第一篇:〓高考物理 〓难点25 数形结合思想与图象法解题
难点25 数形结合思想与图象法解题 数形结合是一种重要的数学思想方法,在物理解题中有着广泛的应用,图象法解题便是一例.在高考命题中屡次渗透考查.●难点磁场
1.(★★★)(1999年全国高考)为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速v=120 km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0/.50s.刹车时汽车受到的阻力大小f为汽车重力的0.40倍.该高速公路上汽车间的距离s至少应为多少?(取重力加速2度g=10 m/s.)
2.(★★★★)一列简谐横波,在t=0时刻的波形如图25-1所示,自右向左传播,已知在t1=0.7 s时,P点出现第二次波峰(0.7 s内P点出现两次波峰),Q点的坐标是(-7,0),则以下判断中正确的是
A.质点A和质点B在t=0时刻的位移是相等的
B.在t=0时刻,质点C向上运动 C.在t2=0.9 s末,Q点第一次出现波峰 D.在t3=1.26 s末,Q点第一次出现波峰
图25-1 ●案例探究 [例1](★★★★)一颗速度较大的子弹,水平击穿原来静止在光滑水平面上的木块,设木块对子弹的阻力恒定,则当子弹入射速度增大时,下列说法正确的是
A.木块获得的动能变大
B.木块获得的动能变小
C.子弹穿过木块的时间变长
D.子弹穿过木块的时间变短 命题意图:考查对物理过程的综合分析能力及运用数学知识灵活处理物理问题的能力.B级要求.错解分析:考生缺乏处理问题的灵活性,不能据子弹与木块的作用过程作出v-t图象,来作出分析、推理和判断.容易据常规的思路依牛顿第二定律和运动学公式去列式求解,使计算复杂化,且易出现错误判断.解题方法与技巧:子弹以初速v0穿透木块过程中,子弹、木块在水平方向都受恒力作用,子弹做匀减速运动,木块做匀加速运动,子弹、木块运动的v-t图如图25-2中实线所示,图中OA、图25-2 v0B分别表示子弹穿过木块过程中木块、子弹的运动图象,而图中梯形OABv0的面积为子弹相对木块的位移即木块长l.当子弹入射速度增大变为v0′时,子弹、木块的运动图象便如图25-2中虚线所示,梯形OA′B′v0′的面积仍等于子弹相对木块的位移即木块长l,故梯形OABv0与梯形OA′B′v0′的面积相等,由图可知,当子弹入射速度增加时,木块获得的动能变小,子弹穿过木块的时间变短,所以本题正确答案是B、D.[例2](★★★★)用伏安法测一节干电池的电动势和内电阻,伏安图象如图25-3所示,根据图线回答:(1)干电池的电动势和内电阻各多大?
(2)图线上a点对应的外电路电阻是多大?电源此时内部热耗功率是多少?
(3)图线上a、b两点对应的外电路电阻之比是多大?对应的输出功率之比是多大?
(4)在此实验中,电源最大输出功率是多大?
命题意图:考查考生认识、理解并运用物理图象的能力.B级要求.图25-3 错解分析:考生对该图象物理意义理解不深刻.无法据特殊点、斜率等找出E、r、R,无法结合直流电路的相关知识求解.解题方法与技巧:利用题目给予图象回答问题,首先应识图(从对应值、斜率、截面、面积、横纵坐标代表的物理量等),理解图象的物理意义及描述的物理过程:由U-I图象知E=1.5 V,斜率表内阻,外阻为图线上某点纵坐标与横坐标比值;当电源内外电阻相等时,电源输出功率最大.(1)开路时(I=0)的路端电压即电源电动势,因此E=1.5 V,内电阻r==0.2 Ω
也可由图线斜率的绝对值即内阻,有r=
U1.02.51.51.02.5EI短=
1.57.5 Ω
Ω=0.2 Ω
(2)a点对应外电阻Ra=
aIa= Ω=0.4 Ω
此时电源内部的热耗功率Pr=Ia2r=2.52×0.2=1.25 W,也可以由面积差求得Pr=IaE-IaUa=2.5×(1.5-1.0)W=1.25 W(3)电阻之比:RaRb=
1.0/2.50.5/5.0=
输出功率之比:PaPb=
1.02.50.55.0=
11(4)电源最大输出功率出现在内、外电阻相等时,此时路端电压U=E/2,干路电流 I=I短/2,因而最大输出功率P当然直接用P也可以求出此值.●锦囊妙计
数形结合是一种重要的数学方法,其应用大致可分为两种情况:或借助于数的精确性来阐明形的某些属性,或借助于形的几何直观性来阐明数之间某种关系.图象法解题便是一例.由于图象在中学物理中有着广泛应用:(1)能形象地表述物理规律;(2)能直观地描述物理过程;(3)鲜明地表示物理量之间的相互关系及变化趋势.所以有关以图象及其运用为背景的命题,成为历届高考考查的热点,它要求考生能做到三会:(1)会识图:认识图象,理解图象的物理意义;(2)会做图:依据物理现象、物理过程、物理规律作出图象,且能对图象变形或转换;(3)会用图:能用图象分析实验,用图象描述复杂的物理过程,用图象法来解决物理问题.出m
出m
=
1.52×
7.52 W=2.81 W =E/4r计算或由对称性找乘积IU(对应于图线上的面积)的最大值,2通常我们遇到的图象问题可以分为图象的选择、描绘、变换、分析和计算,以及运用图象法求解物理问题几大类:
(1)求解物理图象的选择(可称之为“选图题”)类问题可用“排除法”.即排除与题目要求相违背的图象,留下正确图象;也可用“对照法”,即按照题目要求画出正确草图,再与选项对照解决此类问题的关键就是把握图象特点、分析相关物理量的函数关系或物理过程的变化规律.(2)求解物理图象的描绘(可称之为“作图题”)问题的方法是,首先和解常规题一样,仔细分析物理现象,弄清物理过程,求解有关物理量或分析其与相关物理量间的变化关系,然后正确无误地作出图象.在描绘图象时,要注意物理量的单位,坐标轴标度的适当选择及函数图象的特征等.(3)处理有关图象的变换问题,首先要识图,即读懂已知图象表示的物理规律或物理过程,然后再根据所求图象与已知图象的联系,进行图象间的变换.(4)在定性分析物理图象时,要明确图象中的横轴与纵轴所代表的物理量,要区分图象中相关物理量的正负值物理意义,要注意分析各段不同函数形式的图线所表征的物理过程.要弄清图象物理意义,借助有关的物理概念、公式、定理和定律作出分析判断,而对物理图象定量计算时,要搞清图象所揭示的物理规律或物理量间的函数关系,要善于挖掘图象中的隐含条件.明确有关图线所包围的面积、图象在某位置的斜率(或其绝对值)、图线在纵轴和横轴上的截距所表示的物理意义.根据图象所描绘的物理过程,运用相应的物理规律计算求解.(5)在利用图象法求解物理问题(可称之为“用图题”)时,要根据题意把抽象的物理过程用图线表示出来,将物理间的代数关系转化为几何关系、运用图象直观、简明的特点,分析解决物理问题.●歼灭难点训练 1.(★★★)一列横波在t=0时刻的波形如图25-4中实线所示,在t=1 s时刻的波形如图中虚线所示.由此可以判定此波的
A.波长一定是4 cm B.周期一定是4 s
C.振幅一定是2 cm D.传播速度一定是1 cm/s 2.(★★★★)如图25-5所示,竖直放置的螺线管与导线abcd构成回路,导线所围区域内有一垂直纸面向里的匀强磁场,螺线管下方水平桌面上有一导体圆环,导线abcd所围区域内磁场的磁感应强度按图25-6中哪一种图线随时间变化时,导体圆环将受到向上的磁场力
图25-5 图25-4
图25-6
3.(★★★★★)如图25-7所示电路中,S是闭合的,此时流过线圈L的电流为i1,流过灯泡A的电流为i2,且i1>i2,在t1时刻将S断开,那么流过灯泡的电流随时间变化的图象是图25-8中的哪一个
图25-7
图25-8
4.(★★★★)如图25-9所示,作入射光线AB的折射光线.图25-9
5.(★★★★)如图25-10,一水平飞行的子弹恰能穿过用轻质销钉销住,并置于光滑水平面上的A、B两木块,且木块B获得的动能为Ek1.若拔去销钉C,仍让这颗子弹水平射入A、B两木块,木块B获得的动能为Ek2,则
A.子弹不能穿过木块B,且Ek1>Ek2
图25-10 B.子弹不能穿过木块B,且Ek1<Ek2 C.子弹仍能穿过木块B,且Ek1>Ek2 D.子弹仍能穿过木块B,且Ek1<Ek2 6.(★★★★★)以初速度vA=40 m/s竖直上抛一个小球A,经时间Δt后又以初速度vB= 20 m/s竖直上抛另一个小球B.为了使两球在空中相遇(取g=10 m/s2),试分析Δt应满足什么条件.难点25 数形结合思想与图象法解题
[难点磁场] 1.1.6×102 m 2.BC [歼灭难点训练] 1.AC 2.CD 3.D 4.如图25′-1
图25′-1 图25′-2
5.拔去销钉前,子弹刚好穿过木块,子弹、木块运动的v-t图如图25′-2所示,三角形OCv的面积即为AB木块总长度.拔去销钉后,木块AB先一起向右加速,设经过时间t′后子弹进入木块B,子弹进入木块B后,木块B的加速度比拔去销钉前的加速度大,故木块B的运动图象如图中OA、AB所示.从图中不难看出:拔去销钉后,子弹与木块B能达到共同速度vB2,相对A和B的总路程为四边形OABv的面积,由于vB2>vB1,四边形OABv的面积小于三角形OCv的面积,故子弹不能穿过B木块,且Ek1<Ek2,应选B.6.两球在空中运动的时间分别为:
tA=2vAg2vBg=8(s)
tB==4(s)
图25′-3 根据定性画出的h-t图象(如图25′-3)可以看出:两球在空中相遇,即h-t图线交点的纵坐标不为0的条件为 : tA>Δt>tA-tB
8s>Δt>4 s
第二篇:09高考物理数形结合思想与图象法解题
3eud教育网 http://www.xiexiebang.com 2.(★★★★)一列简谐横波,在t=0时刻的波形如图25-1所示,自右向左传播,已知在t1=0.7 s时,P点出现第二次波峰(0.7 s内P点出现两次波峰),Q点的坐标是(-7,0),则以下判断中正确的是
A.质点A和质点B在t=0时刻的位移是相等的 B.在t=0时刻,质点C向上运动 C.在t2=0.9 s末,Q点第一次出现波峰 D.在t3=1.26 s出现波峰
●案例探究
[例1](★★★★)一颗速度较大的子弹,水平击穿原来静止在光滑水平面上的木块,设木块对子弹的阻力恒定,则当子弹入射速度增大时,下列说法正确的是
A.木块获得的动能变大
B.木块获得的动能变小 C.子弹穿过木块的时间变长
D.子弹穿过木块的时间变短
命题意图:考查对物理过程的综合分析能力及运用数学知识灵活处理物理问题的能力.B3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!
末,Q点第一次
图25-1 3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
级要求.错解分析:考生缺乏处理问题的灵活性,不能据子弹与木块的作用过程作出v-t图象,来作出分析、推理和判断.容易据常规的思路依牛顿第二定律和运动学公式去列式求解,使计算复杂化,且易出现错误判断.解题方法与技巧:子弹以初速v0穿透木块过程中,子弹、木块在水平方向都受恒力作用,子弹做匀减速运动,木块做匀加速运动,子弹、木块运动的图25-2 v-t图如图25-2中实线所示,图中OA、v0B分别表示子弹穿过木块过程中木块、子弹的运动图象,而图中梯形OABv0的面积为子弹相对木块的位移即木块长l.当子弹入射速度增大变为v0′时,子弹、木块的运动图象便如图25-2中虚线所示,梯形OA′B′v0′的面积仍等于子弹相对木块的位移即木块长l,故梯形OABv0与梯形OA′B′v0′的面积相等,由图可知,当子弹入射速度增加时,木块获得的动能变小,子弹穿过木块的时间变短,所以本题正确答案是B、D.[例2](★★★★)用伏安法测一节干电池的电动势和内电阻,伏安图象如图25-3所示,根据图线回答:
(1)干电池的电动势和内电阻各多大?
(2)图线上a点对应的外电路电阻是多大?电源此时内部热耗功率是多少?
(3)图线上a、b两点对应的外电路电阻之比是多大?对应的输出功率之比是多大?
(4)在此实验中,电源最大输出功率是多大?
命题意图:考查考生认识、理解并运用物理图象的能力.B级要求.错解分析:考生对该图象物理意义理解不深刻.无法据特殊点、斜率等找出E、r、R,无法结合直流电路的相关知识求解.解题方法与技巧:利用题目给予图象回答问题,首先应识图(从对应值、斜率、截面、面积、横纵坐标代表的物理量等),理解图象的物理意义及描述的物理过程:由U-I图象知E=1.5 V,斜率表内阻,外阻为图线上某点纵坐标与横坐标比值;当电源内外电阻相等时,电源输出功率最大.(1)开路时(I=0)的路端电压即电源电动势,因此E=1.5 V,内电阻r=
图25-3
E1.5= ΩI短7.5=0.2 Ω
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
也可由图线斜率的绝对值即内阻,有r=
1.51.0 Ω=0.2 Ω 2.5(2)a点对应外电阻Ra=
Ua1.0= Ω=0.4 Ω Ia2.5此时电源内部的热耗功率Pr=Ia2r=2.52×0.2=1.25 W,也可以由面积差求得Pr=IaE-IaUa=2.5×(1.5-1.0)W=1.25 W(3)电阻之比:Ra1.0/2.54== Rb0.5/5.01输出功率之比:Pa1.02.51== Pb0.55.01(4)电源最大输出功率出现在内、外电阻相等时,此时路端电压U=E/2,干路电流 I=I短/2,因而最大输出功率P出m=
1.57.5× W=2.81 W 22当然直接用P出m=E2/4r计算或由对称性找乘积IU(对应于图线上的面积)的最大值,也可以求出此值.●锦囊妙计
数形结合是一种重要的数学方法,其应用大致可分为两种情况:或借助于数的精确性来阐明形的某些属性,或借助于形的几何直观性来阐明数之间某种关系.图象法解题便是一例.由于图象在中学物理中有着广泛应用:(1)能形象地表述物理规律;(2)能直观地描述物理过程;(3)鲜明地表示物理量之间的相互关系及变化趋势.所以有关以图象及其运用为背景的命题,成为历届高考考查的热点,它要求考生能做到三会:(1)会识图:认识图象,理解图象的物理意义;(2)会做图:依据物理现象、物理过程、物理规律作出图象,且能对图象变形或转换;(3)会用图:能用图象分析实验,用图象描述复杂的物理过程,用图象法来解决物理问题.通常我们遇到的图象问题可以分为图象的选择、描绘、变换、分析和计算,以及运用图象法求解物理问题几大类:
(1)求解物理图象的选择(可称之为“选图题”)类问题可用“排除法”.即排除与题目要求相违背的图象,留下正确图象;也可用“对照法”,即按照题目要求画出正确草图,再与选项对照解决此类问题的关键就是把握图象特点、分析相关物理量的函数关系或物理过程的变化规律.(2)求解物理图象的描绘(可称之为“作图题”)问题的方法是,首先和解常规题3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
一样,仔细分析物理现象,弄清物理过程,求解有关物理量或分析其与相关物理量间的变化关系,然后正确无误地作出图象.在描绘图象时,要注意物理量的单位,坐标轴标度的适当选择及函数图象的特征等.(3)处理有关图象的变换问题,首先要识图,即读懂已知图象表示的物理规律或物理过程,然后再根据所求图象与已知图象的联系,进行图象间的变换.(4)在定性分析物理图象时,要明确图象中的横轴与纵轴所代表的物理量,要区分图象中相关物理量的正负值物理意义,要注意分析各段不同函数形式的图线所表征的物理过程.要弄清图象物理意义,借助有关的物理概念、公式、定理和定律作出分析判断,而对物理图象定量计算时,要搞清图象所揭示的物理规律或物理量间的函数关系,要善于挖掘图象中的隐含条件.明确有关图线所包围的面积、图象在某位置的斜率(或其绝对值)、图线在纵轴和横轴上的截距所表示的物理意义.根据图象所描绘的物理过程,运用相应的物理规律计算求解.(5)在利用图象法求解物理问题(可称之为“用图题”)时,要根据题意把抽象的物理过程用图线表示出来,将物理间的代数关系转化为几何关系、运用图象直观、简明的特点,分析解决物理问题.●歼灭难点训练
1.(★★★)一列横波在t=0时刻的波形如图25-4中实线所示,在t=1 s时刻的波形如图中虚线所示.由此可以判定此波的
A.波长一定是4 cm B.周期一定是4 s C.振幅一定是2 cm D.传播速度一定是1 cm/s 2.(★★★★)如图25-5所示,竖直放置的螺线管与导线abcd构成回路,导线所围区域内有一垂直纸面向里的匀强磁场,螺线管下方水平桌面上有一导体圆环,导线abcd所围区域内磁场的磁感应强度
图25-5 按图25-6中哪一种图线随时间变化时,导体圆环将受到向上的磁场力
图25-4
图25-6 3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
3.(★★★★★)如图25-7所示电路中,S是闭合的,此时流过线圈L的电流为i1,流过灯泡A的电流为i2,且i1>i2,在t1时刻将S断开,那么流过灯泡的电流随时间变化
图25-7 的图象是图25-8中的哪一个
图25-8
4.(★★★★)如图25-9所示,作入射光线AB的折射光线.5.(★★★★)如图25-10,一水平飞行的子弹恰能穿过用轻质销钉销住,并置于光滑水平面上的A、B两木块,且木块B获得的动能
图25-10 为Ek1.若拔去销钉C,仍让这颗子弹水平射入A、B两木块,木块B获得的动能为Ek2,则
A.子弹不能穿过木块B,且Ek1>Ek2 B.子弹不能穿过木块B,且Ek1<Ek2 C.子弹仍能穿过木块B,且Ek1>Ek2 D.子弹仍能穿过木块B,且Ek1<Ek2
6.(★★★★★)以初速度vA=40 m/s竖直上抛一个小球A,经时间Δt后又以初速度vB= 20 m/s竖直上抛另一个小球B.为了使两球在空中相遇(取g=10 m/s2),试分析Δt应满足什么条件.图25-9
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
参考答案
[难点展台] 1.1.6×102 m 2.BC [歼灭难点训练] 1.AC 2.CD 3.D 3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
4.如图25′-1
5.拔去销钉前,子弹刚好穿过木块,子弹、木块运动的v-t图如图25′-2所示,三角形OCv的面积即为AB木块总长度.拔去销钉后,木块AB先一起向右加速,设经过时间t′后子弹进入木块B,子弹进入木块B后,木块B的加速度比拔去销钉前的加速度大,故木块B的运动图象如图中OA、AB所示.从图中不难看出:拔去销钉后,子弹与木块B能达到共同速度vB2,相对A和B的总路程为四边形OABv的面积,由于vB2>vB1,四边形OABv的面积小于三角形OCv的面积,故子弹不能穿过B木块,且Ek1<Ek2,应选B.6.两球在空中运动的时间分别为: tA=
图25′-1
图25′-2 2vA=8(s)
g2vB=4(s)g图25′-3 tB=根据定性画出的h-t图象(如图25′-3)可以看出:两球在空中相遇,即h-t图线交点的纵坐标不为0的条件为 : tA>Δt>tA-tB
8s>Δt>4 s 3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!
第三篇:高考数学解题方法数形结合
高考数学解题方法(数形结合)
一、知识整合
1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式(x2)2(y1)24
3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析
k的取值范围。
例1.若关于x的方程x2kx3k0的两根都在1和3之间,求
分析:令f(x)x2kx3k,其图象与x轴交点的横坐标就是方程f(x)0 22f(3)0,的解,由yf(x)的图象可知,要使二根都在13,之间,只需f(1)0,f(b)f(k)0同时成立,解得1k0,故k(1,0)2a
例2.解不等式x2x
解:法
一、常规解法:
x0
原不等式等价于(I)x20x2x2x0或(II)
x20
解(I),得0x2;解(II),得2x0
综上可知,原不等式的解集为{x|2x0或0x2}{x|2x2}
法
二、数形结合解法:
令y1x2,y2x,则不等式x2x的解,就是使y1x2的图象
在y2x的上方的那段对应的横坐标,如下图,不等式的解集为{x|xAxxB}
而xB可由x2x,解得,xB2,xA2,故不等式的解集为{x|2x2}。
例3.已知0a1,则方程a|x||logax|的实根个数为(A.1个 B.2个
C.3个
D.1个或2个或3个)
分析:判断方程的根的个数就是判断图象ya|x|与y|logax|的交点个数,画 出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(B)。
例4.如果实数x、y满足(x2)y3,则22y的最大值为(x)
A.12B.3322C.32D.3
分析:等式(x2)y3有明显的几何意义,它表坐标平面上的一个圆,圆心为(2,0),半径r3,(如图),而yy0则表示圆上的点(x,y)与坐 xx0标原点(0,0)的连线的斜率。如此以来,该问题可转化为如下几何问题:动点A
在以(2,0)为圆心,以3为半径的圆上移动,求直线OA的斜率的最大值,由图 可见,当∠A在第一象限,且与圆相切时,OA的斜率最大,经简单计算,得最
大值为tg60°3
x2y21,求y3x的最大值与最小值
例5.已知x,y满足1625x2y21下求最值问题,常采用
分析:对于二元函数y3x在限定条件1625构造直线的截距的方法来求之。
令y3xb,则y3xb,x2y21上求一点,使过该点的直线斜率为3,原问题转化为:在椭圆162
5且在y轴上的截距最大或最小,x2y21相切时,有最大截距与最小
由图形知,当直线y3xb与椭圆1625截距。
y3xb
x2169x296bx16b24000 y216251
由0,得b±13,故y3x的最大值为13,最小值为13。x3cos(0),集合N{(x,y)|yxb}
例6.若集合M(x,y)y3sin且MN≠,则b的取值范围为。
分析:M{(x,y)|x2y29,0y1},显然,M表示以(0,0)为圆心,以3为半径的圆在x轴上方的部分,(如图),而N则表示一条直线,其斜率k=1,纵截
距为b,由图形易知,欲使MN≠,即是使直线yxb与半圆有公共点,显然b的最小逼近值为3,最大值为32,即3b32
x2y21上一点,它到其中一个焦点F1的距离为2,N为
例7.点M是椭圆2516MF1的中点,O表示原点,则|ON|=()
A.32B.2C.4D.8
分析:①设椭圆另一焦点为F2,(如图),则|MF1||MF2|2a,而a5
|MF1|2,∴|MF2|8
又注意到N、O各为MF1、F1F2的中点,∴ON是△MF1F2的中位线,∴|ON|11|MF2|×84 2
2②若联想到第二定义,可以确定点M的坐标,进而求MF1中点的坐标,最后利用两点间的距离公式求出|ON|,但这样就增加了计算量,方法较之①显得有些复杂。
例8.已知复数z满足|z22i|2,求z的模的最大值、最小值的范围。
分析:由于|z22i||z(22i)|,有明显的几何意义,它表示复数z对应的
点到复数2+2i对应的点之间的距离,因此满足|z(22i)|2的复数z对应点 Z,在以(2,2)为圆心,半径为2的圆上,(如下图),而|z|表示复数z对应的 点Z到原点O的距离,显然,当点Z、圆心C、点O三点共线时,|z|取得最值,|z|min2,|z|max32,∴|z|的取值范围为[2,32]
sinx2的值域。
cosx2sinx2得ycosx2ysinx2,解法一(代数法):则ycosx
2例9.求函数yxycosx2y2,y21sinx()2y2
sin
∴sin(x)2y2y12,而|sin(x)|1
4747y 3 ∴|2y2y21|1,解不等式得
∴函数的值域为[4747,] 33yy1sinx2 的形式类似于斜率公式y2cosx2x2x
1解法二(几何法):y
ysinx2表示过两点P0(2,2),P(cosx,sinx)的直线斜率
cosx2
由于点P在单位圆x2y21上,如图,显然,kP0AykP0B
设过P0的圆的切线方程为y2k(x2)
则有|2k2|k211,解得k4±73即kP0A4747,kP0B
33∴47474747,] y
∴函数值域为[3333例10.求函数u2t46t的最值。
分析:由于等号右端根号内t同为t的一次式,故作简单换元2t4m,无法 转化出一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元。
解:设x2t4,y6t,则uxy
且x22y216(0x4,0y22)
所给函数化为以u为参数的直线方程yxu,它与椭圆x22y216在 第一象限的部分(包括端点)有公共点,(如图)
umin22
相切于第一象限时,u取最大值
yxu22
23x4ux2u160 2x2y16
解,得u±26,取u26
∴umax26
三、总结提炼
数形结合思想是解答数学试题的的一种常用方法与技巧,特别是在解决选择、填空题是发挥着奇特功效,复习中要以熟练技能、方法为目标,加强这方面的训练,以提高解题能力和速度。
四、强化训练
见优化设计。【模拟试题】
一、选择题:
1.方程lgxsinx的实根的个数为()
A.1个 B.2个
C.3个
D.4个
2.函数ya|x|与yxa的图象恰有两个公共点,则实数a的取值范围是()
A.(1,)
B.(1,1)
D.(,1)(1,)
C.(,1][1,)
3.设命题甲:0x3,命题乙:|x1|4,则甲是乙成立的()
A.充分不必要条件
C.充要条件
B.必要不充分条件 D.不充分也不必要条件
4.适合|z1|1且argz
A.0个
4的复数z的个数为()
C.2个
D.4个 B.1个
5.若不等式xax(a0)的解集为{x|mxn},且|mn|2a,则a的值为()
A.1 B.2
C.3
D.4
6.已知复数z13i,|z2|2,则|z1z2|的最大值为()
A.10
2B.5
C.210
2D.222
7.若x(1,2)时,不等式(x1)logax恒成立,则a的取值范围为()
A.(0,1)B.(1,2)
C.(1,2]
D.[1,2]
8.定义在R上的函数yf(x)在(,2)上为增函数,且函数yf(x2)的图象的对称轴为x0,则()
A.f(1)f(3)
C.f(1)f(3)
二、填空题:
9.若复数z满足|z|2,则|z1i|的最大值为___________。
210.若f(x)xbxc对任意实数t,都有f(2t)f(2t),则f(1)、f(3)、B.f(0)f(3)D.f(2)f(3)
f(4)由小到大依次为___________。
11.若关于x的方程x24|x|5m有四个不相等的实根,则实数m的取值范围为___________。
12.函数yx22x2x26x13的最小值为___________。
13.若直线yxm与曲线y1x2有两个不同的交点,则实数m的取值范围是___________。
三、解答题:
14.若方程lg(x23xm)lg(3x)在[0,3]上有唯一解,求m的取值范围。
15.若不等式4xx2(a1)x的解集为A,且A{x|0x2},求a的取值范围。
16.设a0且a≠1,试求下述方程有解时k的取值范围。
log((xa)axak)loga222【试题答案】
一、选择题
1.C
提示:画出ysinx,ylgx在同一坐标系中的图象,即可。
2.D
提示:画出ya|x|与yxa的图象
情形1:a0a1 a1
情形2:
3.A
4.C
提示:|Z-1|=1表示以(1,0)为圆心,以1为半径的圆,显然点Z对应的复数满足条a0a1
a1件argz,另外,点O对应的复数O,因其辐角是多值,它也满足argz,故满足44条件的z有两个。
5.B
提示:画出yxayx的图象,依题意,ma,na,aaaa0或2。
6.C
提示:由|z2|2可知,z2对应的点在以(0,0)为圆心,以2为半径的圆上,而|z1z2||z2(z1)||z2(3i)|
表示复数z2与3i对应的点的距离,结合图形,易知,此距离的最大值为:
|PO|r(30)2(10)22102
7.C
提示:令y1(x1)2,y2logax,若a>1,两函数图象如下图所示,显然当x(1,2)时,从而
要使y1y2,只需使loga2(21)2,即a2,综上可知
当1a2时,不等式(x1)2logax对x(1,2)恒成立。
若0a1,两函数图象如下图所示,显然当x(1,2)时,不等式(x1)2logax恒不成立。
可见应选C
8.A
提示:f(x+2)的图象是由f(x)的图象向左平移2个单位而得到的,又知f(x+2)的图象关于直线x=0(即y轴)对称,故可推知,f(x)的图象关于直线x=2对称,由f(x)在(,2)上为增函数,可知,f(x)在(2,)上为减函数,依此易比较函数值的大小。
二、填空题:
9.22
提示:|Z|=2表示以原点为原心,以2为半径的圆,即满足|Z|=2的复数Z对应的点在圆O上运动,(如下图),而|z+1-i|=|z-(-1+i)|表示复数Z与-1+i对应的两点的距离。
由图形,易知,该距离的最大值为22。
10.f(1)f(4)f(3)
提示:由f(2t)f(2t)知,f(x)的图象关于直线x=2对称,又f(x)x2bxc为二次函数,其图象是开口向上的抛物线,由f(x)的图象,易知f(1)、f(3)、f(4)的大小。
11.m(1,5)
提示:设y1x24|x|5y2m,画出两函数图象示意图,要使方程x24|x|5m有四个不相等实根,只需使1m5
12.最小值为13
2提示:对x2x2(x1)1(x1)2(10)2,联想到两点的距离公
(x3)2(13)2表示点(x,2式,它表示点(x,1)到(1,0)的距离,x6x131)到点(3,3)的距离,于是yx22x2x26x13表示动点(x,1)到两个定点(1,0)、(3,3)的距离之和,结合图形,易得ymin13。
13.m(2,1]
提示:y=x-m表示倾角为45°,纵截距为-m的直线方程,而y1x2则表示以(0,0)为圆心,以1为半径的圆在x轴上方的部分(包括圆与x轴的交点),如下图所示,显然,欲使直线与半圆有两个不同交点,只需直线的纵截距m[1,2),即m(2,1]。
三、解答题:
x23xm0x23xm03x0
14.解:原方程等价于 0x30x3x24x3mx23xm3x
令y1x24x3,y2m,在同一坐标系内,画出它们的图象,其中注意0x3,当且仅当两函数的图象在[0,3)上有唯一公共点时,原方程有唯一解,由下图可见,当m=1,或3m0时,原方程有唯一解,因此m的取值范围为[-3,0]{1}。
注:一般地,研究方程时,需先将其作等价变形,使之简化,再利用函数图象的直观性研究方程的解的情况。
15.解:令y14xx2,y2(a1)x,其中y14xx2表示以(2,0)为圆心,以2为半径的圆在x轴的上方的部分(包括圆与x轴的交点),如下图所示,y2(a1)x表示过原点的直线系,不等式4xx2(a1)x的解即是两函数图象中半圆在直线上方的部分所对应的x值。
由于不等式解集A{x|0x2}
因此,只需要a11,∴a2
∴a的取值范围为(2,+)。
16.解:将原方程化为:loga(xak)loga
∴xakx2a2,x2a2,且xak0,x2a20
令y1xak,它表示倾角为45°的直线系,y10
令y2(a,0)的等轴双曲线在x2a2,它表示焦点在x轴上,顶点为(-a,0)x轴上方的部分,y20
∵原方程有解,∴两个函数的图象有交点,由下图,知
aka或aak0
∴k1或0k1
∴k的取值范围为(,1)(0,1)
第四篇:高考复习数形结合思想
数形结合
定义:数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面。
应用:大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。Ⅰ、再现题组:
1.设命题甲:0 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件 2.若loga2 B.0 C.a>b>1 D.b>a>1 π23.如果|x|≤4,那么函数f(x)=cosx+sinx的最小值是_____。(89年全国文)A.212112B.-2 C.-1 D.2 4.如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是____。(91年全国)A.增函数且最小值为-5 B.增函数且最大值为-5 C.减函数且最小值为-5 D.减函数且最大值为-5 y35.设全集I={(x,y)|x,y∈R},集合M={(x,y)| x2=1},N={(x,y)|y≠x+1},那么M∪N等于_____。 (90年全国)A.φ B.{(2,3)} C.(2,3) D.{(x,y)|y=x+1 θθθ6.如果θ是第二象限的角,且满足cos2-sin2=1sinθ,那么2是_____。 A.第一象限角 B.第三象限角 C.可能第一象限角,也可能第三象限角 D.第二象限角 7.已知集合E={θ|cosθ 3π3π5πππ3πA.(2,π) B.(4,4) C.(π, 2) D.(4,4) 5π8.若复数z的辐角为6,实部为-23,则z=_____。 A.-23-2i B.-23+2i C.-23+23i D.-23-23i y229.如果实数x、y满足等式(x-2)+y=3,那么x的最大值是_____。 (90年全国理)133A.B.3C.2 D.10.满足方程|z+3-3i|=3的辐角主值最小的复数z是_____。 【注】 以上各题是历年的高考客观题,都可以借助几何直观性来处理与数有关的问题,即借助数轴(①题)、图像(②、③、④、⑤题)、单位圆(⑥、⑦题)、复平面(⑧、⑩题)、方程曲线(⑨题)。Ⅱ、示范性题组: 例1.若方程lg(-x+3x-m)=lg(3-x)在x∈(0,3)内有唯一解,求实数m的取值范围。2z1例2.设|z1|=5,|z2|=2, |z1-z2|=13,求z2的值。 pp例3.直线L的方程为:x=- 2(p>0),椭圆中心D(2+2,0),焦点在x轴上,长半轴为2,短半轴为1,它的左顶点为A。问p在什么范围内取值,椭圆上有四个不同的点,它们中每一个点到点A的距离等于该点到直线L的距离? Ⅲ、巩固性题组: 1.已知5x+12y=60,则x2y2的最小值是_____。A.60 B.13 C.13 D.1 135122.已知集合P={(x,y)|y=9x2}、Q={(x,y)|y=x+b},若P∩Q≠φ,则b的取值范围是____。 A.|b|<3 B.|b|≤32 C.-3≤b≤32 D.-3 A.1 B.2 C.3 D.以上都不对 4.方程x=10sinx的实根的个数是_______。 5.若不等式m>|x-1|+|x+1|的解集是非空数集,那么实数m的取值范围是_________。6.设z=cosα+1i且|z|≤1,那么argz的取值范围是____________。 2x27.若方程x-3ax+2a=0的一个根小于1,而另一根大于1,则实数a的取值范围是______。 8.sin20°+cos80°+3sin20°·cos80°=____________。22229.解不等式: x22x>b-x x2xa≤0的解集,试确定a、b10.设A={x|<1x<3},又设B是关于x的不等式组2x2bx5≤02的取值范围,使得AB。(90年高考副题) 11.定义域内不等式2x〉x+a恒成立,求实数a的取值范围。 12.已知函数y=(x1)21+(x5)29,求函数的最小值及此时x的值。13.已知z∈C,且|z|=1,求|(z+1)(z-i)|的最大值。 14.若方程lg(kx)=2lg(x+1)只有一个实数解,求常数k的取值范围。 高考冲刺:数形结合 编稿:林景飞 审稿:张扬 责编:辛文升 热点分析 高考动向 数形结合应用广泛,不仅在解答选择题、填空题中显示出它的优越性,而且在解决一些抽象数学问题中常起到事半功倍的效果。高考中利用数形结合的思想在解决选、填题中十分方便,而在解答题中书写应以代数推理论证为主,几何方法可作为思考的方法。数形结合的重点是研究“以形助数”,但“以数解形”在近年高考试题中也得到了加强,其发展趋势不容忽视。历年的高考都有关于数形结合思想方法的考查,且占比例较大。 知识升华 数形结合是通过“以形助数”(将所研究的代数问题转化为研究其对应的几何图形)或“以数助形”(借助数的精确性来阐明形的某种属性),把抽象的数学语言与直观的图形结合起来思考,也就是将抽象思维与形象思维有机地结合起来,是解决问题的一种数学思想方法。它能使抽象问题具体化,复杂问题简单化,在数学解题中具有极为独特的策略指导与调节作用。 具体地说,数形结合的基本思路是:根据数的结构特征,构造出与之相应的几何图形,并利用图形的特性和规律,解决数的问题;或将图形信息全部转化成代数信息,使解决形的问题转化为数量关系的讨论。 选择题,填空题等客观性题型,由于不要求解答过程,就某些题目而言,这给学生创造了灵活运用数形结合思想,寻找快速思路的空间。但在解答题中,运用数形结合思想时,要注意辅之以严格的逻辑推理,“形”上的直观是不够严密的。1.高考试题对数形结合的考查主要涉及的几个方面: (1)集合问题中Venn图(韦恩图)的运用; (2)数轴及直角坐标系的广泛应用; (3)函数图象的应用; (4)数学概念及数学表达式几何意义的应用; (5)解析几何、立体几何中的数形结合。 2.运用数形结合思想分析解决问题时,要遵循三个原则: (1)等价性原则。要注意由于图象不能精确刻画数量关系所带来的负面效应; (2)双方性原则。既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分 析容易出错; (3)简单性原则。不要为了“数形结合”而数形结合,具体运用时,一要考虑是否可行和是否有利; 二要选择好突破口,恰当设参、用参、建立关系,做好转化;三要挖掘隐含条件,准确界定参变 量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线为佳。 3.进行数形结合的信息转换,主要有三个途径: (1)建立坐标系,引入参变数,化静为动,以动求解,如解析几何; (2)构造成转化为熟悉的函数模型,利用函数图象求解; (3)构造成转化为熟悉的几何模型,利用图形特征求解。4.常见的“以形助数”的方法有: (1)借助于数轴、文氏图,树状图,单位圆; (2)借助于函数图象、区域(如线性规划)、向量本身的几何背景; (3)借助于方程的曲线,由方程代数式,联想其几何背景,并用几何知识解决问题,如点,直线,斜 率,距离,圆及其他曲线,直线和曲线的位置关系等,对解决代数问题都有重要作用,应充分予 以重视。 5.常见的把数作为手段的数形结合: 主要体现在解析几何中,历年高考的解答题都有这方面的考查.经典例题透析 类型一:利用数形结合思想解决函数问题 1.(2010全国Ⅰ·理)已知函数a+2b的取值范围是 A. 解析:画出 由题设有,B.的示意图.,若,且,则 C. D. ∴,令,则 ∵ ∴,∴ 在,.上是增函数.∴ 举一反三: 【变式1】已知函数 .选C.在0≤x≤1时有最大值2,求a的值。 解析:∵ ∴抛物线,的开口向下,对称轴是,如图所示: (1) (2) (3) (1)当a<0时,如图(1)所示,当x=0时,y有最大值,即 ∴1―a=2。即a=―1,适合a<0。 (2)当0≤a≤1时,如图(2)所示,当x=a时,y有最大值,即 。 ∴a―a+1=2,解得 2。 ∵0≤a≤1,∴不合题意。 (3)当a>1时,如图(3)所示。 当x=1时,y有最大值,即 综合(1)(2)(3)可知,a的值是―1或2 【变式2】已知函数 (Ⅰ)写出 (Ⅱ)设的单调区间;,求 在[0,a]上的最大值。 。∴a=2。 解析: 如图: (1)的单调增区间: ,;单调减区间:(1,2) 时。 (2)当a≤1时,当 当 【变式3】已知 () (1)若,在上的最大值为,最小值为,求证:; (2)当]时,都 ,时,对于给定的负数,有一个最大的正数,使得x∈[0,有|f(x)|≤5,问a为何值时,M(a)最大?并求出这个最大值。 解析: (1)若a=0,则c=0,∴f(x)=2bx 当-2≤x≤2时,f(x)的最大值与最小值一定互为相反数,与题意不符合,∴a≠0; 若a≠0,假设,∴区间[-2,2]在对称轴的左外侧或右外侧,∴f(x)在[-2,2]上是单调函数,(这是不可能的) (2)当,时,∵,所以,(图1) (图2) (1)当 所以 即是方程,时(如图1),则的较小根,即 (2)当 所以 即是方程,时(如图2),则的较大根,即 (当且仅当 时,等号成立),由于,因此当且仅当时,取最大值 类型二:利用数形结合思想解决方程中的参数问题 2.若关于x的方程有两个不同的实数根,求实数m的取值范围。 思路点拨:将方程的左右两边分别看作两个函数,画出函数的图象,借助图象间的关系后求解,可简化运算。 解析:画出 和的图象,当直线过点,即时,两图象有两个交点。 又由当曲线 与曲线 相切时,二者只有一个交点,设切点 又直线,则过切点,即,得,解得切点,∴当时,两函数图象有两个交点,即方程有两个不等实根。 误区警示:作图时,图形的相对位置关系不准确,易造成结果错误。 总结升华: 1.解决这类问题时要准确画出函数图象,注意函数的定义域。 2.用图象法讨论方程(特别是含参数的方程)解的个数是一种行之有效的方法,值得注意的是首先把 方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两 个函数的图象,由图求解。 3.在运用数形结合思想分析问题和解决问题时,需做到以下四点: ①要准确理解一些概念和运算的几何意义以及曲线的代数特征; ②要恰当设参,合理用参,建立关系,做好转化; ③要正确确定参数的取值范围,以防重复和遗漏; ④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,便于问题求解.举一反三: 【变式1】若关于x的方程在(-1,1)内有1个实根,则k的取值范围是。 解析:把方程左、右两侧看作两个函数,利用函数图象公共点的个数来确定方程根的个数。 设(x∈-1,1) 如图:当内有1个实根。 或时,关于x的方程在(-1,1) 【变式2】若0<θ<2π,且方程取值范围及这两个实根的和。 有两个不同的实数根,求实数m的解析:将原方程 与直线 转化为三角函数的图象 有两个不同的交点时,求a的范围及α+β的值。 设,在同一坐标中作出这两个函数的图象 由图可知,当 或 时,y1与y2的图象有两个不同交点,即对应方程有两个不同的实数根,若,设原方程的一个根为,则另一个根为.∴.若,设原方程的一个根为,则另一个根为,∴.所以这两个实根的和为或.且由对称性可知,这两个实根的和为或。 类型三:依据式子的结构,赋予式子恰当的几何意义,数形结合解答 3.(北京2010·理)如图放置的边长为1的正方形PABC沿x轴滚动,设顶点,则函数的最小正周期为________; 在其两个相邻的轨迹方程是零点间的图象与x轴所围成的区域的面积为________.解析:为便于观察,不妨先将正方形PABC向负方向滚动,使P点落在x轴上的点,此点即是函数的一个零点(图1).(一)以A为中心,将正方形沿x轴正方向滚动90°,此时顶点B位于x轴上,顶点P画出了A为圆心,1为半径的个圆周(图2); (二)继续以B为中心,将正方形沿x轴正方向滚动90°,此时顶点C位于x轴上,顶点P画出B为圆心,为半径的个圆周(图3); (三)继续以C为中心,将正方形沿x轴正方向滚动90°,此时,顶点P位于x轴上,为点,它画出了C为圆心,1为半径的个圆周(图4).为又一个零点.∴ 函数的周期为4.相邻两个零点间的图形与x轴围成的图形由两个半径为1的圆、半径为的圆和两个直角边长为1的直角三角形,其面积是 .举一反三: 2【变式1】已知圆C:(x+2)+y=1,P(x,y)为圆C上任一点。 (1)求的最大、最小值; (2)求的最大、最小值; (3)求x―2y的最大、最小值。 解析:联想所求代数式的几何意义,再画出草图,结合图象求解。 (1) 表示点(x,y)与原点的距离,由题意知P(x,y)在圆C上,又C(―2,0),半径r=1。 ∴|OC|=2。的最大值为2+r=2+1=3,的最小值为2―r=2―1=1。 (2)表示点(x,y)与定点(1,2)两点连线的斜率,设Q(1,2),过Q点作圆C的两条切线,如图: 将整理得kx―y+2―k=0。 ∴,解得,所以的最大值为,最小值为。 (3)令x―2y=u,则可视为一组平行线系,当直线与圆C有公共点时,可求得u的范围,最值必在直线与圆C相切时取得。这时 ∴ 。,最小值为 。,∴x―2y的最大值为 【变式2】求函数 解析:的最小值。 则y看作点P(x,0)到点A(1,1)与B(3,2)距离之和 如图,点A(1,1)关于x轴的对称点A'(1,-1),则 即为P到A,B距离之和的最小值,∴ 【变式3】若方程x+(1+a)x+1+a+b=0的两根分别为椭圆、双曲线的离心率,则值范围是() 2的取 A. B.或 C. D.或 解析:如图 由题知方程的根,一个在(0,1)之间,一个在(1,2)之间,则,即 下面利用线性规划的知识,则斜率 可看作可行域内的点与原点O(0,0)连线的 则,选C。第五篇:高考数学专题复习:数形结合思想