第一篇:三年级上册有关的数学概念或方法
三年级上册有关的数学概念或方法
1、两位数除以一位数:先除十位,再除个位,每次除得的余数要比除数小。除法可用乘法进行验算。没有余数的:商×除数=被除数; 有余数的:商×除数+余数=被除数 2、10个一是十,10个十是一百,10个百是一千,10个一千是一万。
3、右起第一位是个位,第二位是十位,第三位是百位,第四位是千位,第五位是万位。四位数是由几个千、几个百、几个十和几个一组成的。
4、四位数的写法:从高位写起,哪个数位上有几就写几,哪个数位上没有数,就写0。
四位数的读法:从高位读起,中间有1个0或连续有几个0,都只读1个0,末尾的0都不读。
5、比较数的大小:位数不同,位数多的大;位数相同比千位;千位相同比百位;百位相同比十位;十位相同比个位,直到比出大小为止。
6、要准确测量物品有多重,要用“秤”称一称。称一般物品有多重,常用千克作单位;称比较轻的物品,常用克作单位。千克用符号“kg”表示,克用符号“g”表示。1千克=1000克。
7、长方形和正方形都有四条边、四个角,都是四边形。
长方形对边相等,四个角都是直角。正方形四条边都相等,四个角都是直角。正方形是特殊的长方形。
平面图形一周的总长度是它的周长。
长方形的周长=2条长+2条宽 或长方形的周长=(长+宽)×2 长方形的长=周长÷2-宽
长方形的宽=周长÷2-长 正方形的周长=边长×
4正方形的边长=周长÷4 要在长方形里剪最大的正方形,只要边长=宽。8、24时记时法
时间词语有:凌晨、早上、上午、中午、下午、晚上等。A、普通记时法→24时记时法: 去掉时间词语,下午和晚上要+12 B、24时记时法→普通记时法: 加上时间词语,超过12时的要-12 C、求经过时间可以先统一计时法,然后用后面的时刻减前面的时刻,结果换成时间单位。
9、观察物体。从不同的角度观察长(正)方体,最多可以看到三个面。
10、理解“偶尔”、“经常”、“可能”、“一定”等词语的含义,会用这些词语举例。
11、认识分数。理解“平均分”。
分母相同比分子,分子大的分数就大;分子相同比分母,分母大的反而小。每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 加数+加数=和 和-一个加数=另一个加数 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数×因数=积 积÷一个因数=另一个因数 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式
1、正方形
周长=边长×4 面积=边长×边长
2、长方形
周长=(长+宽)×2 面积=长×宽
第二篇:数学三年级上册概念题
数学三年级上册概念题
填空
1.1厘米=()毫米 1分米=()厘米 1米=()分米 1米=()厘米
2.课桌的宽是4()5();粉笔的长是6();文具盒的宽是6();黑板的宽是1(),长是3()。
3.杯子的高约1();跳绳的长约2();尺子的厚约1();我的身高是120()。
4.今年七月份萧山区的降水量是238()。
5.1千米()=()米3千米=()米5000米=()千米
5.长江是我国第一大河,世界第三大河,长约6200();北京到广州的铁路线约长2313()。
6.1吨=()千克 3吨=()千克 6000千克=()吨
7.如果每个学生的体重是25千克,()个学生的体重就是1吨。
8.在验算加法时,我们一般用()—()=()来验算。在验算减法时,我们可以用()+()=()或()—()=()来验算。
9.四边形有()的边,有()个角。
10.长方形和正方形也是()。
11.平行四边形用手一拉,会(),这就说明平行四边形具有()性,()就是运用了平行四边形这个特性。
12.平行四边形的对边(),对角()。
13.()的长度,是它的周长。
14.()是我国古代的一种拼板玩具,后来传到国外,叫做“()”。
15.长方形的周长=正方形的周长=
16.在计算除法时,要注意()一定要比()小。
17.被除数=()×()+()
18.计量很短的时间,常用比分还更小的单位——()。1分=()。
19.1小时=()分3时=()分 4分=()秒
20.小学生大约每天睡9();小红系红领巾大约要20();电饭煲做饭大约要25();你刷牙大约要5()。
21.12×3=36,其中12和3都是(),36是(),所以()×()=()。22.0和()相乘都得()。
23.把一块月饼()分成四份,每份是它的()分之一,写作()。这样的3份是(),其中3叫做(),4叫做()。
2324.+=(),表示()个()加上()个()是()个(),就是()。99
523模仿这样把-=写出来 666
25.填写“一定、不可能、可能”
地球每天都在转动。()我从出生到现在没吃过一点儿东西。()
三天后下雨。()太阳从西边升起。()
吃饭时,人用左手拿筷子。()世界上每天都有人出生。()
花是香的。()月亮绕着地球转。()
石狮子在天上飞。()世界上最高的人高10米。()
第三篇:初一上册数学概念
一、有理数
0既不是正数,也不是负数。
正整数、负整数、0统称为整数。
整数可以看作分母为1的分数.正整数、0负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
原点、正方向、单位长度是数轴三要素。
只有符号不同的两个数叫做互为相反数。
0的相反数仍是0.
数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.有理数的加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、一个数同零相加,仍得这个数;
4、两个互为相反数的两个数相加得0。
有理数的减法法则:
减去一个数,等于加上这个数的相反数。
有理数的乘法法则:
1、两数相乘,同号得正,异号得负,并把绝对值相乘;
2、任何数同0相乘,都得0;
3、乘积是1的两个数互为倒数。
有理数的除法法则:
1、除以一个不等于0的数,等于乘以这个数的倒数;
2、两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
求n个相同因数的积的运算,叫做乘方。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数; 0的任何次正整数次幂都是0。
有理数的混合运算顺序:
1先乘方,再乘除,最后加减;
2同级运算,从左到右进行;
3如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
把一个绝对值大于10的数表示成 a×10n 的形式(其中a是整数数位只有一位的数,即1≤|a|<10,n是正整数),这种计数方法叫做科学计数法。
用科学计数法表示一个n位整数,其中10的指数是这个数的整数位数减1。四舍五入后的近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数
字,都叫做这个数的有效数字。
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
二、整式
单项式、多项式、整式的概念
单项式:由数与字母的乘积组成的代数式叫做单项式。单独的一个数或一个字母也是单项式。
多项式:几个单项式的和叫做多项式。
整式:单项式与多项式统称整式。
单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数之和。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。
所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变。
三、一元一次方程
方程中只含有一个未知数(元),并且未知数的指数是1(次),未知数的式子都是
整式,这样的方程叫做一元一次方程。
等式两边加(或减)同一个数(或式子),结果仍相等。
等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。
把方程中的某一项,改变符号后,从方程的左边(右边)移到右边(左边),这种
变形叫做移项。
卖价=进价+利润
利润=卖价-进价
利润率=利润÷进价×100%
卖价=进价×(1+利润率)
利润=进价×利润率
四、图形
直线
(1)概念:向两方无限延伸的的一条笔直的线。如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位)。
(2)基本性质:经过两点有一条直线,并且只有一条直线;也可以简单地说“两点确定一条直线”。
(3)特点:①直线没有长短,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。
射线
(1)概念:直线上一点和它一旁的部分叫做射线。
(2)特点:只有一个端点,向一方无限延伸,无法度量。
线段
(1)概念:直线上两点和它们之间的部分叫做线段。线段有两个端点,有长度。
(2)基本性质:两点之间线段最短。
(3)特点:有两个端点,不能向任何一方延伸,可以度量,可以较长短。线段的中点:把一条线段分成两条相等线段的点。
角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两
条射线是角的两条边。
角度制及换算:
(1)角度制的概念:以度、分、秒为单位的角的度量制,叫做角度制。
(2)角度制的换算:
1°=60′1′=60″1周角=360°1平角=180°1直角=90°
(3)换算方法:
把高级单位转化为低级单位要乘进率;把低级单位转化为高级单位要除以进率; 角的平分线:
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。余角和补角:
(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角,其中一个角是另
一个角的余角;
(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角,其中一个角是另一个角的补角;
(3)余角的性质:等角的余角相等;
等角的性质:同角的补角相等。
第四篇:五年级数学上册概念总结
1、在除法中商的一些变化规律。
①、给被除数扩大或缩小M(M≠0)倍,除数不变,那么商就随之扩大或缩小M倍。
②、如果给除数扩大M(M≠0)倍,被除数不变,那么商就随之缩小M倍。
③、如果给除数缩小M(M≠0)倍,被除数不变,那么商就随之扩大M倍。
2、小数的基本性质。
在小数的末尾添上0或去掉0,小数的大小不变。
3、除数是整数的小数除法的计算法则。
①、先按照整数的计算法则去除。②、除到的商的小数点一定要和被除数的小数点对齐。
4、商不变的性质
给被除数和除数同时扩大或缩小相同的倍数(0除外),商保持不变。
5、除数是小数的小数除法的计算法则。
①、先把除数变成整数 ②、运用商不变的性质对被除数进行变化
③、然后按照除数是整数的小数除法的计算法则去除。
6、关于解答小数除法中除数大于或小于1时,商和被除数的大小规律问题。(被除数≠0)
①、当除数大于1时,除到的商小于被除数。
②、当除数小于1时,除到的商大于被除数。(除大商就小;除小商就大)
7、关于解答小学范围内带余除法中求余数的问题。
8、小学范围内求取近似值的三种方法 ①、四舍五入法
在取近似数的时候,如果尾数的最高位数字是4或者比4小,就把尾数去掉.如果尾数的最高位数是5或者比5大,就把尾数舍去并且在它的前一位进“1”,这种取近似数的方法叫做四舍五入法 ②、进一法
进一法是去掉多余部分的数字后,在保留部分的最后一个数字上加1。这样求取近似值的方法叫做进一法。③、去尾法
去尾法是去掉多余部分的数字,而保留部分不变。这样求取近似值的方法叫做去尾法。
9、循环小数
一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,把这样的小数就叫循环小数。在循环小数里,我们把依次不断的重复出现的数字就叫做这个循环小数的循环节。循环节从小数部分第一位开始的循环小数叫做纯循环小数;循环节不是从小数部分第一位开始的循环小数叫做混循环小数。
10、有限小数和无限小数
小数部分位数有限的小数叫做有限小数;小数部分位数无限的小数叫做无限小数。
11、轴对称图形
在平面内,如果一个平面图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做这个图形的对称轴。
12、作已知平面图形的轴对称图形的方法。(找轴标点画点连线)简称八字用法
①、找出对称轴
②、在已知平面图形上标上点(可以记作A、B点……)
③、画出关于对称轴对称的A、B点…… ④、连接A、B点……
13、一般判断轴对称图形的方法
①、直观观察法,凭自己的生活经验判断出那些是轴对称图形;
②、对折的方法,看对折后的两部分是否完全重合,如果两部分完全重合,这个图形就是
轴对称图形。
14、整数与自然数的概念。
余数=被除数-除数×商 0、1、、3、4……叫自然数。-
1、-2、0、1、2……叫整数。
所有的自然数都是整数,而所有的整数不一定是自然数。
15、整除
自然数A除以自然数B,(B≠0)得到的商是自然数而无余数,我们便说自然数A能被自然数B整除,或自然数B能整除自然数A。
16、倍数与因数
如果数A能被数B整除,那么我们便说A是B的倍数,B是A的因数,倍数和因数是相互依存的。一定要记住我们只在自然数(0除外)范围内研究倍数与因数。
17、⑴.2的倍数的特点,个位上是0.2 4.6.8的数都是2的倍数。是2的倍数的数叫偶数 不是2的倍数的数叫奇数。
⑵.5的倍数的特点,个位上是0或5的数都是5的倍数。
⑶.2和5共同的倍数的特点,个位上是0的数一定是2或5的倍数。
⑷.3的倍数的特点,如果把一个数的各个数位上的数字加起来的和能被3整除,那么这个数就是3的倍数。
⑸.9的倍数的特点.如果把一个数的各个数位上的数字加起来的和能被9整除,那么这个数一定是9的倍数。
18、求一个数倍数的方法。
⑴.先用这个数分别乘以自然数1.2.3.4.5……
(2)所得的积便是这个数的倍数。
19、求一个数因数的方法。
⑵.把这个数写成两个自然数相乘的形式,一直写到没有为止。⑶.那么这两个自然数便是这个数的因数。
20、一个数最小的因数是1,最大因数是它本身,一个数因数的个数是有限的。一个数最小的倍数是它本身,一个数没有最大的倍数,一个数倍数的个数是无限的。一定要记住一个数最大的因数和最小的倍数相等。
21、质数和合数。
只有1和它本身两个因数的数叫质数,一个数除了1和它本身两个因数外,还有别的因数的数叫合数。1既不是质数也不是合数。
22、最小的自然数是0、最小的偶数是
2、最小的奇数是
1、最小的质数是
2、最小的合数是4。23、100以内质数表
97
24、自然数的两种分类方式。
⑴自然数按照是不是2的倍数可以分为【偶数】和【奇数】。⑵自然数按照因数的个数可以分为【质数】 【合数】 【1】。
25、分解质因数。
把一个合数写成几个质数相乘的形式就叫分解质因数,其中每个质数叫做这个合数的质因数。
26、分解质因数的方法。
1、先写上短除符号,∟。
2、从最小的质数开始试除.3、一直除到最后的商是质数为止。
4、然后把所有的除数和最后的商相乘。
27、单位化聚的方法及进率(大化小×,小化大÷)
1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米= 100平方厘米 1平方厘米=100平方毫米 1平方米=10000平方厘米 1时= 60分 1分=60秒 1时 =3600秒 1天=24时 1吨=1000千克 1千克=1000克 1吨=1000000克
28、平面图形的周长和面积公式。
⑴.长方形的周长=(长+宽)×2=长×2+宽×2=长+长+宽+宽
面积=长×宽 长=面积÷宽 宽=面积÷长
⑵.正方形的周长= 边长×4 边长=周长÷4 正方形的面积=边长×边长
⑶.平行四边形的面积=底×高 底=面积÷高 高=面积÷底
⑷.三角形的面积=底×高÷2 底=面积×2÷高 高=面积×2÷底
⑸.梯形的面积=(上底+下底)×高÷2 上底=面积×2÷高-下底
下底=面积×2÷高-上底 高=面积×2÷(上底+下底)
上下底之和=面积×2÷高
29、计算钢管根数的公式.总根数=(顶层根数+底层根数)×层数 ÷2 层数=底层根数+1-顶层根数 30、分数和分数单位.把单位1平均分成若干份,表示其中一份或几份的数就叫分数。把单位1平均分成若干份,表示其中一份的数就叫分数单位。
31、真分数和假分数
分子小于分母的分数,就叫真分数。真分数永远小于1。
分子大于或等于分母的分数就叫假分数。假分数大于或等于1.真分数小于假分数。假分数永远大于真分数。
由整数和真分数合成的分数叫带分数。带分数永远大于1.32、把整数化成指定分母的分数的方法。
①.分母不变.②.用整数乘以分母的结果作为新分子。
33、把整数化成指定分子的分数的方法。
①、分子不变.②、用分子除以整数的结果作为新分母。
34、假分数化带分数的方法.①.用分子除以分母.②.所得的商是带分数的整数部分,余数是带分数的分子,分母不变。
35、带分数化假分数的方法。
①.用带分数的整数部分乘以分母加分子的结果作为假分数的分子。②.分母不变。
36、关于解答带分数中借位的问题。
先看整数部分减少几,然后用减少的数乘以分母加上分子的结果作为借位后分数的分子。
37、说意义。(M分之N)
①.表示把N平均分成M份,表示取其中一份的数。
②.表示把单位1平均分成M份,表示其中N份的数。
38、在分数里,分母表示把单位1分成多少份的数,而分子表示取了多少份的数。
39、分数的基本性质.给分数的分子和分母同时乘以或除以一个不为0的数,分数的大小不变。40、公因数和最大公因数.几个数公有的因数,叫这几个数的公因数,其中最大的叫做这几个数的最大公因数。
41、用找因数的方法求几个数的最大公因数.①.求出这几个数各自的因数。
②.找出公有的因数,最后找出最大公因数。
42、用短除法求几个数的最大公因数。
①.先写上短除符号,∟
②.用这几个数的公因数去除。一直除到最后的商只有公因数1为止。③.把所有的除数相乘。
43、分解质因数求最大公因数的方法。
1、先把这几个数进行分解质因数。
2、找出公有的质因数。
3、把所有的公有的质因数相乘;所得的积便是它们的最大公因数。
44、几个数公有的倍数叫做这几个数的公倍数,其中最小的叫做最小公倍数。
45、用找倍数的方法求最小公倍数。
1.先求出这几个数各自的倍数。2.找它们的公倍数。
3.在公倍数里找出最小公倍数。
46、用短除法求最小公倍数的方法。
1.先写上短除符号。
2.用这两个数的公因数去除,一直除到最后的商只有公因数1为止。3.把所有的除数和最后的商相乘。
47、用分解质因数的方法求最小公倍数。
1.先把这几个数进行分解质因数.2.找出公有的和各自独有的质因数
3.把所有的公有的和各自独有的质因数相乘。
48、约分。
把一个分数化成同它原来大小相等,但分子和分母都比较小的分数,就叫约分。
49、约分的方法。
1.求分子和分母的最大公因数。2.用分子和分母同时除以最大公因数。50、通分。
把异分母分数化成同它原来大小相等的同分母分数就叫通分。
51、通分的方法。
1.先求出这几个分数分母的最小公倍数。
2.然后把这几个分数化成以最小公倍数作分母的分数。
52、通分子的方法。
1、先求出这几个分数分子的最小公倍数。
2、然后把这几个分数化成以最小公倍数作分子的分数。
53、最大公因数和最小公倍数的几种特例。
1.如果两个数有整除或倍数和因数关系时,最大公因数是较小的数,最小公倍数是较大的数。2.两个连续的非零自然数,最大公因数是1.最小公倍数是两数之积。3.1和任何非零自然数,最大公因数是1.最小公倍数是两数之积。4.两个不同的质数,最大公因数是1.最小公倍数是两数之积。
54、分数的大小比较。
1.分母相同的分数,分子越大分数值就越大。2.分子相同的分数,分母越大分数值反而越小。
55、用短除法求三个数最小公倍数的方法。
1.先写上短除符号。
2.先用这三个数的公因数去除,一直除到这三个数的公因数只有1为止。
3.然后再用其中任意两个数的公因数去除,一直除到任意两个数的公因数只有1为止。4.最后把所有的除数和最后的商相乘。
56、面积应用题的类型
①平均量×面积=总量 ②总量÷面积=平均量 ③大面积÷小面积=数量
57、解方程的公式。
加数=和-另一个加数 被减数=减数+差 差=被减数-减数 减数=被减数-差 因数=积÷ 因数 被除数= 除数×商 除数=被除数÷商 商=被除数÷除数
58、行程应用题计算公式
路程和=速度和×相遇时间 相遇时间=路程和÷速度和 速度和=路程和 ÷ 相遇时间
59、小数化分数的方法.1.先看这个小数的小数部分有几位小数,就在1后面添上几个0作分母。2.去掉小数点后做分子。3.能约分的一定要约成最简分数。60、分数化小数的方法
1.用分数的分子除以分母(如果是带分数,先把带分数化成假分数)2.所得的商就是所要化的小数。61、同分母分数加减法的方法。
1.分母不变,分子相加减。2.能约分的一定要约分。62、异分母分数加减法的方法。
①.先通分,化成同分母的分数。②.再按照同分母分数加减法的方法计算。63、判断一个分数是否能化成有限小数的方法。
一个最简分数,它的分母只含有质因数2或5,再没有其它的质因数,那么这个分数就一定能化成有限小数。64、互质数
公因数只有1的两个数就叫互质数。互质数说的是两个数之间的关系。65、最简分数。
分子和分母是互质数的两个数叫最简分数。
咸阳市三原县陂西镇大门小学:赵小军
第五篇:四年级数学上册概念性知识归纳
四年级数学上册概念性知识归纳
1、什么叫平行线?
在同一平面内不相交的两条直线叫做平行线,可以说这两条线互相平行。
2、什么叫垂线?
如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
3、什么叫做点到直线的距离?
从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
4、怎样利用三角板过已知直线外一点画这条直线的平行线?
步骤 a用三角板的一条直角边与已知直线重合。
b用直尺紧靠三角板另一条直角边。
c沿着直尺平移三角板,使与已知直线重合的直角边通过已知点。
d 沿着这条直角边画一条直线,所画直线与已知直线平行。
A·
5、经过直线外一点,怎样画这条直线的垂线?
步骤a把三角板的一条直角边与已知直线重合。
b沿着已知直线移动三角板,让三角板的另一条直角边与已知点重合。c沿着另一条直角边画经过已知点的直线。
A·
┓
6、商的变化规律
被除数不变,除数乘(或除以)几,商反而除以(或乘以)几
除数不变,被除数乘(或除以)几,商就乘(或除以)几。(0除外)在除法里,被除数和除数同时乘或除以相同的一个数(0除外),商不变。
7、积的变化规律
在乘法里,一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。
两个数相乘,一个因数乘几,另一个因数同时除以几,积不变.8、平行四边形,长方形,正方形和梯形的概念
平行四边形:两组对边分别平行的四边形。
长方形:两组对边分别平行,四个角是直角。
正方形:两组对边分别平行,四个角是直角,四条边都相等。
梯形:只有一组对边平行的四边形叫做梯形。