第一篇:青岛版小学数学概念课教学模式
“我的模式我的课” 课堂教学模式
黄岛区弘文学校 姓名:南京彩 2014年6月
“问题研学,多元联动”数学课堂教学模式
一、“问题研学,多元联动”的内涵
“问题研学”:体现了以问题为主线的教学思想
教师备课要以问题设计为重点:如何将知识点化作有效的问题来研究,如何将能力训练具化成科学合理层递式、阶梯状的问题来探讨,如何将旧知与新知凝合为系统的问题来拓展,如何设置情境提出并解决问题,都需要教师深入研究、整合,钻研教材、整合教材、活用教材。
学生学习要以解决问题为目的:围绕各种问题,学生动脑思考,自主、合作、探究,在陈述自己观点、倾听同伴思维、小组异议争论中,不断整合、完善,求同存异,在发现、分析、解决问题的过程中,最终培养起学生的思维能力。
“多元联动”:体现了教学过程多元化的特色
它是与以往的单一教学相对而言。教育理念多元化、课程整合多元化、教学组织形式多元化、作业设计多元化、评价手段多元化等,在问题研讨中、评价激励中、团队平台中,师生、生生充分互动,促进学生学习力、习惯养成、心理发展、素质培养的连贯发展。
二、“问题研学,多元联动”数学课堂教学模式的操作流程
1.创设情境,提供素材
概念教学是较为枯燥、抽象的,而小学生的心理特征决定他们很容易理解和接受直观、具体的感性材料。在教学时要创设贴近学生生活实际的情境,提供丰富的素材,调动起学生自主探索解决问题的热情地,为学生理解、总结概念奠定基础。
设计这一环节的意义在于,激发学习兴趣,把学生引入一个与问题有关的情境中,让学生喜欢学、有兴致学,调动其学习的积极性。
2.分析素材,理解概念
概念的获得是学生经过分析、综合、比较、抽象、概括的结果。当学生产生探究欲望和具备了一定的思考基础之后,教师要努力给学生创造学习数学的生动场景,让学生经历独立观察思考、小组互动、合作交流的过程,通过对素材的分析,形成对概念的初步理解。
此环节要求教师要为学生提供自主探索、合作交流的时间和空间,处理好自主学习的主动性、合作探究的互动性及探究学习的过程性,要让学生经历“独立思考——组内交流——大班汇报” 的过程,让学生在观察、实验、猜测、验证等数学活动中,交流并明确解决问题的策略。
设计这一环节的意义在于,让学生带着明确的问题任务,在独立自学中,在合作探究中,独学与群学相结合,实现研学的目的。引导学生进行合作探究,在小组群学中,让学生学会合作、学会探究、学会倾听、学会争论、学会求大同存小异,不断提升学习能力,形成学习素养。
3.借助素材,总结概念
概念的形成不是一次完成的,要经过多层次的比较、分析与综合,才能真正发展学生的思维结构,让学生真正理解概念。作为具有在丰富个性的能动主体,小学生会对新概念产生不同的理解和建构,课堂重难点问题在小组“合作研讨”、充分探究的基础上,全班交流,组组互动、生生互补、师生切磋,多元联动,最终为学生释疑解惑。教师要引导学生发现知识规律,构建知识体系,总结概念。
设计这一环节的意义在于,在小组、班级群学中,师生、生生互动中,理论与实践碰撞中,让学生学会合作、学会探究、学会倾听、学会争论、学会求大同存小异、学会学用结合,不断提升学习能力,形成学习素养。
4.巩固拓展,应用概念
学习数学概念的重要目的是运用这些概念解决实际。老师在设计应用概念的问题时,要注重创设情境,在丰富的素材中让学生体验到数学与生活的密切联系,进一步激发学生的学习兴趣,同时让概念教学的每个环节都体现出相对完整及其密切联系,以利于学生体验概念学习的科学研究过程。
设计这一环节的意义在于,及时反馈信息,实现“步步清”“堂堂清”。通过完成课堂练习,检测学生是否当堂达到学习目标。让学生像考试那样紧张认真的独立完成作业,养成独立分析问题,解决问题的能力,进而训练正确的思维习惯,培养创新思维。
5.梳理归纳,达标测试
引导学生对这节课的简单回顾,一般要围绕学习目标进行梳理,让学生明白一节课学到了哪些知识,掌握了怎样的学习方法,总结本节课所得。课堂教学接近尾声,一定要先让学生用简明的语言进行当堂小结,让学生主动梳理知识、总结学法与规律,实现问题的回归与最终解决。
设计这一环节的意义在于引导学生感悟归纳,总结提升,学会学习,做到“堂堂清”,同时针对出现的问题,及时矫正和效果反馈,必要时增加补偿练习。
三、适应范围
青岛版小学数学概念课教学
四、实验效果说明
“问题研学,多元联动”的课堂教学模式实施已近1年。在新理念、新方法纷至沓来的当下,因为该模式一直把“问题探究、多元参与”作为主线,并不断地发展、完善,所以成为我校小学概念课的重要模式。
在该模式理念的指导下,我们引导学生主动发现问题,自主、合作、探究的学习方式在课堂上充分体现。学生在学习共同体建构下进行的学习,个人数学思维得到开启与发展,集体的智慧得到碰撞与共享。教师适时的点拨引导,创设了轻松的课堂氛围,学生身心得到最大限度的放松,因此,学习能力不断提升,数学素养逐渐形成。
第二篇:小学数学概念教学模式
小学数学概念教学模式
东营市胜利物探小学 李涛
数学概念是人对客观事物中有关数量关系和空间形式方面本质属性的抽象。数学概念具有抽象性和概括性的特点。
数学概念是数学知识结构中的基本材料,也是数学认知结构的重要组成部分。在数学教学中,使学生正确掌握数学概念是理解掌握数学原理、形成基本技能的关键,也是培养学生数学能力、发展学生智力的基础。
小学数学中的概念涉及到数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念,以及统计初步知识的有关概念等。
儿童获得概念的两种基本形式是:概念形成与概念同化。1.概念形成:
所谓概念形成,是指学生从许多具体事例中,以归纳的方式概括出一类实例的本质属性,从而获得概念的一种形式。概念形成的心理过程主要包括辨别、分化、抽象、概括等心理活动。概念形成的认知方式常用于学生初次感知某一概念时,小学低年级学生概念学习为主。以“圆的认识”为例,要使学生形成圆的概念,需要学生从自己的生活经验出发,在生活中找到诸如车轮、硬币、圆桌、钟面等等“圆”的原型,并感知这些物体的共同特征,从而逐步形成圆的表象,归纳出这类形状物品的本质属性:到定点的距离等于定长的点的集合。在学生运用概念形成这一形式获得概念的过程中,要求教师要善于举例,教师为学生提供的例子必须是典型的同时又是学生所熟悉的,并且教师要为学生提供非常充分的实例让学生进行感知,只有在充分感知基础上建立起的概念的表象才是牢固的、完整的。同时教师还必须善于比较和分类,教师要引导学生通过分类呈现出具有共同本质属性的同类事物,通过比较凸显出这类事物与其他事物不同的本质属性。
2.概念同化:
概念的同化是小学生掌握数学概念的又一种基本形式。它是指利用学生认知结构中原有的概念,以定义的方式直接向学生揭示新概念的本质特征,从而使学生获得新概念的方式。以小学中高年级为主。小学生到了中高年级,随着年龄的增长,认知结构中知识和经验的不断积累和智力的不断发展,概念同化的方式逐渐成为他们获得新概念的主要形式。如学生在获得“直角三角形”这一概念时,学生原有的认知结构中,已经有了“直角”和“三角形”的概念,在这里只是将两个已有概念进行组合,直接向学生揭示“有一个角是直角的三角形是直角三角形。”简言之,概念同化就是以概念解释概念。在用这种形式帮助学生获得概念时,教师需要弄清学生的原有认知基础,更要找准新概念的知识生长点。在此基础上,教师通过不断地追问帮助学生逐步澄清概念的本质属性。
不管使用何种形式帮助学生获得新的概念,都要符合学生的认知规律。根据皮亚杰的认知发展阶段论,小学生正处于具体运算阶段。在这一阶段,儿童形成了初步的运算结构,出现了逻辑思维。但思维还直接与具体事物相联系,离不开具体经验,还缺乏概括的能力,抽象推理尚未发展,不能进行命题运算。此阶段正处于以直观形象思维为主向抽象思维为主的过渡阶段,他们的思维带有很多的直观形象性,他们是有了所感才有所思,然后才有所知。因此此阶段的儿童要完成对一个概念的获得,必须遵循“感知—表象—抽象”的过程进行。“感知”属于直观动作思维,需要学生通过演示、观察、比较、操作等直观的动作来完成,这一过程可以帮助学生在头脑中建立起对于概念的“表象”,形成表象的过程属于具体形象思维,“表象”的建立过程是从直观到抽象的过渡阶段,学生对于概念本质属性的抽象不是对具体事物本身的抽象,而是将学生头脑中形成的“表象”出来进行一系列的分析、综合、抽象、概括等抽象逻辑思维,从而确定事物的本质属性,获得概念。整个过程是一个从直观到抽象,从感性到理性,抛去非本质抓住本质属性的过程。学生必须经历这一完整的过程才能够真正掌握一个概念。
学生概念的获得过程,强调数学学习与儿童的生活联系起来;强调数学学习是儿童的一种发现、操作、尝试等主动实践活动,强调数学学习的体验性;强调数学学习也是一种认识现实世界的一般方法的学习;强调数学学习是群体交互合作与经验分享的过程。
概念教学的整体要求是:使学生准确地理解概念、使学生牢固地掌握概念、正确地运用概念。要达成这样的教学目标,必须要遵循儿童的认知规律,让学生经历完整的“感知—表象—抽象”的思维过程。以此为依据我们总结出一套完整的概念教学的模式,此模式分为五个环节:
环节一:联系实际,引入概念。
概念可以从小学生比较熟悉的事物入手引入。如二年级学习长方形时,可通过学生观察他们所熟悉的桌面、书面、黑板面等事物,从而引入概念。也可以在旧概念的基础上引入新概念。当新旧概念联系十分紧密时,不需要从新概念的本义讲起,而只需从学生已学过的与其有关联的概念入手,加以引申、指导,得出新的概念。如教学约数和倍数的概念时,可从“整除”这一概念入手,引出概念。
环节二:感知实例,建立表象。
教师为学生提供典型的、熟悉的感性材料,作为形成概念的物质基础。让学生在充分的观察、比较、操作、演示的基础上逐步建立起概念的表象。
环节三:提取表象,抽象概念。
引导学生将上一环节建立起的表象进行提取,并加以分析、综合、抽象、概括,找出全体材料共同的本质属性。如学习梯形的概念时,可针对如上所提供的形式不同的梯形,找出其共同之处。(1)都是四边形,(2)每个四边形仅有一组对边平行。合并上述两个要点,即可得出:只有一组对边平行的四边形叫做梯形。
环节四:结合应用,深化理解。
数学概念一旦形成,就要注意在实践中的应用,让学生将所形成的概念带入具体的情境中进行巩固。这一过程是从抽象再次回到具体的过程,这一环节的目的是使学生能够学以致用。此环节教师要精心设计练习,引导学生巩固概念。练习的类型可以有:①应用新概念的练习。②关键问题重点练习。③对比练习。
环节五:扩展延伸,发展概念。
此环节要充分利用好概念的变式与反例,让学生在对比、辨析的过程中明确概念的内涵与外延,从而深化对于概念本质属性的理解。
在整个概念教学模式中,对于教师的要求:
1.要认真做好上课前的准备工作,为学生提供形成科学概念的实物、教具、模型等,为学生建立概念创造条件。
2.概念的抽象要适时,要准确把握抽象概括的时机。要以足量的感性材料为基础,让学生在头脑中形成清晰的表象。抽象不可过早,过早容易使学生死记硬背,不理解,影响课堂教学的效率。3.概念形成之后,要通过比较,搞好概念的类比,形成概念系统。为此,教师要站在全册、全学年、乃至全套小学数学教材的高度审视和把握本节教学内容。
对学生的要求:
1.要求学生养成乐于观察、勤于观察、善于观察的良好习惯。在观察中把握本质属性,形成清晰的表象。
2.要积极参与概念的抽象概括。抽象概括时,学生要克服被动地接受心理,积极思考、大胆发言。要能在教师的引导、疏导、启发、点拨、订正中,去伪存真,使认识不断地升华,以便在认识概念中逐步学会抽象概括的方法。
概念教学的模式固然有利于我们更好地帮助学生形成新的概念,但是作为教师,我们却不能够模式化,不能拘泥于死板的模式,只有真正弄懂了所学概念的本质,充分了解了学生的认知基础,深刻把握了学生的认知规律,当遇到具体的概念教学内容时,我们才能结合具体情况做出科学的教学设计,取得良好的教学效果。
第三篇:小学数学概念课教学模式研讨课学习心得
小学数学概念课教学模式研讨课学习心得
小学数学概念课教学模式研讨课
学习心得
2012年4月11日我有幸参加了泰安市的“小学数学课堂教学模式研讨”,因为是全市组织的活动,所以不同的区县的数学教师都汇聚一堂,在这短短的一天时间里,观摩了来自我市青年教学新秀所讲授的小学数学优质课,并听了专家的评课,使我深刻地感受到了小学数学课堂教学的生活化、艺术化。本着学习的态度,通过这次听课,让我受益匪浅。下面我就结合实际来谈谈自己的一些体会。
一、在这次活动中,教师注重创设有效的情景。每一位老师都能根据课的需要创设具体的生活的情境,让学生在熟悉的情境中去学习。
二、学习方式活动化,让学生主动获取知识。在这些观摩课当中,我们看到的是老师和学生的交流,不再是以前的教师教和学生学的两个过程,而是一个统一体。每一位老师都能让学生独立的去解决问题,教学中,遇到一些简单的问题,都让学生通过自己动口,动手,动脑去解决.并且老师不断鼓励学生积极尝试,主动去探索问题,让每个学生都有参与与思考和发表意见的机会,让每个学生都成为数学学习的主人。对于学生一时想不出来的问题,老师都能耐心的去启发引导,突出教师是主导,学生是主体教学理念。
三、上课教师的教学语言富有感染力,课堂评价及时,关注了学生的情感。
在这次活动中,每一位教师都能对学生的回答做出积极的评价,我想这方面是我所欠缺的,我要向这些老师们好好学习。我对这次的活动感触颇深,同时也使自己认识到了在工作中还存在的不足之处。在今后的教学工作中一定要不断学习新的教育教学理念,找出自己在教学管理方面的不足,向教学经验丰富的老师学习,争取使自己的工作在这一学期能取得更好的成绩。
因为时间紧张,很遗憾我只参加了一天的小学数学概念课展示。其中做课人之一是我们宁阳县展示课的宁阳现代学校的仝宽老师,对这位老师的教学风格简要总结就是“沉稳大气;幽默诙谐”。仝老师带领着三年级的小学生给大家带来了一节精彩的《因数和倍数》,通过感受、认识、实践逐渐的让学生学会了秒,感受了时间在我们生活中的重要作用。这节课给我的最大感受就是“快乐与肯定”,整个一节课,孩子们的小脸上始终充满着激情,洋溢着兴奋。
第二节课是泰安市实验学校马梅老师所执教的一节《因数和倍数》。马老师站在教材编写者的角度,发掘了很多老师平时教学中容易疏忽的细节,而且杨老师比较注重教师角色的转变,通过预习,让学生提出自己通过预习所知道,及不知道的,明白的孩子再解决别人所不知道。在互动交流杨老师屡次发出这样的感慨:“南关小学的学生真是了不得,你们知道的可真多啊,你们知识面可真宽啊~~~!”马老师这些句话充分说明了一个问题“千万不要低估了学生的能力”,给孩子们一个机会,他们会给我们一个惊喜。
东平县第二实验学校胡磊磊老师激情洋溢,精彩纷呈。泰安区迎胜小学谷雷才师善于引导,及时点拨。泰山外国语学院的苏峰老师一题多解,高潮迭起。每一堂课都有创新,都能让我感到大开眼界。
总之,小学数学概念教学是非常重要的一块,教学设计要从学生的需要出发,从生活中的问题出发,为学生提
供主动探索、发现的空间和机会;让学生积极参与,主动探究,经历学习的过程,才能真正促进学生的有效学习。
“没有沟通生活原型—数学概念—符号表征三者的内在联系;没有激活学生的数学思维;没有将概念放在概念体系中加以把握”,是小学数学概念课教学存在的主要问题;数学概念课上也常常看见这样的现象:老师讲的口干舌燥,学生听的昏昏欲睡,结果是老师讲的辛苦,学生学的辛苦,学生却没有得到应有的发展。因此,教师要及时发现并改正概念教学中存在的问题,采取行之有效的策略,通过概念教学,让学生体会该数学概念的价值所在;使学生获得数学概念的数学含义与表达形式;激活学生思维,实现概念教学的实效。那么,怎样才能提高课堂教学效率呢?
下面是我的一点心得。
一、精心设计每一节课,是提高课堂教学效率的基础。
新课标指出:“教师应激发学生学习的积极性,向学生提供从事数学活动的机会,帮助学生在自主探索和合作交流中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验”。这种理念给我们的上课指明了方向,同时也为我们的备课理清了思路。精彩的课堂源于精心的设计。我们的备课不仅要备“教师怎样教”,更要备“学生怎样学”,不仅要组织好学生的学习活动,更要考虑到怎样去指导、点拨学生;不仅要有调控课堂的能力,更要不断地进行教学反思。只有这样,才能精心设计好每一节课,为提高课堂教学效率打下良好的基础。
在听课中,我们发现一些老师上课时就题讲题,就事论事,不分轻重缓急,平均使用力量,照本宣科,从而导致课堂教学效率低、效果差。究其原因,在于他们理解教材不到位,备课思路有偏差,把握不住重、难点,归根到底是没
有吃透教材,相反,只有准确地把握教材,精心设计每一节课的每一个教学环节,教学中才能得心应手,才能创造性地使用教材,从而达到事半功倍之效。
二、教学过程因素的有效调控,是提高课堂教学效率的关键。
1、创设情境,激发兴趣,是有效教学的重要保证。
成功的教学所需要的不是强制,而是激发学生的兴趣。是的,兴趣是最好的老师,它在学习活动中起着定向和动力作用,是激发学生学习积极性,增强求知欲的主要因素。相反,没有兴趣,没有学生的积极参与,任何教学活动都是低效的教学,因此,在教学中,教师要根据学生经验和教材特点,选择学生感兴趣的事物、活动,用蕴含数学信息的故事、游戏、图片,再配置以多媒体的辅助,创设各种生动形象的、与教材内容有关的教学情境,以激发学生学习兴趣,引导他们积极主动地参与到学习中去。
2、运用激励性评价,是有效教学的重要措施。
对学生数学学习的评价,既要关注学生知识与技能的理解与掌握,更要关注情感与态度的形成与发展;既要关注学生数学学习的结果,更要关注学生在学习过程中的变化和发展。激励性评价可以创造融洽和谐的教学环境,增强学生自信心,有效提高课堂教学效率。
学生的自信无论对学生的学习还是对学生一生的发展都非常重要,学生的成长需要激励,学生的学习过程更需要激励。在听课时,我们经常看到许多学生积极参与思考,大胆发言,当他们的某个思路或计算方法被老师肯定后,从其眼神和表情就可以看出,他们得到了极大的满足,在学习中遇到困难时他们会反复钻研、探讨,直至解决问题,可见,正确的评价是促进学生积极主动学习的主要因素。因此,教学中教师要重视学生参与学习过程的积极性和参与程度,重视学生参与学习进程的态度和情感,重视激发学生的问题意识并运用激励性
评价,以欣赏和发展的眼光看待学生的活力,要善于抓住学生的闪光点,积极地鼓励和肯定每个学生的每次进步,以满足学生的成功体验,要让他们在评价中得到鼓舞,树立自信心,从而不断进步,不断成长。
3、自主探索,合作交流,是有效教学的重要途径。
自主探索是指让学生独立思考,根据自己的学习经验和知识基础,探索出解决问题的方法和途径。活动化学习过程,是有效教学的载体。
新课标指出:“数学教学是数学活动的教学,是师生之间、生生之间交流互动、共同发展的过程。”面对枯燥、抽象的数学知识,要使学生乐于接受,最有效的教学就是让他们参与到学习活动中。只有当学生的多种感官参与其中,亲身经历知识的生成和发展,他们才能主动地发展知识,有效的建构知识。
4、活动化学习过程,是有效教学的载体。
新课标指出:“数学教学是数学活动的教学,是师生之间、生生之间交流互动、共同发展的过程。”面对枯燥、抽象的数学知识,要使学生乐于接受,最有效的教学就是让他们参与到学习活动中。只有当学生的多种感官参与其中,亲身经历知识的生成和发展,他们才能主动地发展知识,有效的建构知识。
总之,在数学课堂教学中,教师要用新课程理念指导教学,精心设计活动化教学程序,以平等合作的身份参与学生学习活动,并在学生的自主探索、合作交流活动中正确指导,适时点拨,同时运用激励性评价,以满足学生学习成功的体验,只有这样,才能减轻学生学习负担、提高学生学习能力、激发学生学习兴趣、培养学生创新精神,真正提高小学数学课堂教学效率。
第四篇:小学数学概念教学模式探究
小学数学概念教学模式探究
重庆市开县汉丰四校 何季
数学概念就是现实世界中空间形式和数量关系及其本质属性在人们头脑中的反映。在小学数学中所涉及的概念有很多,如: 数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念以及统计初步知识的有关概念等。那么如何进行概念教学呢?从感性到理性,从具体到抽象是小学生思维的主要特征,因此小学生获得概念的认知心理活动过程是:“充分感知——建立表象——抽象概念——形成概念”。
一、感知内化,建立表象
表象是通过感知留下的形象,是感知材料形象概括,为思维抽象概括作准备。因此它是从感知向思维过渡的“桥梁”。在数学概念教学中要十分重视表象这座桥梁的运用,这不仅使教学符合认识发展规律,而且使教学符合儿童发展的特点。因为儿童是用“形象、声音、色彩、感觉”思维的,必须充分运用并发挥表象的作用。如教学“平行线”这一概念,教师如果只是简单告诉学生平行线是两条无限延长、永不相交的直线,学生可能会记住这些文字条文,但不能很好掌握平行线的数学概念的本质属性。只有让学生观察实物,如教室门窗的上下边框、左右边框,书本的横线,拉紧的两条铁丝等。再启发学生:“这些成对直线将它们无限延伸,能相交吗?它们都处在什么位置呢?”促使感知内化,从而在头脑中建立成对直线的表象(在同一平面内),即形象化的平行线。
二、故设悬念,引出概念
概念的教学往往是一节课的开端,而故设概念,使学生有一种强烈的求知欲望,这是引入概念的一种常用的方法。如“圆周率”概念的引入,可先让学生量出自己准备的大小不等两个圆直径和周长,并作好记录,然后让学生报出直径的长度,教师很快“猜出”周长的近似长度。学生自然感到惊奇,很想弄清其中的奥秘,从而萌发探求知识奥秘的欲望。教师因势利导,圆的周长总是直径的三倍多一些,人们通常把这个数叫做圆周率。那么,怎样求出“圆周率”呢?我们就来研究这个问题。
又如“认识分数”(分一分),教师根据课本图设计这样一个问题:“把两个苹果平均分给小明和小青,他们每人可分几个苹果?”分的个数可以用几表示?(每人分一分,可以用“1”表示)小明和小青把其中一个送给邻居王奶奶,剩下1个苹果两人平均分,每人可分多少个?(半个)这半个苹果能不能用我们学过的数表示?(不能)教师指示:我们不能用学过的数(0、1、2、3„„中任何一个数)来表示“半个”,这就要用一种新的数——分数。在这种融洽的气氛中学生自然就想学习分数这一概念。
三、直观演示,形成概念
小学生心理发展的主要特点是:善于记忆具体的事实,而不善于记忆抽象的内容。充分发挥直观表象作为抽象概括的作用,可以通过教师演示学生操作等直观教学方法,来引入概念,弥补抽象思维水平较低的缺陷,有助于形成正确、明晰的概念。
通过学生动手、动脑进行实际操作,才能刺激学生多种感官的协同参与,这样,既能顺应学生学习心理,又可以使学生在“亲自创造的事物“中愉快地获得真正的理解。例如,教学“圆环形面积”这一概念时,先让学生各自画一个半径4厘米的圆,再以同圆的圆心,在这个圆内画一个半径小于4厘米的圆,然后动手剪去内圆,留下外圆,得到了一个圆环。教师进一步引导学生“怎样求圆环形面积呢?”由于学生亲自动手操作,很快发现了求圆环形面积的规律:圆环形面积=外圆面积–内圆面积。圆环形的概念明确了,新知识的解答方法也就水到渠成。成功的欢乐是一种巨大的情绪力量,它促进儿童乐于探索的愿望。
四、在知识系统中巩固概念
数学教材中的概念,尽管分散在不同章节中出现,但它们总是一环扣紧一环形成知识链条的。在讲清概念之后,向学生揭示概念之间的联系,让学生在知识链条中理解和记忆概念,比孤立理解单个概念,效果好得多。例如教学“因数和倍数”一章中,“整除——因数——倍数——质数——合数”就是这样一条知识链条。要让学生巩固这些概念,应该使学生对这条链条有整体的认识。在相关的一族概念中,有的概念处于关键地位,成为知识网络的纲。上述有关概念,均以“整数”这个概念为基础,这个概念就是纲。要理解和巩固这部分教材中的任何概念,都要紧紧和这个概念联系起来。
建立知识网络之后,要充分注意概念之间的联系和区别,运用比较、分类、分析等方法引导学生注意各个概念在知识网络中所处的地位。例如“整除”与“不整除”是矛盾关系,“质数”和“合数”是平行关系,“偶数”和“质数”(如2)是部分重合关系,把握好知识的来龙去脉,易于巩固和加深对概念的理解。
总之,对于基本概念的教学,要遵循小学生心理活动特点和智力发展的规律,从实际出发,采取多种方式、方法进行教学。无论采用何种方法都要以教学内容为中心。设计教学过程要做到重点突出,难点讲清,从本质上帮助学生掌握和理解概念。
第五篇:初中数学概念课教学模式的研究
初中数学概念课教学模式的研究
郭耀京、丁振棠、邓振新、邓燕、曾敏芝、高月、王星赞、杨桂春
一、模式研究背景
概念是思维的基本形式,具有确定研究对象和任务的作用。是用词或符号来概括事物的本质,是人对客观事物的数量关系和空间形式的本质属性在人脑中的反映。它是数学知识的基石,是数学知识的重要组成部分,人们在生活,学习,工作中时时接触概念,不断地学习概念,加深对概念的正确认识,同时运用概念进行工作,学习和生活.新的数学课程标准指出要让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,而正确理解数学概念是掌握数学基础知识的前提.因此,数学概念教学是数学基础知识和基本技能教学的核心。
掌握数学概念是学好数学的基础,是学好定理、公式、法则和数学思想方法的前提,是提高解题能力的关键,是解决例题和练习题的依据。但在传统的数学概念课教学中,老师轻视概念的形成过程,课堂上采用的教学方式一般是学生自己看课本或教师运用讲授法进行讲解,然后学生就做例题和练习题。这种概念课的教学方式,产生的后果是学生对数学概念的感性认识很浅,理解一知半解;学习得到的概念太死板,不能灵活运用到学习中去;学生的学习能力也得不到提升和培养,学习积极性不高。为了突破这个教学难点,改变原来的教学方式,充分发挥学生的主体作用,打造切实可行的高效课堂。
新课程实施以来,我们初中数学学科一直致力于新形势下的课堂教学模式研究,取得了一定成果。结合自身学科特点,吸取先进教学理念,探索适合自身课堂教学的有效模式,真正做到了知识内容问题化、教学过程互动化、活动结论规律化、问题解决书面化、反思简记习惯化、评价方式多样化,从而学生思维的打开、飞跃、完善过程暴露无遗,使课堂教学更有针对性与实效性。
二、基本模式
数学概念教学过程是在教师指导下,调动学生认知结构中的已有感性经验和知识,去感知理解材料,经过思维加工产生认识飞跃(包括概念转变),最后组织成完整的概念图式的过程。为了使学生掌握概念、发展认识能力,必须扎扎实实地处理好每一个环节。数学概念教学模式为:引入—形成—巩固与深化。
(一)、概念的引入
概念的引入是数学概念教学的必经环节,通过这一过程使学生明确:“为什么引入这一概念”以及“将如何建立这一概念”,从而使学生明确活动目的,激发学习兴趣,提取有关知识,为建立概念的复杂智力活动做好心理准备。新课程标准提倡通过主动探究来获取知识,使学生的学习活动不再单纯地依赖于教师的讲授,教师努力成为学习的参与者、协作者、促进者和组织者。因此,在引入过程中教师要积极地为学生创设有利于他们理解数学概念的各种情境,给学生提供广阔的思维空间,让他们逐渐养成主动探究的习惯。一般可采取下述方法: 1.联系概念的现实原理引入新概念。在教学中引导学生观察有关事物、模型、图识等,让学生在感性认识的基础上,建立概念,理解概念的实际内容,搞清楚这些概念是从什么问题上提出来的。例如:在圆概念的教学时,让学生动手做实验,取一条定长的细绳,一端固定在图板上,另一端套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?学生通过动手实践,观察所画出来的图形,归纳总结出圆的定义。
2.从具体到抽象引入新概念。数学概念有具体性和抽象性双重特性。在教学中就可以从它具体性的一面入手,使学生形成抽象的数学概念。例如:在讲绝对值概念时,先让学生在数轴上求出3,—3,0与原点的距离,就直接告诉学生这些距离表示该数的绝对值,再让学生用自己语言表述绝对值概念,最后抽象到一个数a的绝对值等于什么。
3.用类比的方法引入概念。类比不仅是一种重要形式,而且是引入新概念的重要方法。例如:可以通过一元一次方程的定义类比地归类出一元二次方程的定义。作这样的类比更有利于学生理解及区别概念,在对比之下,既掌握了概念,又可以减少概念的混淆。
(二)、概念的形成
新课程标准强调学生在合作交流中学习数学,交往互动的教学模式适应了新课程改革的要求,它主要是以合作学习、小组活动为基本形式,充分利用师生之间、生生之间的多向交往、多边互动来促进学生学习,发挥学生学习潜能的教学方式。在概念的形成过程中充分利用合作学习,提高学习的效率。1.在挖掘新概念的内涵与外延的基础上理解概念
新概念的引入,是对已有概念的继承、发展和完善。有些概念由于其内涵丰富、外延广泛等原因,很难一步到位,需要分成若干个层次,逐步加深提高。如二次函数yax2bxc的图像与坐标轴交点的问题,经历了以下三个循序渐进、不断深化的过程:(1)与y轴有交点,则x0,yc,交点坐标为(0,c);与xax2bxc0 ;轴有交点,则y0,即:(2)涉及到解一元二次方程的解法;(3)有些一元二次方程不一定有实数根,这样就要用到根的判别式,是否有实根,是两个不等实根,还是两个相等实根。由此概念衍生出:二次函数yax2bxc的图象与x轴交点个数与b24ac的值有关。“磨刀不误砍柴工”,重视概念教学,挖掘概念的内涵与外延,有利于学生理解概念。
2.重视概念中的重要字、词的教学
在概念教学中重要的字、词就是一个条件,应多角度、多层次地剖析概念,才有利于学生深刻地理解概念。例如:垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。这里“不是直径”指的是平分的这条弦是非直径的弦。“直径垂直于弦”指的是直径垂直于非直径的弦。“并且”指的是得到的第二结论。同时也要分清该命题的题设和结论。若“(不是直径)”这个条件不要,可以举出反例:圆内两条直径一定互相平分,并不一定垂直。3.在寻找新旧概念之间联系的基础上掌握概念
数学中有许多概念都有着密切的联系,如三角形中位线与梯形中位线,方程与不等式,正比例函数与反比例函数等等,在教学中应善于寻找,分析其联系与区别,有利于学生掌握概念的本质。
(三)、巩固深化概念,训练运用概念的技能
要使学生牢固、清晰地掌握概念,必须经过概念的巩固、深化阶段。
1.对易混淆的概念进行辨析,进一步理解其区别与联系,有比较才有鉴别。将易混淆的概念加以对比、辨析,明确它们的区别误概念,理解、巩固和深化概念 的有力措施,也是形成清晰概念、层次清楚的认知结构的必然要求。
2.通过练习形成运用概念的技能。学习概念,是为了能运用概念进行思维,运用概念解决问题。依据认识论的观点,一个完整的教学过程必须经过“由感性的具体上升到抽象的规定”和“再由抽象的规定发展到思维中的具体”这样两个科学抽象的阶段。因而概念的运用阶段也是数学概念教学不可缺少的环节。但要注意,练习的目的在于巩固深化概念,形成技能,培养分析问题、解决问题的能力。因此,选题要典型、灵活多样,对题目的挖掘、探讨要力求深入。
三、应用策略
1、新概念、新知识的引入
数学概念的引入,应从实际出发,创设情景,提出问题。通过与概念有明显联系、直观性强的例子,使学生在对具体问题的体验中感知概念,形成感性认识,通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性。如在“一元一次方程”概念的教学中,教师应先展示概念产生的背景。如:下列各式哪些是方程?
(1)3x+4
(2)x+2y=3(3)x-1>y(4)5-3=2(5)x+8=9 由小学具有的方程知识:含有未知数的等式叫做方程。但(2)中含有两个未知数,小学没有接触过,不敢确定,这时让学生分析,(2)是不是等式,是否含有未知数,两个条件都满足了,当然是方程。然后让学生比较(2)和(5)异同。直接告诉学生(5)就是一元一次方程,而(2)不是一元一次方程,请同学给一元一次方程下定义。让学生相互讨论,经反复修改补充后,给出定义:“只含有一个未知数,并且未知数的次数为1,象这样的方程叫着一元一次方程”。
2、新概念、新知识的教授
新概念的引入,是对已有概念的继承、发展和完善。有些概念由于其内涵丰富、外延广泛等原因,很难一步到位,需要分成若干个层次,逐步加深提高。
3、新概念、新知识的应用。
数学概念形成之后,通过具体例子,说明概念的内涵,认识概念的“原型”,引导学生利用概念解决数学问题和发现概念在解决问题中的作用,是数学概念教学的一个重要环节,此环节操作的成功与否,将直接影响学生的对数学概念的巩固,以及解题能力的形成。
4、概念新授课教学活动中应注意的问题: 对于概念新授课的教学,情景教学在其中占据着很重要的地位。引入问题的情景恰当与否对于学生对概念的掌握和理解有着很大的影响。
通过数学概念教学,使学生认识概念、理解概念、巩固概念,是数学概念教学的根本目的。通过概念课教学,力求使学生明确(1)概念的发生、发展过程以及产生背景;(2)概念中有哪些规定和限制的条件,它们与以前的什么知识有联系;(3)概念的名称、表述的语言有何特点;(4)概念有没有等价的叙述;(5)运用概念能解决哪些数学问题等。
在概念教学中,要根据课标对概念教学的具体要求,创造性地使用教材,优化概念教学设计,把握概念教学过程,真正使学生在参与的过程中产生内心的体验和创造,达到认识数学思想和本质的目的。
四、概念课教学程序
概念课教学程序大致可以分为这样几步:教师展现实例→学生直观感受→生特征提炼→教师适时命名→学生归纳定义→教师指导规范→应用、解决问题。情境创设要有的放矢,适合学生认知水平;先声夺人,引发学生好奇心和认 知冲突;发人深思,激发学生思维;思维碰撞,一石激起千层浪。
尝试感受是问题解决的开始,丰富学生的感性认识,打开学生思维的天窗。纵观传统,通常有下类型的处理数学问题的三种方式:(1)例题型;(2)习题型;(3)试题型。
合作讨论是问题解决的桥梁,促进学生感性认识到理性认识的飞跃,加快学生思维的进程。以下时机需要合作讨论:(1)问题在个体尝试解决后;(2)学生群情激昂即意见难以统一时;(3)学生迷惑不解即难以听懂时;(4)似懂非懂即难以表述时。
规范返悟是问题解决的结束,达到学生理性认识的目的,完善学生的思维过程。返悟的内容:(1)问题解决所用到的知识点;(2)解决问题中应注意的问题(技能点);(3)解决此类问题的一般方法与步骤(规律点)。
五、模式探讨过程 1.第一阶段:研究课 地点:初一(13)班课室 时间:2011.10.12 执教人:邓燕 课题:《合并同类项》。2.第二阶段:研究课。地点:初一(7)班课室 时间:2011.10.25 执教人:丁振棠 课题:《去分母解一元一次方程》 3.第三阶段:座谈交流 地点:初一(3)班课室 时间:2011.11.23
六、模式环节呈现总结 1.大家以案例为载体,热烈讨论,积极献言献策,对概念课教学模式达成了共识:问题解决,引入实例→提出问题,感受特征→适时命名,学生定义→提炼总结,规范定义→定义辨析,练习巩固。2.各环节设置的意义:
(1)问题解决,引入实例:问题是数学的心脏,通过问题解决自然调动学生学习的积极性、主动性;先声夺人,发人深思,引发学生好奇心和认知冲突;激发学生思维碰撞,一石激起千层浪,为后续教学活动做好铺垫。
(2)提出问题,感受特征:概念的产生有着丰富的知识背景,舍弃这些情景,直接抛给学生一连串的概念的做法往往使学生感到茫然,丢掉了培养学生概括能力的好机会,这不利于创新型人才的培养。让学生体会概念的形成过程,理解概念形成的背景与思想,使学生知其然更知其所以然,防止直接突现结论,以致学生一头雾水,模糊迷惑。教师需要根据教学内容,提出有针对性的问题,突出对概念本质的认识。如在学习二元一次方程的概念时类比一元一次方程概念的得出过程,在已有知识(即一元一次方程的概念)的基础上,引导学生观察形如x+y=35、2x+4y=94(第一环节的延续)这样的方程有何特征?学生很容易抓住二元一次方程的本质特征。从而使学生对新学到的知识易于理解、掌握、内化,同时以问题解决为载体向学生自然渗透类比的数学思想,符合学生学习的由浅及深、循序渐进的认知规律。(3)适时命名,学生定义:教师根据概念的特征,类比所学或已有知识,师生抓住时机,适时命名:即像x+y=35,2x+4y=94这样的方程叫做二元一次方程。然后在让学生在充分感受新概念特征的基础上,由学生自己尝试给概念下定义。正所谓,学习任何知识的最佳途径是由学生自己去发现,这直接关系到学习的效果,因为这种理解最深刻,也最容易掌握其中的内容、规律和联系。
(4)提炼总结,规范定义:教师根据学生定义的各种情形,加以点评、概括、总结、规范,然后进行咬文嚼字、严格定义,使学生对概念达到学生理性认识的目的,从而完善学生的思维过程。
(5)定义辨析,练习巩固:学生对概念的掌握是一个由具体到抽象,由抽象到实践,由实践到抽象的循环往复过程。学生是否真正透彻理解和牢固的掌握了概念,需要通过实践去体验,也就是说理解了的概念不一定真正掌握了它,只有通过反复的灵活运用,才能巩固加深对概念的理解。为了对概念有一个更全面的认识,加深学生对概念的理解与掌握,教师应设置有思维量的学生活动:①学生自己编题;②设置判断题;③解答题等。
七、教学案例