第一篇:基于大数据的精准教学模式探究 2017
基于大数据的精准教学模式探究
2017-07-12 :
摘要:精准教学自诞生以来,受限于技术条件,无论是理论研究还是实际应用都不容乐观。信息技术的发展特别是大数据的兴起,为精准教学的发展提供了机遇。在此背景下,文章梳理了精准教学的理论方法、研究现状及其应用困境,分析了大数据对精准教学的影响。随后,文章从教学目标确立、教学过程框架设计、教学评价与预测等三个维度,构建了基于大数据的精准教学模式。最后,文章针对教学主体关系、数据伦理、安全保障等问题,对基于大数据的精准教学进行了反思。文章的研究,推动了大数据技术在精准教学领域的应用,有助于激发精准教学的活力,进一步提升精准教学的有效性。关键词:大数据;精准教学;教学目标;教学过程;教学评价与预测 一 精准教学的理论方法 精准教学(Precision Teaching)是Lindsley[1]于20世纪60年代根据Skinne的行为学习理论提出的一种教学方法。起初,精准教学面向小学教育,旨在通过设计测量过程来追踪小学生的学习表现并提供数据决策支持,以便“将科学放在学生和教师的手中”[2][3];后来,精准教学发展为用于评估任意给定的教学方法有效性的框架[4]。历经50余年的发展,精准教学现已形成了自身的一套理论方法。精准教学的理论依据——Skinne的行为学习理论 Skinne[5]是美国新行为主义心理学的创始人之一,他认为人类行为主要是由操作性反射构成的操作性行为,操作性行为是作用于环境而产生结果的行为。人类的一切行为几乎都是操作性强化的结果,人们有可能通过强化作用的影响去改变别人的反应。在学习情境中,操作性行为更有代表性,因此操作性反射在学习过程中尤为重要。1954年,Skinne将这一理论引入教学,认为教学就是提出学生应达到的目标并对学习过程进行控制,辅以训练、反馈和纠正性补救等措施,形成所要求的行为即达到目标并立即给予强化;对于那些偏离目标或未达到目标的行为,则在不强化的前提下进行纠正[6]。精准教学的衡量指标——流畅度(Fluency)精准教学中的最大“精准”在于教学评价,而衡量教学是否达到目标、学生是否真正掌握知识或技能,关键在于检测学生学习的行为过程及其反应。基于此,精准教学引入流畅度指标,用于衡量学生的学习质量。流畅度涵盖了“准确度”和“速度”两个方面,也就是说,学生的学习质量既包括对知识或技能的准确掌握,也包括运用知识或技能的速度。流畅度具有五大属性:持久性(Maintenance)、耐久性(Endurance)、稳定性(Stability)、应用性(Application)和生成性(Generativity)[7]。其中,持久性是指在无额外练习的情况下,学生根据需求执行任务的能力;耐久性是指为了满足真实需求,学生在长时间内持续执行任务的能力;稳定性是指在有干扰的情况下,学生能够继续实施一项技能的能力;应用性是指学生容易将知识或技能应用于新情境的能力;生成性是指在没有明显的指导下,学生出现复杂行为技能的能力[8]。精准教学的程序方法——练习与测量 精准教学的程序方法要求学生日常练习并精准测量其学习表现,即每天花费一定时间(1分钟或几分钟)进行练习与测量。练习是测量的基础,且这一过程需要长期开展并持续记录。一般来说,测量得到的频率数据将由教师记录于标准变速图表中,该图表可以精确预测学生的知识或技能何时能够达到流畅度的要求,以判定当前学生的学习表现随时间的推进是否进步明显、是否需要修改干预措施。在教学过程中,教师可以根据学生日常的练习、测量与记录情况,并通过频繁监测学生的学习行为状态采集相应的数据,以获得学生的发展情况[9]。
二 精准教学的研究现状及其应用困境 1 精准教学的研究现状 国外的精准教学研究尽管已历经半个多世纪,但进展缓慢,主要集中于通过教学实验来评估精准教学的效果。如Downer[10]、Griffin等[11]的研究表明,精准教学可以显著提高学生的阅读能力;Gallagher[12]、Str?mgren等[13]在数学教学中进行了精准教学实验研究,结果表明精准教学对于数学学习困难的学生有显著作用。
我国的精准教学研究则刚刚起步。在中国知网以“精准教学”为篇名、关键词进行检索,检索日期截至2016年12月31日,所得文献仅为13篇,且论文发表时间基本都在2016年之后。具体来说,祝智庭等[14]从信息化教学改革的角度,结合智慧学习分析了精准教学的基本理论与模式设计,提出了基于递归思想的精准目标确定方法;梁美凤[15]从理论引介的角度,介绍了精准教学的基本概念、操作流程及其应用价值;张灵芝[16]提出了翻转课堂下的精准教学模式及其实践策略;郑怡文等[17]借助数字媒体技术,通过提取人脸表情和体态特征对学生进行精准关注,这实际上是精准教学衍生出来的技术方案。由此不难发现,当前我国的精准教学研究存在两大问题:一是研究总量偏少,研究者关注、跟进精准教学的研究成果不多,尚没有出现关于精准教学的国家级教育科研课题;二是研究范围狭小,研究者开展的精准教学研究主要面向小学教育中的阅读、数学等基础课程,而对于高等教育、职业教育课程缺乏精准教学研究。因此,吸引更多的研究者对精准教学进行多元视角研究,对于我国教育教学改革具有重要意义。精准教学的应用困境 精准教学虽不失为一种有效的教学方法,但在传统教学环境下其应用并不乐观,原因如下:
①精准教学忽略了学习行为过程与个性化发展。精准教学是通过测量获得学习行为结果,进而依据结果进行强化练习,以提升学生的学习质量,是一种典型的结果驱动型教学。这种教学方式缺乏对学习行为过程的关注,忽略了学生在这一过程中表现出来的不同个性。
②精准教学缺乏技术支撑。精准教学在操作上以测量、记录学生的学习表现为基础,以分析频率数据为基本技术。而在信息技术普及以前,精准教学的测量、记录都采取以笔和纸为工具的手工形式进行,故数据记录采集、分析以及图形化、可视化的工作效率不高。
③精准教学难以适应高校人才培养的需求。高校课堂是推进教学方法创新与实践的重要阵地,其课程种类繁多,教学主要依赖于系统的人才培养方案与课程体系;教学目标不再全是知识点的掌握,而是强调思维方法的习得。特别是一些专业课程,由于带有理论探究与应用创新的性质,很难有效测量、记录学生的学习表现,因此限制了精准教学在高校的应用与推广。
三 大数据对精准教学的影响 大数据的兴起,将数据价值推向了新的高度。大数据正在改变人类的思维方式,并以前所未有的速度引发了科技、教育、经济、军事等各个领域的深刻变革。在大数据激发的教育变革中,以测量、记录数据为基础的精准教学必将迎来新的发展机遇。大数据使得精准教学测量数据更为精准可行 教学管理系统、自主学习系统、慕课、微课以及学习社交平台等的广泛应用,促进了教育数据的海量增长,并预示着教育大数据时代的来临。教育大数据使得学习行为、学习状态、学习结果等各类教育信息成为可捕捉、可量化、可传递的数字存在[18],平板电脑、智能手机、各种传感器、可穿戴式设备、射频识别(Radio Frequency Identification,RFID)标签等皆可成为数据自动采集器并被应用于教学的各个环节,使智慧校园、智慧课堂即将成为现实,这使得精准教学测量数据更为精准可行:一方面,大数据及其依赖的各类智能系统既可以实现学习表现自动化测量、记录及结果可视化呈现,也可以提高数据采样频率,进而提升精准教学的流畅度;另一方面,大数据的海量数据处理能力,可以让精准教学摆脱规模的束缚,实现从简单少量的小学课程拓展到所有不同类型的课程、从面向班级的实验教学拓展到面向全校的普及教学。大数据使得精准教学能够兼顾学生的个性化发展 在大数据环境下,学生的学习行为过程考察和个性化发展均成为可能。这是因为,学生在学习过程中的各类行为状态都可以转化为相应的数据记录,成为学习表现的分析要素。换句话说,在传统教学环境下,精准教学过度强调学习行为结果的分析,并根据结果分析来干预学习行为;而在大数据环境下,精准学习不再完全依赖于结果分析,还要考量学习行为的过程等其它要素——通过采集学生在学习行为过程中产生的各类状态信息,形成反映学习情况的数据源,随后利用各种数学建模方法和大数据处理技术对数据源进行测量、分析与比较,并根据此结果对学生的学习行为及其学习表现进行评估和干预,可以预测学生未来的学习表现趋势,也可以为个别学生量身定制更为有效的干预方法和改进措施,以保障学生的个性化发展。大数据使得精准教学环境更为开放高效 大数据的多样性、异构性决定了其不隶属于某一个独立的系统组织——在教育领域,大数据是跨学科专业、跨平台、跨组织的开放跨界资源,它是各类服务于教育教学工作的信息系统集成互动的产物;学校、企业、教师、学生乃至家长和社会公众,都可成为教育大数据的生产者和应用者。在此背景下,精准教学的主体不再限于教师和学生,教师也不再是精准教学的唯一主导者,故以学生为主体、多元参与的精准教学成为可能——学生为自己量身定做教学方案、测量数据,家长快速、全面地掌握学生的学习表现数据,教育管理者根据相关数据更好地组织教育资源、制定教育改革的方向和措施,从而使得精准教学无缝嵌入整个教育教学体系之中。此外,在传统教学环境下,精准教学从数据测量、记录到结果分析需要一定的时间,特别是当数据量大的时候,时间消耗很大;而大数据的实时性,使得精准教学各类数据从生成到结果分析可以瞬间完成,故大大节约了时间成本。
四 基于大数据的精准教学模式构建 在传统教学环境下,教师更倾向于套用某一种成熟的教学模式,而精准教学往往被视为一种教学评估策略或者某一门课程的教学方法而非教学模式,故精准教学在应用和推广时首先便遭遇了教师这种思维理念上的阻碍。大数据突破了传统教学环境的诸多制约,有利于推动教师在思维理念上接受并认可精准教学,故利用大数据构建可供教师借鉴的精准教学模式,对推动精准教学的发展、促进精准教学的应用具有重要意义。为此,本研究从教学目标确立、教学过程框架设计、教学评价与预测三个维度,构建了基于大数据的精准教学模式,如图1所示。
图1 基于大数据的精准教学模式精准化的教学目标确立 明确教学目标是实施教学的逻辑起点,也是检验教学成败的重要依据。据此,精准教学的首要任务便是确立精准化的教学目标。在传统教学环境下,教学目标可以是模糊的,如在计算机基础课程中,某一节课程的教学目标可以是“熟练掌握十进制、二进制的换算”,其中的“熟练掌握”便是一个模糊的程度词。但在精准教学中,必须设计精准化的教学目标,即对学生掌握的知识或技能程度必须有一个精准的解释和描述——解释的基本思想是问题的分解与细化,描述的方式即量化。也就是说,在精准教学中,每条教学目标应转化为对应的问题,每个问题则应分解、细化为可以量化描述的小问题。如“熟练掌握十进制、二进制的换算”可以转化为“3分钟之内完成1000以内的十进制、二进制互换算题5道,正确率100%”——这里的“熟练掌握”经分解、细化、量化后,既包括对知识或技能的准确掌握,也包括运用知识或技能的速度,故与精准教学的“流畅度”衡量指标完全契合。程序化的教学过程框架设计 精准教学起源于Skinne的程序教学,故程序化是精准教学的核心要素。设计程序化的教学过程框架,是保障精准教学有效实施的关键。本研究设计的程序化教学过程框架,是指基于大数据实施精准教学的流程与规则,具体包括:
(1)建立大数据教学资源库,并实施个性化资源推荐 程序化教学的本质是一个输入输出系统,即输入教学资源、输出学生的学习结果。在传统教学环境下,由于教学资源有限、信息技术匮乏,输入输出系统以整个教学班级为基本颗粒,无法保障学生的个性化发展。针对此问题,本研究提出建立大数据教育资源库,以管理海量的数字化教学资源;同时,将输入输出系统的基本颗粒由班级细化到具体的每一位学生,利用智能推荐技术,根据学生的学习特点配置不同的优质教学资源,实施个性化教学。
(2)优化传统教学过程,融入精准练习、测量与记录 本研究充分利用大数据技术的优势,优化传统教学过程,并在此基础上,融入精准练习、测量与记录,进行精准教学,从而为下一步的教学决策和学习干预提供支持。具体来说,本研究在操作层面进行了两类尝试:①基于翻转课堂的精准辅助教学,即以微课为内容、以微信公众号为平台,进行精准教学——首先,学生实名关注微信公众号;然后,学生点击微信公众号平台上的微课资源,并进行实时互动、练习与答题;最后,后台系统自动记录学生的学习行为,形成每个学生的学习轨迹与分析结果。②基于项目导向任务驱动的精准实训教学,即以计算机基础课程练习测评系统为平台,在传统的项目导向任务驱动教学框架内,进行精准教学——首先,学生登录系统进行实训操练,每完成一个任务即可提交,否则无法进入下一个任务阶段;待整个项目完成后,提交至系统评分;最后,系统实时精准地记录学生登录并完成每一道实训任务的时间、失分点(错误)和最终分数,形成学生的学习轨迹与错误问题域。
(3)实施精准干预 精准干预是精准教学的精髓之所在。在大数据环境下,无论是微信公众号还是计算机基础课程练习测评系统,师生之间都可以实现跨越时空的沟通,且沟通记录可以追溯查询。根据测量、记录呈现的学生学习行为,教师能够判断出学生能否顺利达成教学目标——若能达成,说明无问题;若不能达成,说明有问题,需要干预。具体来说,本研究在操作层面按照特殊问题和普遍问题分别进行了针对性的干预:针对个别学生的特殊问题,通过即时通讯工具,进行实时点对点的干预纠正;针对反映比较多的普遍问题,则通过教学博客、微信公众号、朋友圈,予以统一干预纠正。干预是一个反复的工作,而练习、测量与记录同干预一起,构成了一个循环迭代的过程,这个循环迭代直至全部学生达到了教学目标所要求掌握的知识或技能才会终止。精准化的教学评价与预测 在传统教学环境下,教学评价或为模糊的经验判断,如通过“优”、“良”、“中”、“及格”、“差”等程度词来评价学生的学习表现;或为简单的分数判断,如通过期末考试成绩、期中考试成绩、总分、平均分等来评价学生的学习结果。而在大数据环境下,传感器技术、人脸识别技术、学习分析技术等众多先进技术的融合应用,使得精准教学评价从伴随教学行为的开始到结束,并能够对尚未发生的未来进行精准预测。如郑怡文等[19]提出了一种课堂大数据采集技术,该技术集成了学生坐姿测量系统、眼部识别系统和噪音识别系统,通过获取学生在课堂的一些生存状态大数据,可以比较准确地解读、分析进而判断出学生的学习情况(如到课情况、思想集中情况、课堂活跃情况、身体疲倦情况等);该技术具有较高的实时性,使对每个学生实施精准有效的关注成为可能。由此可见,基于大数据的精准教学评价是一种全员、全过程、全方位的实时评价。
在基于大数据的精准教学模式中,教学评价主要依赖于技术手段(包括大数据采集、教育数据挖掘、学习分析和数据可视化技术),通过各类智能教学系统自动监控、自动分析学生的学习情况,并实时反馈给所需要的人;教师、学生、家长等可以根据自身的需求,查询并生成可视化的评价报告。预测则指综合分析每个学生在各个阶段的学习表现数据和其它系统数据(包括各个教育系统、评估系统、专家系统)后,形成数据决策支持系统,并对学生在未来一段时间的学习表现进行预测,进而根据预测结果提出相关的改进建议或学习对策。
五 基于大数据的精准教学反思 1 大数据下精准教学的主体关系变化 在传统教学环境下,精准教学的实施基本是教师主导、学生参与的二元封闭系统。而在大数据环境下,教师的主导作用明显弱化,基于信息技术的先进教学平台及其产生的数据成为精准教学的重要依托;学校、企业、教师、学生乃至家长和社会公众,他们对数据的获取在理论上是对等的。因此,精准教学的实施必须打破传统教学环境下教师主导、学生从属的关系,而建立以数据为纽带,以学生为中心,有教师辅导、家长参与、社会关注的新型开放的主体关系。基于大数据的精准教学中的数据伦理问题 精准教学对学生学习行为数据的测量与记录,其本质是学习行为的数据化。尽管这些数据对于促进学生的学习有很大帮助,但不可忽视的是,数据本身并无判断能力,且数据的价值具有多元化的特点——在精准教学过程中产生的数据,其主要价值是服务于监测、评估学生的学习表现;但是,这些数据同样也可以解读出其它的信息,如学生的生理、心理特征及其可能存在的缺陷等。显然,数据的预测结果一方面有助于精准教学干预纠偏,另一方面也可能会给学生带来消极影响。如有数据显示某一学生在阅读方面存在重大障碍,这一结果就会打击这个学生的自信,从而对这个学生的学习干预乃至未来发展起反作用。怎样确保这些附带各类个性特征的数据被正确使用而避免陷入伦理困境,是当前大数据精准教学需要考虑的一个难题。基于大数据的精准教学中的安全保障问题 精准教学将每一个学生的学习情况予以精准记录,而这些精准记录的数据涉及诸多隐私问题。在当前开放互联的大数据环境下,银行、医院、电商平台等遭受黑客攻击、用户数据泄露的事件时有发生。精准教学理论来源于行为主义心理学,其测量记录的数据在某种程度上反映了学
第二篇:大数据提升政府精准扶贫治理能力探究
大数据提升政府精准扶贫治理能力探究
摘 要:大数据是优化和提升政府扶贫治理能力的重要手段,大数据时代的来临,为政府精准扶贫治理带来了三大机遇和三大挑战。从深入村户、摸底把脉、精准识别,科学决策、因人而异、精准扶贫,定位管理、因地制宜、特殊扶贫,政府主导、各界参与、立体扶贫等角度,提出大数据提升政府精准扶贫治理能力的四项举措,以期促进我国早日全面建成小康社会。
关键词:大数据;政府治理;精准扶贫
中图分类号:F126 文献标志码:A 文章编号:1673-291X(2016)24-0008-02
大数据的应用变革了政府扶贫工作的思维模式和管理方式,大数据已成为提升政府扶贫治理能力的新手段。精准扶贫是中央高度重视的一项扶贫开发战略。挖掘大数据价值,通过大数据分析扶贫主体的思想与行为特征,按照扶贫对象的个性化需求开展扶贫工作,真正做到政府扶贫的科学化、信息化、精准化。
一、大数据对政府精准扶贫治理带来的机遇与挑战
(一)大数据对政府精准扶贫治理带来的三大机遇
一是大数据资源支持精准扶贫。政府扶贫过程中自身拥有的扶贫区域及扶贫人数等方面的信息、扶贫部门扶贫的效果监测信息、新闻等媒体平台报道的贫困与反贫困信息等,为精准扶贫提供了原始数据。
二是技术、人才的保障等为大数据精准扶贫奠定了基础。伴随着大数据的来临,社会各界都开始关注大数据的应用,大数据思维与关联分析及定量预测技术、大数据基础设施及人才建设逐步得到重视。
三是大数据加强了政府与公众的联结。大数据时代,通过公众的广泛参与,加强了政府与公众之间的阳光互动,政府扶贫举措更加亲民、便民,对促进简政放权、提高政府扶贫治理服务水平具有重要意义。
(二)大数据对政府精准扶贫治理带来的三大挑战
一是海量的贫困与扶贫数据的有效性和可信度值得商榷。大量的数据资料虽宝贵,但下级扶贫办碍于政绩考核压力难免会编造贫困和扶贫信息,造成信息失真。这必然会对数据的来源是否可信存有疑惑,对能否应用到现实问题的解决中增加了识别困难。
二是现有的数据提取与分析技术难以保证政府扶贫决策的科学性。大数据的应用还未得到政府部门的高度重视,即使有所重视,但目前所掌握的相关技术和人才无法保障大数据在扶贫等领域的广泛应用。
三是惯性的主观思维、先验性假定思维与大数据时代的客观思维、基于数据关联预测定量分析思维相矛盾。大数据时代的来临必然重塑政府领导力,引起政府扶贫理念、工作组织、扶贫方式等多方面变革。领导者也要了解大数据技术及应用,从保守封闭向多元开放转变,从控制命令向合作协商转变,从“领导者”变成“服务者”(根据清华大学公共管理学院孟庆国教授在重庆的讲座“大数据时代的治理创新与领导力”资料整理而来),从主观臆断的“路径依赖”向客观分析决策转变。
二、大数据提升政府精准扶贫治理能力的四项举措
(一)深入村户,摸底把脉,精准识别
一是走村入户,深入调查,取得数据资源。精准识别扶贫对象是精准扶贫的首要任务。培训和组织各级干部深入到村组,深入到贫困户家中进行入户调查,不漏一户,按照“属地原则”分区域分块完成自己的调查工作,收集扶贫对象的相关信息,建立数据台账并细化。将各地区贫困现状、贫困致因、扶贫对象摸清摸透,做到“心中有数”“心中有底”。同时,建立亲属回避制度,避免“优亲厚友”现象,做到“真扶贫、扶真贫”。
二是审查信息,登记入机,打造数据平台。成立专门的小组对收集到的信息资源进行审核和完善,包括每一户贫困家庭户主姓名、家庭人数及情况、致贫原因、扶贫计划及项目、帮扶干部及企业或个人、家庭收入与支出详细情况,建立精准扶贫大数据平台。定期(如半年)进行反馈调查,实现数据资源的动态化管理,对新出现的扶贫对象及时纳入给予帮扶,高度关注返贫群体[1],做到“贫困有号、脱贫销号、返贫挂号”。
(二)科学决策,因人而异,精准扶贫
一是大数据助力教育扶贫。大数据平台整合分析出因学致贫家庭,为贫困家庭及适龄学生在学校开学之际,设立“建档立卡户信息登记处”,与之前入户调查采集信息进行比对,直接帮助贫困家庭子女入学办理助学贷款[2]。
二是大数据助力病残致贫型家庭扶贫。大数据平台整合分析出病残致贫型家庭,合理配置各地区医疗经费、医疗基础设施建设、医疗卫生政策。除了政府送去医疗基金外,大数据的全国联网还可以帮助医疗资源的调配,发动社会公益力量,让那些没技术医治、没钱医治的贫困群众有办法医治、有条件医治。鼓励社会捐赠医疗器械和药品支持,帮助乡镇计划生育服务站建设和乡镇村级卫生室建设,促进医院改造升级和标准化建设。
(三)定位管理,因地制宜,特殊扶贫
一是大数据助力产业扶贫。通过当地资源的调查,以产业发展为抓手,因地制宜、突出优势和特色,宜农则农,宜工则工,宜搞旅游则搞旅游。积极发挥农村基层党组织和村官的带头作用,引导返乡新生代农民工、大学生群体,利用互联网技术,创业发展农村电商。做大做强农村电商服务中心、便民快递网点“两大平台”[3]。一方面,帮助农村居民网上购物,包裹配送;另一方面,将当地农副产品、工业产品打造成品牌,网上销售,同时网上推介当地农家乐、乡村旅游业发展。
二是大数据助力移民搬迁扶贫。通过入户调查归类,着力将生态涵养区、生态保护区、生态脆弱区、地灾多发区群众和农村贫困户、危旧房户等作为搬迁重点,引导高山居民全部下山搬迁到高山生态扶贫搬迁集中居住区,还原高山生态。搬迁地靠近城镇鼓励经商,靠近园区鼓励务工,靠近景区鼓励发展乡村旅游,靠近集镇鼓励发展手工业,在农村鼓励发展现代生态农业。
三是大数据助力城镇扶贫。以民政局、房管局、救助所、信访办、居委会为调研切入点,以申请为前提,找到需要帮扶的群体,主要定位为:老旧散小区、移民转户小区、廉租房、经济适用房的“老弱病残”和其他突发事故导致的支出型贫困群体,也包括下岗困难职工和已经在城镇落户但生活中遇到困难的农民工群体[4]。并对其家庭收入做核对,对其家庭的支出进行调查。以救济扶贫向帮扶就业扶贫转变,一方面,完善基本的社会保障体系,以救助扶贫兜底;另一方面,以社区为单位,以社会组织的造血、公益为依托帮扶脱困。
(四)政府主导,各界参与,立体扶贫
一是建立结对帮扶机制。由县领导联系民营企业家共同结对一个乡镇,由发改办、民政办、财政办等部门帮扶一个村,每一名干部帮扶一个贫困户。在地方政府土地、税收优惠条件下引导企业家带技术、带脱贫项目进村入户,为贫困居民提供就业岗位、带领贫困户发展致富。
二是建立对口帮扶机制。主城与贫困区县产业结对,帮助区县招商引资和项目引进,帮助培育主导产业,搭建市场平台,帮助农民就业,助推农民增收;探索异地建院机制,援建贫困地区工业园区标准厂房、宿舍、给排水、工业污染处理等基础设施建设。
三是建立智力帮扶机制。建立大数据扶贫专家咨询委员会,为大数据应用到精准扶贫治理工作中提供决策咨询。支持建设劳动就业服务站(所)和劳动技能培训基地,提高贫困群体基础素质;帮助贫困学生就学和营养供给,开展“科教文卫下乡”活动,在贫困村选配大学生村官,鼓励大学生等志愿者下乡支教,组织大学生志愿者开展扶贫接力服务行动;鼓励优质教师、医生下乡指导,打造城乡教育发展共同体、城乡医疗发展共同体。
四是建立城乡建设帮扶机制。援建一批区县城图书馆、体育馆、文化馆、影剧院、商业街等“大件”设施,支持小城镇特色风貌、市政基础设施和公共服务设施建设;支持农村危旧房、棚户区改造,支持新农村建设,援建廉租房、公租房等保障性住房建设,改善居民居住条件。
五是建立多元化参与帮扶机制。促进农村金融参与扶贫,引导银行业开展针对贫困农户及农业生产的信贷扶贫,降低贷款利息率,鼓励外资和民营企业参与扶贫开发,促进NGO小额信贷参与扶贫[5];促进农村保险事业发展,积极发挥农业保险保障作用,增强农业抗风险能力。
参考文献:
[1] 李承隆.北川六大工程立体扶贫[N].四川日报,2015-05-08.[2] 王雨.打造大数据平台助力精准扶贫[N].甘肃日报,2015-10-09.[3] 孙惠楠.以大数据精准扶贫为引领 推动三农工作发展取得突破[N].贵阳日报,2015-09-24.[4] 降蕴彰.城市居民应纳入精准扶贫范围[N].文摘报,2016-01-02.[5] 蒋若凡,李菲雅,王春蕊.NGO介入性扶贫对贫困农户借款行为的影响分析[J].西南民族大学学报:人文社会科学版,2013,(8):107.[责任编辑 刘娇娇]
第三篇:医疗大数据及精准医疗
医疗大数据及精准医疗
谢邦昌
台北医学大学管理学院及大数据研究中心院长/主任
大数据的趋势以及价值是现在最热门的话题,也改变了许多企业经营的方式,对于各行各业来说是势必是一个大挑战,能否将大数据的力量从危机到转机就要看现代经营者有没有转变传统型态的思维?
首先什么是大数据?传统数据一年的数据量大概为3TB左右,以现今数据来说一天的资料量为50TB,由这简单的数据量差就可以得知传统数据跟现今数据的差异多么庞大,也就是现在俗称的大数据时代。数据庞大之下,不管是银行业、传统零售业、社会建设公共方面甚至是医疗保健产业对数据处理、分析方式以及经营企业的模式将会有所改变。
在过往的医疗诊断历史,到医院看病时必须耗费许多时间等待看诊,而医生看诊又要再花费时间。当医生要求病患拍摄X光片或检验时,又要再花额外许多时间诊断。而在现今医疗信息高度发展的台湾,看诊程序从网络挂号、候诊顺序、诊间病历调阅、医师医令、处方开立、放射影像存取、检查检验数据储存等,无数的数据信息便在医院中传递、交换、储存。同时大多数的生理检验信息在你回诊时得以从电子病历中检索,这些我们认为理所当然的信息处理,在台湾我们只要花费少许的时间如一个早上便完成了,而这一切正是仰赖医学信息分析与医疗大数据的交换处理。
医学大数据的产生,主要归功于医疗设备数字化及电子化病历发展两大领域的突破,透过仪器数字化,医院得以获得更多病人疾病与健康信息纪录。而在病人医疗诊断方面,为了完善纪录病患个人资料、诊断数据与过往医疗纪录等,即促成了电子病历系统发展。医学大数据发展由过去纸张记录、纸本信息数字化、医学纪录储存到现今多信息整合,其数据量有着爆炸性的成长,不仅由过去个人社经信息、诊断信息等文字媒介,更拓展到多媒体影像信息,如X光影像,动态视讯影像信息,如核磁共振MRI以及电讯号信息,如心电图等等,这些庞大医学数据的汇集与高度整合技术能力,正是台湾医学信息领域发展领先的原因,同时更显得医学数据发展的多元应用及其重要性。
而由医疗健保产业来说,个人医疗信息终端的产生给医疗产业带来革命性的变化,连结了传统医院、政府(社会保障)、保险公司、药物生产公司等相关产业,形成新的行业生态圈。将互联网+医疗保健去建构一个智能的健康系统,在整个健康系统下会有智能的合作伙伴,包含医院、医生、诊所、学术中心、保险公司、药厂、医疗设备制造商、政府等相关人员等,接着产生出个人化的护理体系,其中包含个人健康、成本节约、提高效率、病人教育、增强通信、绩效度量、预防等相关内容,使得人们有着更健康的社会。
经常听到的医疗云、照护云以及健康云都是运用云端技术结合大数据去提供健康咨询的服务。在网络普及下,人手一台智能型手机让这些云更能够去发挥,客户只需要使用健康感知的终端,其中包含穿戴型装置、爱睡宝、电视机以及相关的智能型测量装置,就能够让亲人、医生以及相关的护理人员得知目前的身体状态,不仅如此,还可以远程监护以及远程门诊,一切都透过远程医疗平台让人们有着安全、方便、快速及健康舒适的生活环境。
大数据在生技医疗卫生发展状况及应用,大数据已深耕于经济领域且创造了巨大的经济价值
美国的大数据产业已经创造了巨大的价值,具体表现在:大数据使美国医疗服务质量得到提高。
对于医疗服务的提供方和支付方来说,在减少医疗成本的同时不断提高医疗质量和效率仍然是一个难以实现的目标,而这也是改善民生的重大机遇。2010年,全美医疗支出占国内生产总值的17.9%,比2000年增长13.8%。而且,某些慢性疾病如糖尿病的患病率正在增加,正在消耗更多的医疗资源。
对这些疾病和其他相关健康服务的管理将深刻地影响国家的福祉。在这方面大数据可以发挥作用。为在广大人群中取得最有效的医疗效果,更多地使用电子健康记录(电子健康档案),并与新的分析工具相结合,将提供挖掘信息的机会。研究人员可以利用信息寻找有效的统计趋势,并依据真实的医疗服务质量开展医疗评估。
大数据在医疗及生技业之应用
医疗及生技业大数据应用的当前需求来自疫情和健康趋势分析、电子病例、医学研发、临床试验等领域。
疫情和健康分析趋势
利用大数据进行疫情分析,说明这个地方可能处于某种疾病蔓延,实时掌握病情。
Google和疾管局一样能够掌握流感疫情
2009年又冒出了一种新的流感病毒,称为H1N1。这种新菌株结合了禽流感和猪流感病毒,迅速蔓延。短短几星期内,全球的公共卫生机构都忧心忡忡,担心即将爆发流感大流行。有些人发出警讯,认为这次爆发可能与1918年的西班牙流感不相上下,当时感染人数达到五亿人,最后夺走数千万人的性命。雪上加霜的是,面对流感可能爆发,却还没有能派上用场的疫苗,公共卫生当局唯一能努力的,就是减缓其蔓延的速度。为了达到这项目的,必须先知道当前流行感染的范围及程度。在美国,疾病管制局(CDC)要求医生一碰到新流感病例,就必须立刻通报。即使如此,通报的速度仍然总是慢了病毒一步,大约是慢上一到两星期。毕竟,民众觉得身体不舒服之后,通常还是会过个几天才就医,而层层通报回到疾管局也需要时间,更别提疾管局要每星期才整理一次通报来的数据。但是面对迅速蔓延的疫情,拖个两星期简直就像是拖了一个世纪,会在最关键的时刻,让公共卫生当局完全无法掌握真实情况。
说巧不巧,就在H1N1跃上新闻头条的几星期前,网络巨擘Google旗下的几位工程师,在著名的《自然》科学期刊发表了一篇重要的论文,当时并未引起一般人的注意,只在卫生当局和计算机科学圈里引起讨论。该篇论文解释了Google能如何「预测」美国在冬天即将爆发流感,甚至还能精准定位到是哪些州。谷歌的秘诀,就是看看民众在网络上搜寻些什么。由于Google每天会接收到超过三十亿笔的搜寻,而且会把它们全部储存起来,那就会有大量的数据得以运用。
Google先挑出美国人最常使用的前五千万个搜寻字眼,再与美国疾病管制局在2003年到2008年之间的流感传播数据,加以比对。Google的想法,是想靠着民众在网络上搜寻什么关键词,找出那些感染了流感的人。虽然也曾有人就网络搜寻字眼做过类似的努力,但是从来没人能像Google一样掌握巨量数据(big data,直译为大数据),并具备强大的处理能力和在统计上的专业技能。
虽然Google已经猜到,民众的搜寻字眼可能与流感有关,像是「止咳退烧」,但相不相关其实不是真正的重点,他们设计的系统也不是从这个角度出发。Google这套系统真正做的,是要针对搜寻字眼的搜寻频率,找出和流感传播的时间、地区,有没有统计上的相关性。他们总共用上了高达4亿5千万种不同的数学模型,测试各种搜寻字眼,再与疾管局在2007年与2008年的实际流感病例加以比较。这套软件找出了一组共四十五个搜寻字眼,放进数学模型之后,预测结果会与官方公布的全美真实数据十分符合,有强烈的相关性。
于是,他们就像疾管局一样能够掌握流感疫情,但可不是
一、两星期之后的事,而是几近实时同步的掌握!因此,在2009年发生H1N1危机的时候,比起政府手中的数据(以及无可避免的通报延迟),Google系统能提供更有用、更及时的信息。公卫当局有了这种宝贵的信息,控制疫情如虎添翼。
最惊人的是,Google的这套方法并不需要去采集检体、也不用登门造访各家医院诊所,而只是好好利用了巨量数据,也就是用全新的方式来使用信息,以取得实用且价值非凡的见解、商机或服务。有了Google这套系统,下次爆发流感的时候,全球就有了更佳的工具能够加以预测、并防止疫情蔓延。
电子病例
将分散在医院中的各个部门、各式各样的病例集中在云端,医生们可透过语意搜查找出任何病例中的相关讯息,进而为医学诊断提供更加丰富的数据。可提供以病患为中心的个人化疗程建议,或帮助对医疗问题及其患病率进行自动诊断。台湾的医疗黑金:健保数据库 Google台湾董事总经理简立峰曾表示:「我认为最有价值的宝藏,就是台湾的全民健保数据库。」,台湾医疗产业贯穿上下游的数据,全在健保数据库里面,而且几乎所有人都要加入,全世界只有台湾拥有如此完整的数据库。美国麻省理工学院电机与计算机科学院教授约John Guttag也说,相较于美国,台湾的健保是由政府买单,这让医疗数据取得变得容易,「这是台湾的机会,未来也很有机会从中获利。」
累积15年来、2千3百万人民的健保数据库,正等待着识货的伯乐来挖宝。台中荣总医生、阳明大学教授吴俊颖以亲身经验说明,过去医学界只知道,幽门螺旋杆菌跟胃癌有关,但是却没有规模够大、时间够长的临床实验可以证实,他与研究团队藉由探勘台湾的健保数据库,发现服药根除幽门螺旋杆菌,可以降低胃癌的发生率。
这篇论文不只发表在肠胃科排名第一的杂志《肠胃病学》上,更震撼了日本医学界。日本是全球胃癌罹患率最高的国家,当地医生特别把这篇论文翻译成日文,并且说服日本厚生省,对幽门螺旋杆菌感染患者全面给付杀菌疗程,不仅影响医师的临床运作、政府决策,甚至有可能改变国际性医疗行为准则。
吴俊颖认为,台湾的健保数据库内容巨细靡遗,所有医疗项目都记录得一清二楚,「它像是永不干涸的黑金,当数据越来越多串联和使用,就会越来越有价值。」然而,吴俊颖也提到,健保数据库有个缺点,就是缺乏诊断和检测结果。麻省理工学院教授Peter Szolovits也曾举例说明过,如果有一位病患发现关节肿起来,医生跟他说这「疑似」是风湿性关节炎,因此记录风湿性关节炎的费用,可能后来病人发现根本不是这个病,如果把这笔数据用在风湿性关节炎的医疗研究上,那就会变成糟糕的数据,影响研究结果。
「如果能够把健保数据库与医院病历的数据库做结合,那它就会变成最完美的医疗数据库!」吴俊颖提到,病历数据包含检测和治疗的结果,不只对于台湾医疗产业来说非常有价值,国内外的生技和医药大厂,也都会抢着要跟台湾合作。想象一个情境,有天当你到南部度假,突然感到身体不适,就近到当地的诊所就医。第一次跟你见面的医生,登入全台湾共享的医疗数据库,调出你在其他医院的病历数据,花几分钟就能对你的身体了如指掌,还能透过临床决策辅助系统,显示出跟你有相同症状的病友群体、使用各种药物的治疗状况,透过大数据分析可以协助医生在最短时间内,找出最适合的治疗方式。
「很多人以为这样的愿景,离现实生活非常遥远,其实台湾已经走在半路上了。」台大医院竹东分院院长王明巨如此说道。的确,台湾医疗机构的病历电子化程度很高,很有可能成为全球第一个全国医院流通电子病历的国家。医学研发
运用实时监测及分析大量的仪器数据,建构预测模型,并利用统计工具改善临床试验设计,分析临床试验数据。发展个人化医学及疾病发作模式等医疗研发。利用大数据解决多发性硬化症的算法运算复杂度
位于水牛城的纽约州立大学(SUNY)是一个领先全球的多发性硬化症(MS)研 究中心。MS是一种具破坏性的、面性的神经系统疾病,影养全球近百人。这种疾病会使人的大脑和骨随发炎并产生神经病,导致患者可能出现行动不便、视力受损、疼痛等症状。
MS的病因是很复杂的,没有一个单一基因是可能的致病源。因此自2007年以来,SUNY就一直希望透过扫描MS患者的基因组的变化来开发新的治疗方式,透过从原本成千上万的基因序列的变异SNP,SNP指的是单核桃多型性,来获得单一样品,研究基因产物和其他基因产物及环境因素进行的交互作用。
研究人员的想法是以多个SNP变异点结合不同的环境变因,并使用一种被称之为「AMBIENCE」的算法,来检测县性和非线性两种数据数据中的相关性,以识别这些交互作用之间的关系。但是这个想法就如同大海捞针,因为环境变因包括像是实验对象曝晒太阳的时间长短、维生素D产生的量、吸烟的情况等皆有可能影响研究结果。况且人类的基因由23对染色体所组成,其中包含约30亿个DNA碱基对,这些因变量和应变量数量多到吓人,必须靠建构一套计算量高达1018的高等分析模型才能解决。
因此SUNY与IBM合作,建构一套搭配软硬件的数据分析系统,以往平均需要27.2小时的工作,缩短到现在只要11.7分钟即可完成。而且这套系统不仅大大简化和加速了复杂的分析过程,还提供了不同类型的变量值,如:分类变量、分配卜瓦松变量或连续常态变量等。过去,只要研究中增加一个新的变量值,研究团队就必须重新编写整个算法,而现在只需按几个键即可完成。
大数据系统分析的应用除了MS的研究以外,全球估计超过3300万人感染,至今没有方法可以完全治愈的艾滋病,以及罕见疾病等,都已开始利用大数据进行大型的医学研究。
临床实验
临床试验藉由大数据而有了重大的改变,可利用临床验数据、仪器读数等,进行比较效果研究、临床决策支持系统、远距病人监测及加强医学数据透明度等方面。
拥有数据数据保护的早产儿
所谓的早产儿是指怀孕不到37周就提早出世的宝宝。这些提早降临人世的小仙子,如果出生后体重不到1500公克,很可能会因为免疫系统尚未发育完全而受到感染,一旦感染之后就很容易引起呼吸衰竭、肺出血及败血症。
不过,加拿大多伦多市立儿童医院里的早产儿,却可以睡得特别安详,因为他们是有数据数据保护的「data baby」。随着医疗设备的发展,利用医疗监测仪器监测病患的生命征象,如血压、心跳和体温等,已经是非常普遍的事了。通常这些仪器还具有警报功能,一旦生理的数据数值超出正常范围时就会发出警示,医疗人员就会采取因应行动。但是即使医术再精湛、经验再丰富的医护人员,可能也无法准确地察觉这些异常的发生时间和严重性,尤其当发生在脆弱的早产儿生身上。根据美国弗吉尼亚大学追踪以往的数据显示,新生儿受到感染初期的12到24小时,因为脉搏和心跳几乎都可在接受的范围内,因此医护人员很难从生命征象数据的改变中察觉,等到警示灯响起,常常为时已晚。
连续监测和记录这些生理性数据,可以观察出新生儿是否遭受感染的早期征兆,但数据量实在太过庞大了。估计这些监测设备每一秒钟就会产生1000个读数。以往是30到60分钟由医护人员归纳出一个数据做为纪录,然后储存72小时。如果要把这些读数统统记录起来,根本是不可能的事。
但这项不可能的任务,并没有吓跑安大略省理工学院和IBM。他们使用来自怀生研究中心的最新技术,利用江河运算平台支持大量数据的收集和分析,一天24小时不间断地收集和记录着包括早产儿的体温、心跳、血氧饱和浓度和血压等电子监测仪器产生的大量数据,以及周遭环境如温度、湿度等相关数据。在保护病人的隐私安全考虑下,这些数据会直接传到安大略省理工学院研究中心和IBM华生研究中心;系统会分析和研究哪些因素的交互作用会造成感染,甚至哪几床的新生儿因为符合条件较多,可能出现疾病或感染的风险较大。之后,系统再将分析结果提供给医护人员比较判读。这些动作都在数秒内完成。藉由这项计划,儿童病房里的医护人员已经可以提前18到24小时,预防新生儿败血症的发生。
由于大数据在规模(Volume)、增加速度(Velocity),以及价值性(Value)上正呈现几何上升,而其数据所表现的多样性变化(Variety)与数据的有效性(Validation),更容易成为企业的风险源头。面对排山倒海而来的大数据,企业需运用大数据,迅速将数据转化成商业智能,运用分析信息,提升市场的洞察能力,做出更准确的营运决策。例如:电信业者可以分析手机在基地台漫游的特性,提供更好的在地费率;信用卡业者可以每天定期分析各种信用贷款所产生的风险,动态调整信贷利率;便利超商可以分析消费者的购买习惯,动态调整架上存货数量等;制造业者可透过现场制造系统所记录的大量在线实时生产数据进行分析,以协助制造业改善制程、提升良率,并减少物料浪费。因此大数据将是企业未来所面临的关键挑战。鉴于目前信息以超乎想象的速度产生、累积、消逝,而企业所面临的商机亦有相同的循环表现。透过海量信息的实时性分析与运用,将可对不同信息的需求者,产生不一样的价值与意义。若能持续在既有的数据中发掘价值,同时考虑动态信息所带动的巨大冲击,并藉此掌握瞬息万变的市场契机,则大数据的分析与应用,将有助于各类型企业在相关营运领域中,引领下一阶段的企业永续发展。基于以上的发展潮流与态势,麦肯锡(Mckinsey)管理顾问公司于2010年已指出未来引领企业发展趋势的十大科技,其中即包含了大数据的获取与分析、云端运算服务的公共价值,以及企业多层面的参与互动及服务。在这些技术与行动通讯网络的整合应用下,企业未来所产生的数据量将呈现倍数成长,并导致过去传统的储存技术即将遇到瓶颈,因此,虚拟化的云端运算分析技术,以及大数据的管理,将成为各方面所即将面临处理的新课题。从目前的技术发展 来看,未来各项实体化设施,将可能在未来藉由虚拟化的技术,得以降低各项成本的支出,然而云端运算与大数据的应用,绝非仅为建置一个大型数据中心即可,对于后续所产生大量数据下的数量管控、数据的质量与分析结果,以及这些数据所衍生之相关应用与服务,才是现阶段所应关心的重点。计算设施(Computer)网络设施(Network)储存设施(Storage)数据数量管控数据应用服务数据质量分析虚拟化(Virtualization)为了结合技术、数据,以及应用分析与服务等三项议题的探讨,本演讲大数据主要阐述BIG DATA 在生技医疗卫生上之应用与研究;抛砖引玉系望能激起大家投入医疗大数据的研究!
第四篇:大数据+精准医疗
大数据+精准医疗
2012年全国居民慢性病死亡率为533/10万,占总死亡人数的86.6%。心脑血管病、癌症和慢性呼吸系统疾病为主要死因,占总死亡的79.4%,其中心脑血管病死亡率为271.8/10万,癌症死亡率为144.3/10万(前五位分别是肺癌、肝癌、胃癌、食道癌、结直肠癌),慢性呼吸系统疾病死亡率为68/10过标化处理后,除冠心病、肺癌等少数疾病死亡率有所上升外,多数慢性病死亡率呈下降趋势。慢性病的患病、死亡与经济、社会、人口、行为、环境等因素密切相关。一方面,随着人们生活质量和保健水平不断提高,人均预期寿命不断增长,老年人口数量不断增加,我国慢性病患者的基数也在不断扩大;另一方面,随着深化医药卫生体制改革的不断推进,城乡居民对医疗卫生服务需求不断增长,公共卫生和医疗服务水平不断提升,慢性病患者的生存期也在不断延长。慢性病患病率的上升和死亡率的下降,反映了国家社会经济条件和医疗卫生水平的发展,是国民生活水平提高和寿命延长的必然结果。当然,我们也应该清醒地认识到个人不健康的生活方式对慢性病发病所带来的影响,综合考虑人口老龄化等社会因素和吸烟等危险因素现状及变化趋势,我国慢性病的总体防控形势依然严峻,防控工作仍面临着巨大挑战。
大数据的分析和应用都将在医疗行业发挥巨大的作用,提高医疗效率和医疗效果。
一、临床操作
在临床操作方面,有5个主要场景的大数据应用: 1.比较效果研究
通过全面分析病人特征数据和疗效数据,然后比较多种干预措施的有效性,可以找到针对特定病人的最佳治疗途径。
基于疗效的研究包括比较效果研究(Comparative Effectiveness Research,CER)。研究表明,对同一病人来说,医疗服务提供方不同,医疗护理方法和效果不同,成本上也存在着很大的差异。精准分析包括病人体征数据、费用数据和疗效数据在内的大型数据集,可以帮助医生确定临床上最有效和最具有成本效益的治疗方法。医疗护理系统实现CER,将有可能减少过度治疗(比如避免那些副作用比疗效明显的治疗方式),以及治疗不足。从长远来看,不管是过度治疗还是治疗不足都将给病人身体带来负面影响,以及产生更高的医疗费用。
2.临床决策支持系统
临床决策支持系统可以提高工作效率和诊疗质量。目前的临床决策支持系统分析医生输入的条目,比较其与医学指引不同的地方,从而提醒医生防止潜在的错误,如药物不良反应。通过部署这些系统,医疗服务提供方可以降低医疗事故率和索赔数,尤其是那些临床错误引起的医疗事故。在美国Metropolitan儿科重症病房的研究中,两个月内,临床决策支持系统就削减了40%的药品不良反应事件数量。
3.医疗数据透明度
提高医疗过程数据的透明度,可以使医疗从业者、医疗机构的绩效更透明,间接促进医疗服务质量的提高。
根据医疗服务提供方设置的操作和绩效数据集,可以进行数据分析并创建可视化的流程图和仪表盘,促进信息透明。流程图的目标是识别和分析临床变异和医疗废物的来源,然后优化流程。仅仅发布成本、质量和绩效数据,即使没有与之相应的物质上的奖励,也往往可以促进绩效的提高,使医疗服务机构提供更好的服务,从而更有竞争力。
4.远程病人监控
从对慢性病人的远程监控系统收集数据,并将分析结果反馈给监控设备(查看病人是否正在遵从医嘱),从而确定今后的用药和治疗方案。
2010年,美国有1.5亿慢性病患者,如糖尿病、充血性心脏衰竭、高血压患者,他们的医疗费用占到了医疗卫生系统医疗成本的80%。远程病人监护系统对治疗慢性病患者是非常有用的。远程病人监护系统包括家用心脏监测设备、血糖仪,甚至还包括芯片药片,芯片药片被患者摄入后,实时传送数据到电子病历数据库。举个例子,远程监控可以提醒医生对充血性心脏衰竭病人采取及时治疗措施,防止紧急状况发生,因为充血性心脏衰竭的标志之一是由于保水产生的体重增加现象,这可以通过远程监控实现预防。更多的好处是,通过对远程监控系统产生的数据的分析,可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。
5.对病人档案的先进分析
在病人档案方面应用高级分析可以确定哪些人是某类疾病的易感人群。举例说,应用高级分析可以帮助识别哪些病人有患糖尿病的高风险,使他们尽早接受预防性保健方案。这些方法也可以帮患者从已经存在的疾病管理方案中找到最好的治疗方案。
二、付款/定价 对医疗支付方来说,通过大数据分析可以更好地对医疗服务进行定价。以美国为例,这将有潜力创造每年500亿美元的价值,其中一半来源于国家医疗开支的降低。
1.自动化系统
自动化系统(例如机器学习技术)检测欺诈行为。业内人士评估,每年有2%~4%的医疗索赔是欺诈性的或不合理的,因此检测索赔欺诈具有巨大的经济意义。通过一个全面的一致的索赔数据库和相应的算法,可以检测索赔准确性,查出欺诈行为。这种欺诈检测可以是追溯性的,也可以是实时的。在实时检测中,自动化系统可以在支付发生前就识别出欺诈,避免重大的损失。
2.基于卫生经济学和疗效研究的定价计划
在药品定价方面,制药公司可以参与分担治疗风险,比如基于治疗效果制定定价策略。这对医疗支付方的好处显而易见,有利于控制医疗保健成本支出。对患者来说,好处更加直接。他们能够以合理的价格获得创新的药物,并且这些药物经过基于疗效的研究。而对医药产品公司来说,更好的定价策略也是好处多多。他们可以获得更高的市场准入可能性,也可以通过创新的定价方案,更有针对性疗效药品的推出,获得更高的收入。
在欧洲,现在有一些基于卫生经济学和疗效的药品定价试点项目。
三、研发
医疗产品公司可以利用大数据提高研发效率。拿美国为例,这将创造每年超过1000亿美元的价值。
1.预测建模
医药公司在新药物的研发阶段,可以通过数据建模和分析,确定最有效率的投入产出比,从而配备最佳资源组合。模型基于药物临床试验阶段之前的数据集及早期临床阶段的数据集,尽可能及时地预测临床结果。评价因素包括产品的安全性、有效性、潜在的副作用和整体的试验结果。通过预测建模可以降低医药产品公司的研发成本,在通过数据建模和分析预测药物临床结果后,可以暂缓研究次优的药物,或者停止在次优药物上的昂贵的临床试验。
2.提高临床试验设计的统计工具和算法 使用统计工具和算法,可以提高临床试验设计水平,并在临床试验阶段更容易地招募到患者。通过挖掘病人数据,评估招募患者是否符合试验条件,从而加快临床试验进程,提出更有效的临床试验设计建议,并能找出最合适的临床试验基地。比如那些拥有大量潜在符合条件的临床试验患者的试验基地可能是更理想的,或者在试验患者群体的规模和特征二者之间找到平衡。
3.临床实验数据的分析
分析临床试验数据和病人记录可以确定药品更多的适应症和发现副作用。在对临床试验数据和病人记录进行分析后,可以对药物进行重新定位,或者实现针对其他适应症的营销。实时或者近乎实时地收集不良反应报告可以促进药物警戒(药物警戒是上市药品的安全保障体系,对药物不良反应进行监测、评价和预防)。或者在一些情况下,临床实验暗示出了一些情况但没有足够的统计数据去证明,现在基于临床试验大数据的分析可以给出证据。
这些分析项目是非常重要的。可以看到最近几年药品撤市数量屡创新高,药品撤市可能给医药公司带来毁灭性的打击。2004年从市场上撤下的止痛药Vioxx,给默克公司造成70亿美元的损失,短短几天内就造成股东价值33%的损失。
四、更具体一些,大数据已经得到实际应用的已经有如下场景
1.组学大数据精准医疗
人类通过开展组学研究及不同组学间的关联研究,从环境、生活方式和行为等暴露组学,至个体细胞分子水平上的基因组学、表观组学、转录组学、蛋白组学、代谢组学、宏基因组学,再到个体健康和疾病状态的表型组学等。利用大数据将各种组学进行综合及整合,既能为疾病发生、预防和治疗提供全面、全新的认识,也有利于开展个体化医学,即通过系统整合生物医学与临床数据,可以更准确地预测个体患病风险和预后,有针对性地实施预防和治疗。
2.大数据虚拟药物研发
快速识别生物标志物和研发药物。利用某种疾病患者人群的临床数据和组学数据,可以快速识别有关疾病发生、预后或治疗效果的生物标志物。在药物研发方面,医学大数据使得人们对病因和疾病发生机制的理解更加深入,从而有助于识别生物靶点和研发药物。同时,充分利用海量临床数据和组学数据、已有药物的研究数据和高通量药物筛选,能加速药物筛选过程。
3.生物大数据流行病防治
快速筛检未知病原和发现可疑致病微生物。通过采集未知病原样本数据,对病原进行测序,并将未知病原与已知病原的基因序列进行比对,从而判断其为已知病原或与其最接近的病原类型,据此推测其来源和传播路线、开展药物筛选和相应的流行疾病防治。
4.互联网大数据公卫监测
利用互联网大数据以及有关专业数据实时开展公共卫生监测。公共卫生监测包括传染病监测、慢性非传染性疾病及相关危险因素监测、健康相关监测,如出生缺陷监测、食品安全风险监测等。此外,还可以通过覆盖全国的患者电子病历数据库进行疫情监测,通过监测社交媒体或频繁检索的词条来预测某些传染病的流行。
5.大数据健康管理
实时开展大数据健康管理,通过可穿戴设备对个体体征数据,如心率、脉率、呼吸频率、体温、热消耗量、血压、血糖、血氧、体脂含量等数据的实时、连续监测和流数据挖掘、分析,提供实时健康指导与建议,更科学地实施个性化健康管理。
6.大数据疾病谱研究
了解人群疾病谱的改变,这有助于制定新的疾病防治策略。全球疾病负担研究是一个应用大数据的实例,该研究应用的数据范围广、数据量巨大,近4700台并行台式计算机完成了数据准备、数据仓库建立和数据挖掘分析的自动化和规范化计算,应用大数据研究人群疾病谱。
7.大数据人群队列研究
以大数据为导向的人群队列研究逐渐成为医学研究的热点。超大规模队列研究具有大样本-如数十万人群,前瞻性-如数十年长期随访,多学科-如基础、临床、预防、信息等多学科合作,多病种-如对多种疾病进行研究,多因素-如探讨多种危险因素,整合性-如监测系统、信息系统、医保系统的整合,共享性-如生物标本和数据资源的共享,等特点,经过长期随访能够产出大量人群数据,基于大数据的人群队列研究更具有科学性、可靠性和权威性。
第五篇:探究教学模式心得体会
近年来,随着“杜郎口”教学模式,洋思中学“先学后教,当堂练习”教学模式,和东庐“讲学稿”教学模式,被越来越多的学校仿效和推广,使很多教师和学校搞不清到底什么是符合自己新课改和教学实际的模式。对此,笔者经过长期的摸索和总结,初步形成符合自己的教学模式,并在自己的教学实际中已初露良
好的效果。
“杜郎口”教学模式的优点在于推翻了传统的教师一味的传授,不在把学生当成“容器”进行填鸭式的教学,而是让学生主动参与,极大地激发学生的求知欲,解放了学生被动的接受学习,在一定程度上解决了学生厌学,不学的问题。但是把课堂完全教给学生,片面地加大了学生的学习投入量;同时教师的点拨,补充,拓展的机会过少,对课堂教学还是有一定弊端的。不过“杜郎口”教学模式,激发了学生探究欲,扩大了学生的主动参与程度,给学生创造了更多展示自我才能和个性的机会,这种模式还是我们教师和其他学校应该吸收和发扬的的,这是杜郎口模式的精华所在。
洋思中学“先学后教,当堂练习”的教学模式的优点,在于它遵循教学规律和学生学习认知心理的特征,使学生的学习成果显著,具有实际的教学可操作性。但是他也有不合适的地方,还是不能把学生从被动学习中相对解放出来,不能很好展示自我,它容易使学生的学习陷入被动的局面。但是它很好的解决了预习和复习巩固的时效性,这是它对当前教学做出最为巨大的贡献,这也是它能被教育界认同的灵魂所在。
东庐“讲学稿”教学模式,优点在于:很好地解决了教师的备课与学生的练习融合问题,似乎减轻了老师和学生的劳动量,有效解决了教与学通过书面的衔接。但它也有一些不可回避的争议:隐性地加大教师的工作量;对于预习和复习巩固,教师不好掌控(学生容易出现抄袭);还是不能很好地激发学生主动学习;东庐“讲学稿”本身在东庐中学的教学中还没有取得有明显建树的成效。不能让教师运用灵活,形式多样的教学风格。不过,它为教师在教学设计上,能主动站在学生的学这一角度,还是值得借鉴的。对于以上三种模式,那一种才是符合每一个学校或教师的呢?生搬硬套,全盘吸收,是绝对错误的。在学习这些教学模式时,我们应该保持理性的借鉴,要边实践边思考学习的实效,要时刻反省和分析自己学生的学情,认真结合自己学生学习的特点,不断改良和优化自己的教学,不断总结和梳理自己的教学得失,这样才会探索出具有自我价值的教学新模式。
笔者经过很长一阶段的实践,不断分析对比这三种模式的优缺点,再结合自己学生的实际学情,初
步探索出新的课堂教学模式。
1.把每班学生分成四组,由两名组长负责,每组负责一块小黑板(小黑板式以前学校学习“杜郎口”遗留下来的,现在又在学习“东庐讲学稿”)。组长召集全组完成预习,展示,出题。.预习。教师告知学生预习的内容,帮助划板块,分知识点做好学前预习讨论;从基本知识(识记,理解),重点知识(参阅教辅资料出题多的分析),难点知识(收集,发问老师)展开;适当准备基础题。
3.课后。各组出5道题左右。出题原则:基础性(大家能做,易做,强调复习巩固),典型性(把握知识点,学会筛选习题),变异性(题型变化,难度的梯度变化,陷阱的设置).课堂。
(1)课后练习的处理。四块黑板由每组一至两名同学发问,讲解上一堂课课后练习,教师然后点拨
思路,突破难点,总结变化,拓展补充。
(2)预习与新课教学。学生预习理解的由学生展示;教师主要是教学情境的创设,完成难点的解答和突破,问题的总结拓展,知识的衔接过渡,组织和指导,评价学生的展示过程(如果时间宽裕,指导学
生选题,出题)等。
(3)在展示环节上,教师要把展示的形式多样化:分组展示,分组比赛,分组互助等。经过近半个月的实践,彻底改变了学生被动学习的状况,如作业抄袭,上课不举手发言,上课注意力不集中,齐声回答不响亮等等。但是学生的准备时间可能过长,所以两个组长轮流负责统筹安排,出题,抄题也是在集体讨论的基础上轮流负责。
当然,这种模式还是处于探索阶段,不完善的地方也很多,但已改变教师一味的教,学生被动的学;避免了作业抄袭;改变了课堂互动少,学生发言少,课堂气氛沉闷;减少了教师无效,低效的教学时间;能从把握整体的共性融合和个体的个性张扬来关注学生的学习生成;从这些作用和意义上来看,新模式还是有很强的可操作性和研究性。当然,这种模式的评价和检验,还需经历很长的一段时间。