3、为了让学生更好的记忆分数与除法的关系,我还设计了顺口溜:

分数、除法关系妙,记忆方法有诀窍。

两数相除分数表,弄清位置很重要。

除号相当分数线,分子、分母两数担。

位置顺序不能调,相互关系要记牢。

分数与除法教学反思6

本课是引导学生探索并理解分数与除法的关系,并根据分数与除法的关系进一步掌握求一个数是另一个数的几分之几的实际问题的解答方法。在教学时我是从先把四个饼平均分给四个小朋友,每个小朋友可以分得几块?再把三个饼平均分给四个小朋友,每个小朋友分得几块?让学生分别列式。然后引导学生比较两个算式的结果。学生很自然就发现一个可以得到整数商,一个不能。这时我顺势引导学生:不能得到整数商的可以用什么数表示呢?自然的导出分数。我觉得这样处理,一方面可以让学生真正产生学习的需要,体会到用分数表示的必要性,另一方面也可以让学生初步的'感知到分数与除法之间确实是有关系的。这样学生学习的目的明确些,兴趣也高一些。在例题的教学中,学生对分数与除法之间的关系还是比较容易理解的,掌握的也不错。我重点是强调了单位换算,通过引导学生比较,发现单位间的进率就是分母的结论。学生运用这样的结论进行相关练习时正确率有很大的提高。

分数与除法教学反思7

本节课是在学生已经建立起除法意义的平均分和把一个物体或多个物体看作单位“1”进行平均分概念的基本上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。 在这节课的教学中,做得比较好的方面是:1.教师能站在一个比较高的角度恰当地选择了教学的切入点,教师从解决简单的问题入手,把6块饼平均分给2人,每人分得几块?把1块饼平均分给2人,每人分得几块?把1个蛋糕平均分给3个人,每人分得多少个?在此基础上引导学生观察3个算式和3个得数,学生很快得出一个结论,两数相除,商可以是整数、小数和分数。在这教师还注意制作课件,说明一块饼的1/3也就是1/3张饼,为促进学生主动沟通知识间的内在联系作了一个很好的思路引领。2.在解决把3块月饼平均分给4个人,每人分的几块?这一重难点问题时,让学生借助学具动手分一分,并让学生充分展示和交流分的过程和分得的结果,充分展示了学生思维过程,加深了学生对知识的.理解。

3、注意引发学生的数学思考,促进学生主动沟通了知识间的内在联系,注重数学思维深刻性的培养。在课堂上让学生经历了操作、发现、迁移、归纳,使学生水到渠成的发现、归纳分数与除法的关系,在课堂上实现了师生的交往互动。 我觉得有以下几方面值得我去思考:

一、在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,在教学“把3张饼平均分给4个同学,每个同学应分多少张饼?”时,我让学生借助圆形纸片在小组内合作进行分一分,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

四、关于“分母不能为0”这个环节,教学中如果能放缓脚步,通过分析一个分数的实际意义,引导学生理解分数中的分母表示平均分的分数,或是启发学生发现在除法中除数不能为0,除数相当于分数中的分母,所以分母不能为0。这样的处理使学生借助已有的知识解决新的问题,效果会更好。

分数与除法教学反思8

分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。新课标指出:“学生的教学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察,猜测,验证,推测与交流等教学活动。”这说明创设有效的学习情境,可以引导学生开展“自主,探索,合作”的学习活动,促进学生主动的参与。”所以,在导入新课环节,我有意设计了两道除法计算题:8÷9= ;4÷7= 。

学生一看是这样两道除法算式,都松了口气,说:“这么简单的两道题啊!”于是我在班上开展了男女两组比赛,男生算第一题,女生算第二题。一声令下,男生埋头算起来,思维敏捷的胡雯欣早就知道了答案,根本没有动笔,我示意她不要说出答案。我转了一圈,大部分学生在已经做好的学生的'提示下都已经有了答案,只有个别男生还在计算。

汇报后,我引发学生思考:8÷9=0.88……和8÷9=8/9有什么区别?学生最直接的回答是:用循环小数表示没有用分数表示快捷、简便。这个导入使学生明白两个数相除可以用分数来表示商,为进一步学习分数与除法的关系打下基础。

之后,再出示两个数相除的算式,学生都能够很快地用分数来表示商。

以例题中的1÷3=1/3引导学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,让学生把数字换成它们的名称:被除数÷除数=分子/分母。这时候,我让学生用字母a、b表示除法与分数的关系。薛龙凤上黑板认真地写下:a÷b=a/b,我见这个学生写得很认真,马上表扬了她,并要求学生为她鼓掌。正当大家都为薛龙凤高兴的时候,我在她写的算式后面打了个小小的“×”。学生立刻表示不解,刚刚老师夸了了她,现在怎么又给她判“×”。还是几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,发问到:“为什么b不能等于0?”班上顿时安静下来,谁也说不上来原因。这个难点马上就要突破了,我心里有点小小的激动。我继续利用例题中的把1块蛋糕平均分给3个人,每人分得这块蛋糕的1/3为例问道:“谁来说说这个分数中的‘3’表示什么?”有学生举手回答:“把蛋糕看做单位‘1’,‘3’表示把蛋糕平均分成的份数。”“如果把‘3’换成‘0’呢?”学生终于明白:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。就这个“a÷b=a/b(b≠0)”学生经常会忘记,这里的b要强调不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,而在分数中分母不能为0。

我觉得这个环节我处理的比较好,不是直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义充分理解分数中的分母表示平均分的份数,自然不能被平均分成“0”份。

成功之处有,不足之处也有。课后反思之,对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别却并没有在课堂上引导学生去发现和归纳。除法表示两个数相除,是一道算式,而分数是一个数。这说明课前我对教材的解读不够深入,还没有把握住知识的整体性和连贯性。在以后的教学中,努力做到对教材的深入理解,同时要多查阅资料,以便对教材知识进行拓展和延伸。

分数与除法教学反思9

分数与除法的关系是在学生学习了分数的意义后进行教学的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。

这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以,分数与除法的关系在整个教材中起着承上启下的重要作用。如果单纯地从形式上去教学分数与除法间的关系,学生能学得很扎实,但这样一来计算3÷4=3/4的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:

1.通过实际操作感悟新知识

在教学中,我设计了这样的教学情境,把一张饼平均分给四个小朋友,每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。接着出示要把3张饼平均分给4个小朋友,每个小朋友分得多少?四人一小组想办法把3张圆形纸片平均分给4个小朋友。并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义,即每人分得1张饼的四分之三,也可以说是3张饼的四分之一,通过这一过程,学生充分理解了3÷4=3/4的算理。

2、使学生清楚为什么要用分数来表示除法算式的结果

在学生理解了分数与除法的关系之后,我有意识的设计了这样几道练习题。1÷3= 8÷9= 2÷6= 让学生把计算结果写在练习本上,比比看谁先算完。结果有的学生一两秒钟就举起了手,而有的学生费了很长时间才写出了计算结果。汇报之后,引导学生思考:1÷3=0.333……与1÷3=1/3 8÷9= 0.88……与8÷9= 8/9有什么区别?学生最直接的回答是:用循环小数表示商计算太麻烦,没有用分数表示快捷、简便。这时告诉学生,以后计算两个整数 相除的商,除不尽时或商里有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

3、借机引申,为后续学习做好铺垫

第一次向学生介绍分率与数量的区别。如①“把一张饼平均分成4份,每份分得这张饼的几分之几?每份分得多少张饼?”② “把2米长的绳子平均分成7段,每段长是这根绳子的几分之几? 每段长多少米 ”③“把4千克盐平均分成5份,每份重量是盐的总数的几分之几 /每份重多少千克?先让学生明白这三道题第一问求的都是“分率”,分率没有单位,都是把总数看做单位“1”,把单位1平均分成若干份,求其中的一份是总数的几分之一,都是用单位“1”除以平均分的份数得到,如前三道题的分率分别是1÷4=1/4 1÷7=1/7 1÷5=1/5。而第二问都是求每份数量是多少,每份数量是有单位的,都是用总数量除以平均分的份数得到,得数一定带单位名称。前三道题第二问的算法分别是1÷4=1/4(张) 2÷7=2/7 (米)4÷5=4/5(千克)

此处学生理解了分率和每份数量之后,为后面学习分数、百分数应用题做了良好的'铺垫作用。

4、让学生自主建构新知识

当学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,引导学生把数字换成它们的名称:被除数÷除数=被除数/除数。这时候,再让学生在练习本上用字母a、b表示除法与分数的关系。多数学生写下:a÷b=a/b,老师拿一名稍差学生的板书出来,故意表扬这位同学。正表扬却突然转身给这名学生作业后面一个大叉号。正当同学们都诧异的时候?问为什么错了?这时几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,追问:“为什么b不能等于0?”。我继续用课堂中的例题把1张饼平均分给4个人,每人分得这块蛋糕的1/4为例,让学生说说这个分数中的‘4’表示什么?”“如果把‘4’换成‘0’呢?”学生恍然大悟:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。在用字母表示分数与除法的关系时----“a÷b=a/b(b≠0)”学生经常会忘记,这里的b不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,所以在分数中分母不能为0的道理。这里并不直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义让学生充分理解分数中的分母表示平均分的份数,所以分母不能为“0”的道理。

本节课的不足之处:虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有引导学生总结出来。除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。

分数与除法教学反思10

今天教学了“分数与除法”这一课,例题3——我备课时的一个重、难点,因此,在这部分我给了学生充分的探究时间,又组织学生分小组讨论,引导他们按着书上的提示去思考。我又从意义和算法两方面入手,分别详细地讲解了每种方法。一直讲了十多分钟,“明白了吗?”“明白了!”学生点头回答。我满意的笑了。

接下来的“做一做”中就有类似的题,我让学生自己完成,并说说自己的`想法。心里还不免有些担心,怕他们说不好。哪知学生一张口竟是“和以前学过的谁是谁的几倍做法一样。”我一愣,可不是嘛,如果联系以前所学的知识,这个例题十分简单且容易理解,可是竟被我弄的如此复杂。于是我大大表扬了这个同学一番,“你真会学习,能够联系以前所学的知识进行对比着学,真棒!”

课后我反思,其实很多时候我们老师备课备的还远远不够。我们往往只备教材,却忘了备学生,忽略了学生已有的知识水平和能力。有时又只从本节课出发,却忘了应将旧知与新知联系起来进行系统的学习。如果我们每次备课都充分考虑到了这些,恐怕会少走很多弯路吧!

分数与除法教学反思11

本节课我是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:

一、直观演示是学生理解分数与除法的关系的前提。

由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3块饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3块饼的就是张。把2块饼平均分给3个人,每人应该分得多少块?继续让学生操作,丰富对2块饼的就是2/3块饼的理解。学生操作经验的积累有效地突破了本节课的难点。

二、培养学生提出问题的意识与能力是培养学生创新精神的关键。

爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启发学生提出问题:

a:你们是几块几块的分的?

b:每人每次分得多少块饼?

c:分了几次,共分了多少块?(就是3个块就是几块)

d:怎样才能看出是几块?

问题的提出针对性强,有利于学生把握数学的本质。

三、用发展的思维去理解所学的`知识,注重了知识的系统性。

数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0.7÷2=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数与除法教学反思12

教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个”为什么“简直就是废话中的废话。整个班级躁动不安,是清明假期临的缘故吧。看着即将发怒的老师,孩子们安静下一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。”授人以鱼,不如授人以渔。“我接着说,”大家都知道除以4得四分之三,那除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?“果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。

一、通过操作,感悟算理。

我叫学生拿出前准备好的三个圆,让学生在小组内用自己喜欢的方式验证对除以4这一结果的猜想。孩子们或静下心仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法(一):把三个圆一个一个分,每次得四分之一,分次,就得个四分之一,就是四分之三张饼。方法(二):把三个圆叠起,平均分成4份,得到张饼的四分之一,也是个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证÷4用分数四分之三表示结果。还有学生想出了方法(三):除以4得07,07化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。

二、再次说理,悟出关系。

在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把块饼平均分给个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的'商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。

三、对比练习,深化知识。

出示:

把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。

把三块饼平均分给7个小朋友,每人分得几分之几块。

让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位”1“平均分成几份,每份就是单位”1“的几分之一,是份数与单位”1“的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。

在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以”渔“永远比授生以”鱼"的重要的多!

分数与除法教学反思13

“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

1.以解决问题入手,感受分数的价值。

从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的.意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

2.分数意义的拓展与除法之间关系的理解同步。

当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点:

1.提供丰富的素材,经历“数学化”过程。

分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。

2.问题寓于方法,内容承载思想。

数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。

就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。

分数与除法教学反思14

“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。从以上的角度分析,彭老师的这节课具有以下两大优点:

1、通过实际操作感悟新知识

新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的.学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。

2、在问题不断地解决与生成中探索新知识

探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

总之,在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。

建议:

1、在总结了分数与除法的关系后,最好让学生说清楚分数与除法是否完全相同,然后利用表格说清楚它们之间的相同与不同的地方。从而让学生体会分子、分母、分数线只相当于被除数、除数、除号,不是等于。

2、为了语言表达清楚,学生听得明白,建议把3块饼的“块”改为“个”,平均分成的每一份就说“块”。这样听起来比较清晰。

分数与除法教学反思15

在本次校举行的公开课活动中,我听了高年级刘老师的一节数学课,听过这节课后。

我认为优点体现在:

一、能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义;

二、小组参与的力度大,充分调动了学生学习的积极性,使学生的“手、眼、口”都得到了锻炼。

不足之处是:

在教学环节的设计上,学生动手操作的内容过多,使整堂课显得罗嗦,练习的时间相对缩短了,本节课的重点内容是让学生理解:一个饼的`四分之三也就是三个饼的四分之一,这个环节结束后自然而然地就引出了“分数与除法的关系”,因前面耽误的时间过长,致使本节课的内容没有讲完,学生没有理解透彻,教师就急于进入下一个环节的教学。从刘老师的这节课上,我也看到了自己在教学中的不足,作为数学教师,怎样上好一节课,怎样让学生切实理解所学内容?

我认为有以下两点值得去深思:

一、有没有把课堂还给学生?

课改风风火火进行了这么多年,而且一直提倡把课堂还给学生,让学生做课堂的主人,教师只做引导者,可是实际的课堂教学中,教师讲的多,学生说的少,完全还是过去老的教学方法,造成这种情况的原因是:1、教师恐怕学生学不会,低估了学生的能力就;2、耽误教学进度;3、教师还没有形成意识……

二、如何“还”?

很大一部分教师,也想把课堂还给学生,可是如何“还”?完全放手行吗?学生不是理想化的学生,因为学生之间毕竟存在着很大的差异,不要指望他们什么都会,如果“收、还”不当,还会适得其反,只有“收、还”得当,才会事半功倍。

说起容易做起难,要做到以上两点绝非易事,不仅需要提高教师自身的业务水平,更要深入地了解学生、钻研教材。

第五篇:《分数与除法》教学反思

《分数与除法》教学反思15篇

《分数与除法》教学反思1

首先通过课前谈话解决了分数除法的意义。接下去重点来研究分数除以整数的计算方法,我出示了这样一道例题:布艺兴趣小组的同学要用米的花布给小猴做衣服。如果做背心,可以做3件,你能提出什么问题?学生们一致的提出了“做一件背心需要花布多少米?”的问题。问题一出,学生马上就把算式列出来了,÷3,可是这个算式应该怎么计算呢?通过四人小组讨论合作,最终想出了好几种方法。

法1:÷3=0.9÷3=0.3(米)(把分数化作小数,然后再计算)

法2:÷3=(×)÷(3×)=(米)(运用分数的基本性质)

法3:÷3=×=(米)(因为把整块布看作一个整体,平均分成三份,其中的一份就占了整块的,所以直接乘以)

法4:÷3==(米)(把分子平均分成3分,分母不变)

把三种方法整理出来后,他们感觉不出来哪种方法简便。于是我接着把改为,让他们再用自己发现的方法进行计算。结果学生们发现用方法1时,化成小数时除不尽;用方法2太麻烦;用方法4时,11除以3,除不尽;还是用方法3最简便。

随后,我让他们观察、讨论、交流÷3=×=(米)与÷3=×=(米)这两道题的计算方法,学生们发现除以整数等于乘以整数的`倒数。

第二环节解决一个数除以分数的计算方法。

我把例题改为:布艺兴趣小组的同学要用米的花布给小猴做衣服,每件衣服要用米,能给几只小猴子做衣服?有了第一题的基础,大部分学生马上就想到÷=×=3(只),我问他们,为什么其他方法不用了呢?学生们说马上异口同声的回答,如果你把改为的话,小数不行,除数转化为1麻烦,反正只要乘以它的倒数就行了。接着我又问如果老师把米换成1米,你认为又该怎么计算呢?学生们说还是乘以后面的数的倒数。

最后总结:同学们,从这几题中你发现了什么?——分数除法的计算方法学生们脱口而出。

第三环节,做一些练习。

在整个教学过程中,我是以学生学习的组织者,帮助者,促进者出现在他们的面前。这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。学生学的轻松,记得牢固,教师教的快乐,教的放心。

《分数与除法》教学反思2

分数除法应用题,历来都是教学中的难点。要突破这个难点,让学生透彻理解这类型的应用题,就要抓住乘除法之间的内在联系,通过运用转化、对比,使学生了解这类分数应用题特征,再借助线段图,分析题中的数量关系,找出解题规律。我主要从以下几个方面入手:

一、走进生活,体验生活中的数学

本来人体的机体构造对于小学生来说是一个很有趣的问题。教学一开始我把人体的彩图展现在学生面前,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。使学生从中了解到更多有关人体构造的知识,增加了学生的知识面。

二、使学生在学习过程中真正成为学习的主人

教学中,为让学生认识解答分数除法应用题的关键是什么,我故意用乘法应用题与例题作比较,让学生从中发现与乘法应用题的区别。学生通过交流对比,亲自感受它们的异同,找出它们的内在联系与区别,亲身感受应用题中数量之间的关系,然后想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键也是从题目的关键句找出数量之间的相等关系,再列出方程。

三、方法多样化,开拓学生的思维能力

在解答应用题的时候,我鼓励学生尽可能地找出多种方法,让学生从多角度去考虑,这样做可以拓展学生思维,引导学生懂得多角度分析问题,解决问题。充分让学生亲身体验,让学生在探究中加深对分数除法应用题数量关系及解法的理解,提高能力,为学生进入深层次的学习做好充分的准备。

分数除法应用题教学反思9

德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:

1、教学内容“生活化”

《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。

2、解题方法“多样化”

《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水平以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们平时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的.时间里就产生了情感上的交融。学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。

3、师生交流“情感化”

数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与平等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。

4、值得商榷的几个方面:

(1)形式能否再开放一些

(2)优生“吃好”了,能否让差生也“吃饱”

《分数与除法》教学反思3

虽说现在的教材已经把意义淡化了,但我在教学中依然采用了整数与分数对比,乘法与除法对比的方式,揭示了分数除法的意义,

针对新教材的特点,对于分数除法的意义,我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,由于有了整数的基础和前面对于意义的`理解,学生掌握得也较顺利。在分数除以整数的教学上,我把学习的主动权交给学生,让他们动手操作、集思广益,根据操作计算方法。于是学生们有的模仿分数乘整数的方法,分母不变,把分子除以整数;有的根据题意及直观操作,得出除以2也就是平均分成两份,每份就是原来的二分之一,因而除以2就是乘上2的倒数。对于学生的想法,我都充分予以肯定,并通过练习让学生比较,选出他们认为适用范围更广的方式。由于学生理解透彻了,所以后面分数除以分数和整数除以分数的教学上,学生轻而易己地就掌握了计算方法。

《分数与除法》教学反思4

分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。新课标指出:“学生的教学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察,猜测,验证,推测与交流等教学活动.”这说明创设有效的学习情境,可以引导学生开展“自主,探索,合作”的学习活动,促进学生主动的参与。”所以,在导入新课环节,我有意设计了两道除法计算题:8÷9=

4÷7=

学生一看是这样两道除法算式,都松了口气,说:“这么简单的两道题啊!”于是我在班上开展了男女两组比赛,男生算第一题,女生算第二题。一声令下,男生埋头算起来,思维敏捷的胡雯欣早就知道了答案,根本没有动笔,我示意她不要说出答案。我转了一圈,大部分学生在已经做好的学生的提示下都已经有了答案,只有个别男生还在计算。

汇报后,我引发学生思考:8÷9=0.88……和8÷9=8/9有什么区别?学生最直接的回答是:用循环小数表示没有用分数表示快捷、简便。这个导入使学生明白两个数相除可以用分数来表示商,为进一步学习分数与除法的关系打下基础。

之后,再出示两个数相除的算式,学生都能够很快地用分数来表示商。

以例题中的1÷3=1/3引导学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,让学生把数字换成它们的名称:被除数÷除数=分子/分母。这时候,我让学生用字母a、b表示除法与分数的关系。薛龙凤上黑板认真地写下:a÷b=a/b,我见这个学生写得很认真,马上表扬了她,并要求学生为她鼓掌。正当大家都为薛龙凤高兴的时候,我在她写的算式后面打了个小小的“×”。学生立刻表示不解,刚刚老师夸了了她,现在怎么又给她判“×”。还是几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,发问到:“为什么b不能等于0?”班上顿时安静下来,谁也说不上来原因。这个难点马上就要突破了,我心里有点小小的激动。我继续利用例题中的.把1块蛋糕平均分给3个人,每人分得这块蛋糕的1/3为例问道:“谁来说说这个分数中的‘3’表示什么?”有学生举手回答:“把蛋糕看做单位‘1’,‘3’表示把蛋糕平均分成的份数。”“如果把‘3’换成‘0’呢?”学生终于明白:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。就这个“a÷b=a/b(b≠0)”学生经常会忘记,这里的b要强调不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,而在分数中分母不能为0。

我觉得这个环节我处理的比较好,不是直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义充分理解分数中的分母表示平均分的份数,自然不能被平均分成“0”份。

成功之处有,不足之处也有。课后反思之,对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别却并没有在课堂上引导学生去发现和归纳。除法表示两个数相除,是一道算式,而分数是一个数。这说明课前我对教材的解读不够深入,还没有把握住知识的整体性和连贯性。在以后的教学中,努力做到对教材的深入理解,同时要多查阅资料,以便对教材知识进行拓展和延伸。

《分数与除法》教学反思5

分数应用题是六年级下期的内容,它的教学是小学数学教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程呢?

教学时,我没有采用书上的情境,而是从学生的生活实际引入。例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

让学生理解题中的数量关系是解决分数除法应用题的关键。教学中,我通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。本课重点是要让学生学会用方程的`方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。

在学生学会分析数量关系后,我把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。

在学生掌握了用方程解决问题的方法后,我又鼓励他们对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。教学中,给学生提供探究的平台,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。

《分数与除法》教学反思6

分数与除法的关系是在学生学习了分数的意义后进行教学的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。

这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以,分数与除法的关系在整个教材中起着承上启下的重要作用。如果单纯地从形式上去教学分数与除法间的关系,学生能学得很扎实,但这样一来计算3÷4=3/4的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:

1.通过实际操作感悟新知识

在教学中,我设计了这样的教学情境,把一张饼平均分给四个小朋友,每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的.理解。接着出示要把3张饼平均分给4个小朋友,每个小朋友分得多少?四人一小组想办法把3张圆形纸片平均分给4个小朋友。并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义,即每人分得1张饼的四分之三,也可以说是3张饼的四分之一,通过这一过程,学生充分理解了3÷4=3/4的算理。

2、使学生清楚为什么要用分数来表示除法算式的结果

在学生理解了分数与除法的关系之后,我有意识的设计了这样几道练习题。1÷3= 8÷9= 2÷6= 让学生把计算结果写在练习本上,比比看谁先算完。结果有的学生一两秒钟就举起了手,而有的学生费了很长时间才写出了计算结果。汇报之后,引导学生思考:1÷3=0.333……与1÷3=1/3 8÷9= 0.88……与8÷9= 8/9有什么区别?学生最直接的回答是:用循环小数表示商计算太麻烦,没有用分数表示快捷、简便。这时告诉学生,以后计算两个整数 相除的商,除不尽时或商里有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

3、借机引申,为后续学习做好铺垫

第一次向学生介绍分率与数量的区别。如①“把一张饼平均分成4份,每份分得这张饼的几分之几?每份分得多少张饼?”② “把2米长的绳子平均分成7段,每段长是这根绳子的几分之几? 每段长多少米 ”③“把4千克盐平均分成5份,每份重量是盐的总数的几分之几 /每份重多少千克?先让学生明白这三道题第一问求的都是“分率”,分率没有单位,都是把总数看做单位“1”,把单位1平均分成若干份,求其中的一份是总数的几分之一,都是用单位“1”除以平均分的份数得到,如前三道题的分率分别是1÷4=1/4 1÷7=1/7 1÷5=1/5。而第二问都是求每份数量是多少,每份数量是有单位的,都是用总数量除以平均分的份数得到,得数一定带单位名称。前三道题第二问的算法分别是1÷4=1/4(张) 2÷7=2/7 (米)4÷5=4/5(千克)

此处学生理解了分率和每份数量之后,为后面学习分数、百分数应用题做了良好的铺垫作用。

4、让学生自主建构新知识

当学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,引导学生把数字换成它们的名称:被除数÷除数=被除数/除数。这时候,再让学生在练习本上用字母a、b表示除法与分数的关系。多数学生写下:a÷b=a/b,老师拿一名稍差学生的板书出来,故意表扬这位同学。正表扬却突然转身给这名学生作业后面一个大叉号。正当同学们都诧异的时候?问为什么错了?这时几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,追问:“为什么b不能等于0?”。我继续用课堂中的例题把1张饼平均分给4个人,每人分得这块蛋糕的1/4为例,让学生说说这个分数中的‘4’表示什么?”“如果把‘4’换成‘0’呢?”学生恍然大悟:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。在用字母表示分数与除法的关系时----“a÷b=a/b(b≠0)”学生经常会忘记,这里的b不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,所以在分数中分母不能为0的道理。这里并不直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义让学生充分理解分数中的分母表示平均分的份数,所以分母不能为“0”的道理。

本节课的不足之处:虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有引导学生总结出来。除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。

《分数与除法》教学反思7

教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个”为什么“简直就是废话中的废话。整个班级躁动不安,是清明假期临的缘故吧。看着即将发怒的老师,孩子们安静下一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。”授人以鱼,不如授人以渔。“我接着说,”大家都知道除以4得四分之三,那除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?“果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。

一、通过操作,感悟算理。

我叫学生拿出前准备好的三个圆,让学生在小组内用自己喜欢的方式验证对除以4这一结果的猜想。孩子们或静下心仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法(一):把三个圆一个一个分,每次得四分之一,分次,就得个四分之一,就是四分之三张饼。方法(二):把三个圆叠起,平均分成4份,得到张饼的四分之一,也是个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证÷4用分数四分之三表示结果。还有学生想出了方法(三):除以4得07,07化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。

二、再次说理,悟出关系。

在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把块饼平均分给个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。

三、对比练习,深化知识。

出示:

把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。

把三块饼平均分给7个小朋友,每人分得几分之几块。

让学生观察这两道题目的.区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位”1“平均分成几份,每份就是单位”1“的几分之一,是份数与单位”1“的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。

在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以”渔“永远比授生以”鱼"的重要的多!

《分数与除法》教学反思8

分数除法是学生在学会一个数除以整数的基础上,让学生从一个数除以整数的计算方法迁移到一个数除以分数,这是学习分数除法的重点也是一个难点,但由于教材的学习比较枯燥无味。因此我试图在教学初始把直接展示静态例题改变成小故事展现出来,形成一个有趣的课堂学习气氛。让学生经历从整数变化到分数,得到的运算法则由特殊到一般的`快乐又严谨的数学学习过程。

在教学备课时我先复习一个数除以整数的计算法则,然后通过小故事的形式展示例题,提出问题后,引导学生通过猜想、尝试、验证等多种方法证明了一个数除以分数和乘这个分数的倒数的结果都相等。但备课后我突然产生这个疑问“一个数除以分数为什么要乘这个分数的倒数呢?”引起了我的反思。教案的设计中没有算理的教学,只是通过猜想、尝试、验证、归纳出除以一个数等于乘这个数的倒数,相对忽视了算理的教学,这样学生只知其然而不知其所以然。参考一下其他教材,发现其他教材是通过画线段图让学生来明白算理,更注重算理的教学但又忽视了猜想、尝试、验证、归纳这种数学思想的渗透。如何让两者有机的结合起来呢?既能让学生明白算理又让学生渗透这种数学方法呢?

经过仔细反思之后,我在修改备课后,调整了我的教学过程。教学中我在学生猜想、尝试、验证、归纳出一个数除以分数等于乘这个分数的倒数的结果后,我抛出了这个问题:一个数除以分数为什么要乘以这个数的倒数呢?学生思考,讨论。汇报时学生开始大部分围绕因为结果相等来总结,此时我再结合线段图对学生进行简单的算理教学。这是我发现大部分同学们能够听懂,然后恍然大悟,露出了灿烂的笑容,效果不错。

在这节课的教学中,我既进行了归纳总结的数学思想方法的渗透,又进行了算理的教学。将新旧知识两者有机的结合在一起,效果较好。如何更好的让学生掌握知识是我在今后的教学中应该积极思考的一个问题

《分数与除法》教学反思9

本课的教学重点和难点是让学生理解“为什么除以一个分数,等于乘它的倒数”,否则,会使学生陷入只背结论,不明道理的误区,这样的结果或造成学生出错率高,为了很好的突出重点、突破难点,我创造性地使用了教材,做了如下的设计:

一、动手操作,增加直观性。

1、拿出自己准备好的圆形的纸,把它平均分成两份,每份是这张纸的几分之几?怎样计算?结果是多少?学生们通过自己的操作,很快说出了,“1除以2等于二分之一”的正确答案;

2、问:这半张纸,也就是整张纸的二分之一,那么这张纸里有几个这样的二分之一呢?怎样计算?结果是多少?学生们通过观察和思考,得出了“1除以1/2等于2”的.结论。我对学生的做法进行了肯定和鼓励。

3、再问:如果把整张纸每1/3一份,又可以分成多少份呢?每四分之一、每五分之一呢?

学生通过亲自动手操作,很快得出了“1除以1/3等于3,1除以1/4等于4的正确结论”,到了1除以1/5时,根本不用动手折就得出了正确的结论。而且大部分学生都总结了“1除以几分之一,就等于几”规律。看着学生们兴奋的表情,我提出了以下的问题:观察以上的算式河的书,你发现了什么?

二、观察讨论,形成规律

学生们通过观察,讨论终于发现了“除以一个分数,等于乘它的倒数”,我又追问:为什么要这样做?大家通过回忆分数的意义,也弄明白了其中的道理。

这节课的学习,学生们大部分掌握了计算方法,但有个别学生在计算时有除号不变的现象。所以,今后应加强这方面的训练,使学生全部掌握计算方法。在解答方程时也不会出错,提高计算能力和解题能力。

《分数与除法》教学反思10

首先通过课前谈话解决了分数除法的意义。接下去重点来研究第一环节分数除以整数的计算方法,我出示了这样一道例题:城西中心小学占地约为9/10公顷,如果按面积平均分成三块不同的区域,每块区域占地多少公顷?题目一出,学生马上就把算式列出来了,9/10÷3,怎么计算呢?通过四人小组讨论合作,最终相出了好几种方法。如9/10÷3=0.9÷3=0.3(公顷)9/10÷3=(9/10×1/3)÷(3×1/3)=3/10(公顷)9/10÷3=9/10×1/3=3/10(公顷)(因为把一块地看作一个整体,平均分成三块,其中的一块就占了这块的1/3,所以直接乘以1/3)等一些方法,通过比较最终得出9/10÷3=9/10×1/3=3/10(公顷)这种方法简便。接着我把9/10该为10/11,让他们再用自己发现的方法进行计算。结果学生们发现还是用这种方法简便,10/11÷3=10/11×1/3=10/33(公顷),最后,让他们观察、讨论、交流9/10÷3=9/10×1/3=3/10(公顷)与10/11÷3=10/11×1/3=10/33(公顷)这两题的计算方法,学生们发现除以整数等于乘以整数的倒数。第二环节解决一个数除以分数的计算方法。我把例题该为城西中心小学占地约为9/10公顷,如果每块区域占地为3/10公顷,平均分成几块不同的区域?有了第一题的基础,大部分学生马上就想到9/10÷3/10=9/10×10/3=3(块),我问他们,为什么其他方法不用了呢?学生们说马上异口同声的回答,如果你在把9/10换成10/11的'话,小数不行,除数转化为1麻烦,反正只要乘以它的倒数就行了。接着我又问如果老师把9/10公顷换成1公顷,你认为又该怎么计算呢?学生们说还是乘以它的倒数。那么从中你发现了什么?分数除法的计算方法学生们脱口而出。第三环节,做一些练习。

在整个教学过程中,我是以学生学习的组织者,帮助者,促进者出现在他们的面前。这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。学生学的轻松,教师教的快乐。

《分数与除法》教学反思11

本课教学主要是学习分数除以整数,让学生理解分数除以整数的意义,掌握分数除以整数的计算方法。

一.准确把握学生的认知基础是进行教学设计的基础。有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式,本课的逻辑起点是整数除法的意义,分数乘法的意义和计算方法以及找一个数的倒数的方法。因此我从现实中的分数乘法问题和找一个数的.倒数引入,帮助孩子们复习前知,当学生体会到乘除法之间的互逆关系后,再提出一个生活中的实际问题,引出分数除法计算的必要性,为后续的学习架好了阶梯。

二.在准确把握了学生的认知基础后,如何进行准确的目标定位是教学设计的关键。本课如果仅仅关注学生是否会算了,那是不够的,在设计中,我们还应关注表象后的更深层元素,如:学生们对算理理解了吗?他们的思维是否得到了实质上的提升?他们的学习方法是否得到增进?他们是否有学习的积极态度?等等。因此,在本课教学目标的制定中,我的着眼点是不仅使学生会算,更是通过对意义的理解,让学生们深刻认识这样算的道理,突出“过程性目标”。让学生经历涂一涂、画一画、算一算、说一说的过程,在探究的过程中,让孩子们形成一种“知其然更要知其所以然”的学习态度,获取一种学习的能力,为学生的可持续发展打基础。

反思整堂课,我还存在着很多不足:

1、没有给出正确的引导。我的问题没有给学生很好的提示,我也没有及时去引导他们,导致课堂的重点知识不是由学生探讨出来,而是由我灌输给他们的,没有发挥学生的自主性。

2、课件做的不到位。在分析“分数除以整数”时,要引导他们得出“除以一个非零整数等于乘以这个整数的倒数”时,课件没有体现渐变的过程,因此也没有让学生充分的理解算式的原理。

3、不要牵着学生思维走,要跟着学生的思维走。学生的思维不可能完全符合我们心中所想的,所以在他们基本上理解清楚的时候,不要硬是纠结于某个字眼或者某句话,硬是把学生的语言带牵入到自己的思维中。我们可以根据他们的思维,一步步的提问,让他们理解问题就行了,这点是我们作为老师要特别注意的。

最后的总结部分应该是这堂课比较成功的地方,既让他们自己分析了这堂课的收获,也通过练习来巩固了今天所学的知识。

今天的课让我成长了不少,认识到了自己所存在的不足之处,只有不断的发现问题,才能够解决问题。我们要善于发现学生可贵的地方,站在他们的角度考虑问题,吃透书本,才能够让自己迅速的成长起来。

《分数与除法》教学反思12

分数除法应用即用分数除法的知识解决问题是在学习了分数乘除法和用乘法解决问题的基础上进行教学的。课本例题以人体生理常识为内容载体,引导学生找出等量关系,列方程解答比较简单的分数除法实际问题。具体内容为

例1:根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5。我体内有28千克的水分,可是我的体重才是爸爸的.7/15。(1)小明的体重是多少千克?(2)小明的爸爸体重是多少千克?

去年我也教学过这部分内容,当教师把这一部分知识全部呈现给学生时,学生要解题,要选择需要的信息,感觉很费劲。今年我改变的呈现的方式,分两部分来教学这些内容:

第一部分:

第一环节,教师说明人体内水分的含量,学生知道后,只出示“儿童的体内的水分约占体重的4/5”这一条信息,让学生观察,说明题目中包含了哪两个量,并用数量关系式表示出它们之间的关系。引导学生得出:体重×4/5=水分的重量

教师口头出示:一个儿童的体重为45千克,让学生计算出他体内的水分有多少千克?学生很容易就口答出了答案。之后我板书:小明体内的水分重20千克,小明的体重是多少千克?让学生尝试解决。结果有5名学生选择用除法直接计算,其他学生选择用方程解决。

在教学后,我引导学生分析本节课所学的解决问题知识与以前学习的有何不同,引导学生找出这类问题的特点,总结出当单位1是未知时,可以直接用算术方法,也可以用方程解决。

第二部分:

在学生计算出小明的体重后,我再出示另一个条件“小明的体重占爸爸体重的7/15,爸爸的体重是多少千克?”学生独立解决,本来解决第一个问题我感觉还蛮顺利的,可是在此题计算中我尝到了失败的滋味,学生找数量之间的关系,选择用除法解决都很费力。列算式为25×7/15者有6个同学,列方程为25X=7/15的有2人。我很是失望,我甚至不知道怎么教学这些知识了,最终我以“下节课再说”来结束了这几课。

下课后我在反思,也和平行班的教师谈论,她们也感觉有些困难,“已知一个数的几分之几是多少,求这个数”的问题,如果用算术方法解决,需要进行逆向思维,教材呈现的是顺向思考,让学生根据分数乘法的意义,找到等量关系列出方程解答。可是在教学中我感觉出来学生对于数量关系的理解个别同学很有困难,好像去年教学这部分知识时没有这么困难,我又在思索以前对这部分知识的教学。

今天我又在另一个班教学这部分知识,基本思路还是和昨天一样。不过经过昨天的思考,我添加了一个课前预习环节:总结我们学习过的分数乘除法解决问题的类型:

1.求一个数的几分之几是多少的问题。2.已知一个数的几分之几是多少,求这个数的问题。

让学生举例,其他学生口答问题。在此基础上我才出示以上教学内容,进行教学。结果也还是不能令我满意。我还得继续反思我的这节课。

《分数与除法》教学反思13

蒲场镇儒溪小学:江娓 《分数与除法》这一节对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。本节课的教学设计,让学生在现实的情境中体验和理解数学,“学生是教学活动的主体”,而“动手实践、自主探索与合作交流是学生学习数学的重要方法”。

开课前,,我利用用学生都了解的《西游记》作为切入点,以八戒找食物为主线提出三个难易不同的问题,让学生去帮助八戒解决怎样把8个桃、4个梨、1个西瓜平均分给4个人的数学问题,每人分到多少个这样的一个简单问题。探索一个物体平均分成若干份,求每份是多少,使学生比较容易建立分数意义与除法意义之间的联系,从而体会分数与除法之间的关系,并为下面的探究铺路搭桥。

教学中,我组织学生动手操作探究解决例题2(类比题)“把3个饼平均分给4个人,每个人分得多少个?”先让学生试着猜一猜,培养学生的数感,让学生做到心中有数,渗透数学研究的`思想方法。然后利用手里的学具分分看,课前,我给每组都准备了3个同样大小的圆形卡片。课中,让学生通过看一看、剪一剪、分一分,探究知识的同时,培养学生的动手能力。开放的让学生用自己喜欢的方式来验证自己的想法,并为学生提供充分交流与

展示的空间与时间,尊重学生的个性发展。当得出结论:“无论用那种方法,我们都能得到把3张饼平均分给4人,每人得到的就是3/4张饼。”探究归纳分数与除法的关系。所以在这个教学环节,我大胆地放手让学生同桌讨论,小组合作学习。开放的情景和问题,学生往往会有更宽广的视野和活跃的思维。

这样的问题情境激发学生积极思考,在小组合作中,给予学生充足的时间与空间,让每个学生都能独立思考,与人交流,动手操作。整个教学过程注重学生参与的主动性,在互相启发的学习活动中,使学生逐步掌握数学的思想方法,受到数学思维的训练,获得知识,发展能力。

本节课基本完成了目标,数学课堂有着千变万化的因素,要上好一堂优秀的数学课却非易事。虽然学生对分数与除法的联系学生理解了,但是它们之间的区别学生好像还很朦胧。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。学生的学习兴趣还没有完全调动起来等,总之这节课的不足之处还有很多,让我认识到自己的不足,并及时改正。

《分数与除法》教学反思14

《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。

在这节课的教学中,我觉得有以下几方面值得我去思考:

一,在学生用除法的`意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。但说的不是很明白。特别是3个饼合在一起来分学生,每一份是多少快,学生不太理解,在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

以上几方面就是我对这节课的一点思考,也是我在以后的教育教学中应该注意的几个方面,相信自己以后在这几方面会做得更好。

《分数与除法》教学反思15

本节课,我认为最突出的地方就是能让学生自己主动探索知识,充分体现了以学生为主体的探究式的教学模式,以设疑导入激发学生的学习兴趣,在探究新知中让学生运用所学的知识采用不同的方法来计算,发散学生的思维,小组讨论交流,总结出计算分数除以整数的方法,并在小组内举简单的例子试算,然后小组汇报方法,学生分别说出了几种不同的计算方法,然后老师再出示习题,用自己总结的方法去计算,最后总结出分数除以整数的最通用的方法。整个探究新知的过程都是学生自主学习,主动探究来完成的,培养了学生的发散思维及发现问题、解决问题的能力。

具体分析如下:

一、引导学生从生活实例入手学数学。

《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际。例题:量杯里有升果汁,平均分给2个小朋友喝,每人喝多少升?(出示教学挂图)教师:你们能从这里面找出什么信息?怎样列式?为什么?设置这样的教学情境激发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

二、以探索为主线鼓励学生算法多样化。

学生是课堂教学中的主体,所以要将更多的时间、空间留给学生,充分调动和发挥学生主动性。从问题的`提出,就让学生参与到探索和交流的数学活动中来。在探索的过程中,教师尊重每一个学生的个性选择,允许不同的学生从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。

三、注重培养学生分析问题能力

在解决问题的时候,教师通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只教例题答案,或让学生死记硬背计算方法等等做法,而是充分让学生通过动手操作、合作交流等亲身实践体验,让学生在探究中加深理解,提高能力,为学生学习以后的知识做好充分的准备。

这节课成功之处:在教学中充分尊重了学生,使学生经历了自主探究、自主优化的学习建构过程。主要表现在两个方面:一是对教材的创新处理,激活了学生探究的空间,探究由原来的单调、枯燥转化为生动、多元、富有生命力,使课堂充满灵动与智慧。紧接着的是在教学的发展过程中,我没有局限于此,而是再次放手,让学生解决:量杯里有升果汁,平均分给3个小朋友喝,每人喝多少升?留给学生充分的时间和空间,检验自己的探究成果

下载《分数与除法》教学反思word格式文档
下载《分数与除法》教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《分数与除法》教学反思

    《分数与除法》教学反思 《分数与除法》教学反思1 虽说现在的教材已经把意义淡化了,但我在教学中依然采用了整数与分数对比,乘法与除法对比的方式,揭示了分数除法的意义,针对新......

    分数与除法 教学反思(模版)

    《分数与除法》教学反思 在学生学习了分数的意义,知道了分数的产生等知识,具有动手操作的学习技能和小组合作探究的学习能力,再来学习分数与除法。这节课的内容,将为今后学习假......

    分数与除法教学反思

    《分数与除法》听课反思 《分数与除法》是在学生建构起分数的意义和除法的意义基础上进行教学的,探索和理解分数与除法的关系既是本节课教学的重点又是学生学习的难点。张......

    《分数与除法》反思

    《分数与除法》教学反思 《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,学生能够在理解了分数的意义基础上,通过小组合作、动手操作、合作交流、......

    《分数除法》教学反思[范文模版]

    《分数除法》教学反思作为一名到岗不久的人民教师,我们要有一流的课堂教学能力,借助教学反思可以快速提升我们的教学能力,来参考自己需要的教学反思吧!下面是小编整理的《分数除......

    分数除法教学反思(★)

    分数除法---解决问题(一)教学反思 2016年9月29日上午第四节课,在学校领导的安排下,我在六年级4班讲了《分数除法之解决问题一》这一节汇报课。教学结束后,感触良多。 从整个教学......

    《分数除法》教学反思

    《分数除法》教学反思 《分数除法》这部分内容是在本册第二单元中分数乘法的基础上教学的。这是本单元教学的重点。在推导分数除法的计算方法,我联系实际问题分析、推导,帮助......

    分数除法教学反思

    分数除法教学反思 酒泉市新苑学校五年级于红艳 本节课所上内容是北师大版五年级下册中的一课,我回忆这一节充满了学生思维智慧的数学课,使我感悟颇深。《新课标》指出:学生是数......