第一篇:平行四边形的判定教学反思
篇一:平行四边形的判定(1)及教学反思
18.1.2平行四边形的判定1 学习目标:1.在探索平行四边形的判定条件中,理解并掌握用边、对角线来判
定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题. 学习重点:平行四边形的判定方法及应用.
学习难点:平行四边形的判定定理与性质定理的灵活应用. 学习过程:
一、温故知新
1、有一天,李老师的儿子从幼儿园放学来到办公室,看到郑老师办公桌上一块平行四边形纸片,于是就拿起笔来画画,画了一会儿,对自已的作品不满意撕去了一些,巧的是刚好从a、c两个顶点撕开。你能帮它补好吗?
2、平行四边形性质: 1.)从边上看:
在abcd中: b 2.)从角上看: 在
abcd中: c =180°. =180°. 3.)从对角线上看:. 在abcd中:。
3.平行四边形的对边相等、对角相等、对角线互相平分,那么反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?
二、自主探究,先自学课本45页,再推理论证,最后同桌前后桌同学交流合作解疑:
1.如图,将两长两短的四根细木条用小钉合在一起,做成一个四边形,使等长的木条成为对边,转动这个四边形,使它形状改变.在图形变化的过程中,它一直是一个平行四边形吗? 已知:如图,在四边形abcd中,ad=cb,ab=cd 求证:四边形abcd是平行四边形。
b a d c 1 由上面的证明你得到了什么结论?平行四边形判定定理1: 符号语言: 2.如图所示,∠a=∠c,∠adc=∠abc,问四边形abcd是不是平行四边形.
由上面的证明你得到了什么结论?平行四边形判定定理2: 符号语言:
3.如图,将两根细木条ac,bd的中点重叠,用小钉绞合在起,用橡皮筋连接木条的顶点,做成一个四边形abcd.转动两根木条,四边形abcd一直是一个平行四边形吗? 已知:如图,四边形abcd的对角线ac,bd相交于点o,并且 ao=co,bo=do。求证:四边形abcd是平行四边形。
由上面的证明你得到了什么结论?平行四边形判定定理2: 符号语言:
4.总结归纳判定平行四边形的方法:
b a o c d
三、理解运用,拓展提高
1.如图8,四边形abcd中
⑴若ab∥cd,补充条件____________, 使四边形abcd为平行四边形。(2)若ad=cb,补充条件____________,使四边形abcd为平行四边形。
2.如图13,若ad=8cm, ab=4cm,那么当 cm时,四边形abcd是平行四边形.
图8 图13 2 图
3.如图14,ad=bc=16, ab=cd=ef=15, cf=de=9,图中互相平行的线段有 4.已知:如图平行四边形abcd的对角线ac、bd交于点o,e、f是ac上的两点,并且ae=cf.
求证:四边形bfde是平行四边形.
四、知识点小结:本节课我们学习了??..平行四边形的性质及判定方法的归纳:
五、限时检测(10分钟)1.师生共练,简单应用
判断下列四边形是否为平行四边形?并说出你的依据.
ad 4 cb 2.已知:平行四边形abcd中,点e、f分别在cd、ab上,df∥be,ef交bd于
点o.求证:eo=of.
3.已知:如图,平行四边形abcd的对角线ac、bd相交于点o,m、n分别是oa、oc的中点,求证:bm∥dn,且bm=dn.3 4.已知:如图,△abc,bd平分∠abc,de∥bc,ef∥bc,求证:be=cf
5、如图所示,在□abcd中,e、f是对角线bd上两点,且bf=de,连接ae、ce、af、cf,求证:四边形aecf是平行四边形.a d 作业
1、已知:如图,在四边形abcd中,ab=cd,ad=bc,点e、f分别在bc和ad边上,af=ce,ef和对角线bd相交于点o,求证:点o是bd的中点.2.如图,e,f是平行四边形abcd的对角线ac上的点,ce?af.请你猜想:
关系和数量关系?并对你的猜想加以证明。be与df有怎样的位置....
a e f b 第4题图 c d 4 教学反思
本节课充分激发学生学习数学的兴趣,让学生积极参与、讨论,导中有练、有思、有研,改进教师先讲知识,然后再进行强化训练的做法,使讲、练、思、研融合在一起,整节课学生能始终处于思维活跃状态,让学生充分体会快乐学习。
在这节课的教学过程中,学生的思维始终保持着高度的活跃性,出现了很多的闪光点,对我的启发也很大,真可谓教学相长。所以在教学过程中教师应积极转变传统的“传道、授业、解惑”的角色,在教学中应把握教材的精神,在设计、安排和组织教学过程的每一个环节都应当有意识地体现探索的内容和方法,避免教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。
篇二:平行四边形的判定教学反思
《平行四边形的判定》教学反思
巴庙初中 唐必坤
上周我们数理化组开展了赛教活动,我以《平行四边形的判定》上了一节公开课,本节课我采用的是“先学后教,当堂训练”的模式教学方法是采用“目标──问题”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。
教学从复习近平行四边形的定义开始,接着以一个练习题为平台复习近平行四边形有哪些重要性质?
在□abcd中,ac、bd交于点o问:
cd=________bc=________ ∠bad=____∠adc=____ ao=________bo=________ 回顾。从边考虑:两组对边分别平行,两组对边分别相等;从角考虑:两组对角分别相等;从对角线考虑:两条对角线互相平分。
接着引入新课,课件展示教学目标,并要求学生根据自学要求展开自学,理解并学会平行四边形的两个判定,然后用两个练习题来检测,巩固学生对于两个判定定理的推论过程的理解以及运用。接着话锋一转,出示例题:
如图,在平行四边形四边形abcd中,e、f分别是边bc和ad上的两点,且af=ce。
请从边、角、对角线三方面来
求证:四边形aecf为平行四边形
a f d b e c 在引导学生求证的时候,我鼓励他们用多种方法去证明。在巡视检查的过程中,我找了三名同学将他们三种不同的方法展示在黑板上。具体如下
方法
(一)证明:
∵四边形abcd是平行四边形
∠d,ab=cd
(sas)
平行四边形(两组对边分别平行的四边形是平行四边形)
平行四边形
∠b= ∠d
(sas)
平行四边形(两组对边分别相等的四边形是平行四边形)
abcd是平行四边形
∴ad bc,∠b= ∵af=ec
∴ad-af=bc-ec 即be=df
∴⊿abe≌⊿cdf∴ ∠aeb=∠dfc ∵ad∥bc
∴ ∠dfc=∠fcb ∴ ∠aeb=∠fcb ∴ae∥cf 又af∥ec
∴四边形aecf是方法
(二)证明:
∵四边形abcd是∴ab=cd,ad=bc,即∵af=ec
∴ad-af=bc-ec 即be=df
∴⊿abe≌⊿cdf又∴ae=cf
∴四边形aecf是方法
(三)证明:∵四边形∴ad∥bc
即af∥ce 又∵af=ce ∴四边形aecf是平行四边形
(一组对边平行且相等的四边形是平行四边形)
(在这部分教学中我有意识的创造让学生探究的时间和空间,这有利于学生的持续发展。对于例题结论的证明,我引导学生将自己学得的判定方法进行对比和筛选,进行一题多解,便于思维发散,不把思路局限在某一判定方法上,同时还让学生进一步思考:由已知条件你还可得出哪些结论?从而使学生养成良好的思维习惯,提高他们的认知水平。)
在本节课的教学过程中,虽然学生的数学基础不是很好,但学生的思维始终保持着高度的活跃性,出现了很多的闪光点,对我的启发也很大,真可谓教学相长。数学的学习要重视学习方法的指导,知识的真正获得不是靠知者的“告诉”而是在于学习者的亲身体验所得,这是我的心得体会。在以后的日常教学中,我将牢记这两点,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
篇三:平行四边形判定教学反思
中数02号
平行四边形判定
(二)教学反思
通过对人教版八年级下册第19章※19.1.2平行四边形的判定
(二)的教学,有以下反思。
一、教学设计和课堂教学自我评价:
对于这节课的教学设计和课堂教学,总体是成功的。体现在以下几个方面:
1.教学程序流程比较合理,较好完成教学任务;
整堂课的教学任务顺利完成,大部分学生在课堂上都能顺利掌握本课的内容,在课堂练习中出现的问题较少。2.教学时间把控制合理;
整堂课的时间利用率比较高,数学在探究问题中大约使用了18分钟,学生上黑板板书花费了10分钟,老师提问与讲解17分钟左右;能够做到堂堂清。
3.通过探究,使学生初步了解四边形与三角形之间的关系。
在探究的过程中,学生们初步认识到数学知识与知识之间的相互练习,对于解决四边形的相关问题有了初步的认识,在一些具体的四边形的问题中,利用知识的迁移把解决三角形问题的方法应用到四边形中,树立了初步的数学辩证唯物主义观念。
4.学生在重难点知识的掌握与突破效果较好。
在课堂教学中的反馈情况来看,大部分学生能较好掌握本课的内容,能利用本课学习的平行四边形的判定方法解决例题4的证明过程,并且部分学生证明的方法只用到小学的内容;
5.学生在课堂上思维比较活跃,发展了学生的思维。
在探究的过程中,学生集思广益,相互合作,培养的团队精神和合作的意识,有利于学生将来的发展,提高了学生的能力和素质。
二、反思问题: 1.在此节课之前,没有对三角形的中线进行复习,对于三角形的中线的辅助线(中线倍长)的理解不够,对于例题4,基础知识相对较弱的部分学生解决的
难度比较大;问题是如果进入复习已学过的知识—引入新知识—运用复习已学过的知识解决新问题的老路上来了,这是现在的课程改革不提倡的。老的教学方法是不是一定不好? 2.对于课本的中位线的证明方式是否可以改进?在三角形中位线的教学中是否可以引入面积?因为将来可以用中位线解决三角形、平行四边形以及梯形的面积,为将来的教学服务。
3.对于两条平行线间的距离的概念,教材中的处理方法是不是最好的方法?在本课数学教学过程中,应该回顾小学的平行四边形的面积公式,不难得到平行线间的距离处处相等。此时可以引导学生用所学过的平行四边形的知识重新证明这个问题,让数学体会数学内部知识之间的关系,增强学生学好数学的信心;
4.小组合作的过程中,数学基础较好的学生很容易证明出相关的问题,在合作的过程中大部分基础知识相对较弱的学生完全不用动脑筋,顺理成章的获得证明过程,不利于他们的数学思维能力的发展;怎么样才能保证在小组合作的过程中能让基础知识薄弱的学生获得更好的发展?
三、课堂重建: 1.在探究1之前设计两道巩固小练习,对已经学过平行四边形的两种判定定理及三角形的中线相关的辅助线进行复习,对于基础较为薄弱的数学解决例题4应该有很好的作用;或者可以采用课前预习的方式来分散本节课中的难点;
2.探究1的时间可以缩短1-2分钟。在教学过程中,发现绝大部分数学的数学探究1解决都很好;
3.对于中位线,可以增加一个相关的训练题,利用中位线求三角形的面积。对于中位线的理解以及将来梯形的中位线可能是一个铺垫;
4.两条直线间的距离的概念可以用计算平行四边形面积的方法出现,从问题中引入相关概念。篇四:平行四边形的判定教学反思
《平行四边形的判定》教学反思
南岗中心学校 黄广华
本节课我采用的是“先学后教,当堂训练”的模式教学方法是采用“目标──问题”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。
教学从复习近平行四边形的定义开始,接着以一个练习题为平台复习近平行四边形有哪些重要性质?
在□abcd中,ac、bd交于点o问:
cd=________bc=________ ∠bad=____∠adc=____ ao=________bo=________ 请从边、角、对角线三方面来回顾。从边考虑:两组对边分别平行,两组对边分别相等;从角考虑:两组对角分别相等;从对角线考虑:两条对角线互相平分。
接着引入新课,课件展示教学目标,并要求学生根据自学要求展开自学,理解并学会平行四边形的两个判定,然后用两个练习题来检测,巩固学生对于两个判定定理的推论过程的理解以及运用。接着话锋一转,出示例题:
如图,在平行四边形四边形abcd中,e、f分别是边bc和ad上的两点,且af=ce。
求证:四边形aecf为平行四边形
在引导学生求证的时候,我鼓励他们用多种方法去证明。在巡视检查的过程中,我找了三名同学将他们三种不同的方法展示在黑板上。具体如下
方法
(一)证明:
∵四边形abcd是平行四边形
∴ad bc,∠b= ∠d,ab=cd ∵af=ec ∴ad-af=bc-ec 即be=df ∴⊿abe≌⊿cdf(sas)
∴ ∠aeb=∠dfc ∵ad∥bc ∴ ∠dfc=∠fcb ∴ ∠aeb=∠fcb ∴ae∥cf 又af∥ec ∴四边形aecf是平行四边形(两组对边分别平行的四边形是平行四边形)
方法
(二)证明:
∵四边形abcd是平行四边形
∴ab=cd,ad=bc,∠b= ∠d 即∵af=ec ∴ad-af=bc-ec 即be=df ∴⊿abe≌⊿cdf(sas)
又∴ae=cf ∴四边形aecf是平行四边形(两组对边分别相等的四边形是平行四边形)
方法
(三)证明:∵四边形abcd是平行四边形
∴ad∥bc 即af∥ce 又∵af=ce ∴四边形aecf是平行四边形
(一组对边平行且相等的四边形是平行四边形)
(在这部分教学中我有意识的创造让学生探究的时间和空间,这有利于学生的持续发展。对于例题结论的证明,我引导学生将自己学得的判定方法进行对比和筛选,进行一题多解,便于思维发散,不把思路局限在某一判定方法上,同时还让学生进一步思考:由已知条件你还可得出哪些结论?从而使学生养成良好的思维
习惯,提高他们的认知水平。)
在本节课的教学过程中,虽然学生的数学基础不是很好,但学生的思维始终保持着高度的活跃性,出现了很多的闪光点,对我的启发也很大,真可谓教学相长。数学的学习要重视学习方法的指导,知识的真正获得不是靠知者的“告诉”而是在于学习者的亲身体验所得,这是我的心得体会。在以后的日常教学中,我将牢记这两点,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
2014.06 篇五:平行四边形的判定教学反思
平行四边形的判定教学反思
平行四边形在实际生活和工作中具有广泛的应用,因此它的判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。平行四边形的判定一节按照课本分为两个课时,前三个判定和定义判定为第一课时,第一课时主要探讨平行四边形的判定的四种方法,在探讨时由一个实际问题——玻璃片的问题引出四个判定方法的猜想,然后引导学生进行推理证明验证,从边、角、平分线三点来分别探讨,在课堂上我要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。在教学过程中,引导学生通过动手实践、猜想、论证的过程得出结论和方法,同时安排同学上台进行讲解、板书等方法,有利于锻炼学生的综合能力。
收获:通过玻璃片的实例引导同学探索、研究得出平行四边形的判定方法,学生对四个判定的掌握比较好,通过练习巩固,学生对判定方法的运用也比较熟练,而且由于要求学生对每一个判定都进行了口头表达过程和符号语言的书写练习,因此提高了学生的推理论证的能力和书写能力,在训练过程中大部分的学生都能说出或写出比较完整的证明过程。
不足:首先,由于学生不熟悉,课件不充分等原因,造成在教学过程中时间过于紧张,使得在教学中的部分环节没能得以体现,比如:
学生的板演等,这对课堂教学的效果造成了一定的影响。另外几何证明题一直是学生的一个弱点,这在今后的学习中是一个需要改变和提高部分。在今后的教学中一定会努力学习,积极探索,完善自己的教学模式和方法,争取更好的成绩。
第二篇:平行四边形判定教学反思
《平行四边形的判定2》教学反思 本节课是《平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从学生作业反映上来看,他们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。因此,这节课我一方面复习旧知,另一方面是使学生尽快进入课堂教学。另外,多以练习为主,以一道题为准加以变式,加以对定理的区分与应用,让学生在面对一中题型的时候能够快速的选择适合的方法求解。在整个的教学过程中,完成情况还可以,就是时间上还是把握的不够,最后一道题来不及变式就下课了。在整个教学过程中,以学生看,想,议,练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。在对课案的反复打磨期间,教师本人收获颇丰。采用四步导学模式等教学方式和理念的运用。
本节课中虽然说教学任务基本完成。但有些环节中的处理做得不是很好。课前阅读与课前小测方面是比较满意的,能做得多关注差生,尽可能地减少差生面,提高孩子的学习信心。但是,在定理的选择的练
习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。探索判定定理时,实验题安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;找学生板演时应有所挑选,课堂中选了一个基础好与一个基础差的学生,差些的学生主要看着基础好的学生来完成,没太大意义;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给孩子思考。
整节课下来我觉得还有很多地方应加以改进:
1、抓好课前的准备。从严做起,重在落实。对学生课前练习本、课本等课堂需要用到的东西都要让学生养成习惯做好准备。
2、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
3、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
4、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
5、对学生的学习与做题多些方法性的指导。
在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
教师:许丹丹
日期:2014-4-6
第三篇:平行四边形判定教学反思
平行四边形判定教学反思
平行四边形判定教学反思1
平行四边形在实际生活和工作中具有广泛的应用,因此它的判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。平行四边形的`判定一节按照课本分为两个课时,前三个判定和定义判定为第一课时,第一课时主要探讨平行四边形的判定的四种方法,在探讨时由一个实际问题——玻璃片的问题引出四个判定方法的猜想,然后引导学生进行推理证明验证,从边、角、平分线三点来分别探讨,在课堂上我要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。在教学过程中,引导学生通过动手实践、猜想、论证的过程得出结论和方法,同时安排同学上台进行讲解、板书等方法,有利于锻炼学生的综合能力。
收获:通过玻璃片的实例引导同学探索、研究得出平行四边形的判定方法,学生对四个判定的掌握比较好,通过练习巩固,学生对判定方法的运用也比较熟练,而且由于要求学生对每一个判定都进行了口头表达过程和符号语言的书写练习,因此提高了学生的推理论证的能力和书写能力,在训练过程中大部分的学生都能说出或写出比较完整的证明过程。
不足:首先,由于学生不熟悉,课件不充分等原因,造成在教学过程中时间过于紧张,使得在教学中的部分环节没能得以体现,比如:学生的板演等,这对课堂教学的效果造成了一定的影响。另外几何证明题一直是学生的一个弱点,这在今后的学习中是一个需要改变和提高部分。在今后的教学中一定会努力学习,积极探索,完善自己的教学模式和方法,争取更好的成绩。
平行四边形判定教学反思2
本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法。本节课在上节课的基础上,学习习近平行四边形的判定方法3,使同学们会运用这些方法进行几何的推理证明,并且通过本节课的学习,继续培养学生的'分析问题、寻找最佳解题途径的能力。
本节课的知识点不难,教材内容也较少,但学生灵活运用判定定理去解决相关问题并不容易,基于此,在本设计中加强了一题多解和寻找最佳解题方法的训练教学,丰富了课堂活动。
由于本节已经完成了平行四边形的教学,因此本设计中注意了平行四边形判定方法的及时归纳,从边、角、对角线三个角度进行盘点,思路清晰,便于存贮、提取、应用。同时通过题目训练,让学生了解平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题。例如求角的度数线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题
平行四边形判定教学反思3
本节课是平行四边形的判定的第一课时,它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,主要探究内容是“两组对边分别相等的.四边形是平行四边形”“一组对边平行且相等的四边形是平行四边形”这两种判定定理。先采用复习引入的方式,唤醒学生的记忆,明确平行四边形的定义既是性质又是判定,然后让学生经历实践——猜想——验证——推理一系列的探究两个平行四边形的判定定理过程,最后应用判定定理解决问题。
我在教学过程中首先,通过平行四边形的定义、性质为本节课的顺利进行打下铺垫。让学生明确平行四边形的定义既是它的性质,又是它的判定,简单明了引出课题。
其次,让学生亲历探究两个平行四边形的判定定理的过程,也是一个数学建模过程和进一步培养学生简单的推理能力和图形迁移能力的过程;
通过平行四边形和三角形之间的相互转化,渗透了数学的化归思想。猜想1猜想2的推理过程,让学生体验了“发现”知识的快乐,变被动接受为主动探究。通过学生的互相交流,让学生自己完成其推理论证的过程。
证明命题是一个难点,因此采用先独立思考、小组合作、再由教师引导,把证明平行四边形的问题逐步转化为证明线平行、角相等、三角形全等。体现化归的思想。也使学生有一个不断的自我矫正的过程,突破了难点。
平行四边形判定教学反思4
平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。《平行四边形的判定》一节按照课本分为两个课时,前两个判定为第一课时,第三个判定作为第二课时,本节是《平行四边形的判定》的第一课时,主要探讨平行四边形的判定的两种方法,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我本来打算要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养,但是最后由于时间没有把握好而最终没能落实下来,成为课堂的一点遗憾。
在这节课的教学过程中,学生的思维始终保持着高度的活跃性,出现了很多的闪光点,对我的启发也很大,真可谓教学相长。所以在教学过程中教师应积极转变传统的“传道、授业、解惑”的角色,在教学中应把握教材的精神,在设计、安排和组织教学过程的每一个环节都应当有意识地体现探索的内容和方法,避免教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。
由于自身数学知识系统与教学经验的缺乏,在本节中也出现了较多的问题:
1.学生的想法有时老师是无法预测的,尽管看似一个较简单的问题,由于学生自身个体因素的差异,给出的.解决方案可能是错的,也有可能不是最方便的,但是我们要放手让学生去思考,这样才能培养他们的探究能力,也有利于知识的掌握。但是实际落实过程中也遇到了问题,由于学生探究会需要较多的时间,这样对于后面内容的教学提出了较大的困难,很多较好的教学环节由于时间不够而不得不临时删除,使得整个教学设计大大降级,失去原本的完整性,这也体现出自身的教学机智不够成熟,处理课堂实际能力比较薄弱。以后还要好好向优秀教师学习。
2.学生在练习过程中出现的问题,不应该操之过急地指出学生所犯的错误,而应该将这个改过的机会留给学生自己,让他们自己发现问题,解决问题。
3.对于猜想得到的定理的过渡太快,不符合数学逻辑。猜想是猜想,定理是经过科学长期证明过的正确命题,两者之间的跨度是非常大的。
4.对于课堂设计,真正让学生自己动手去做,去思考,去讨论,去获得结论的时间与空间都不够。从而整堂课让学生的思想受到了束缚而没能让学生的思维得到进一步的拓展,是一大败笔。
5.数学逻辑性,数学术语的使用还不够严密,有待于日后进一步提高。
平行四边形判定教学反思5
昨天下午,我上了一节数学电教课《平行四边形的判定》第一课时,本节课在引入的环节上,我采用复习引入的方式,平行四边形判定课后反思。首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务。同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。
一、本节课对教材内容进行了重组和编排。
教材中平行四边形的判定的第一课时学习的判定定理是:两组对边分别相等的四边形是平行四边形,对角线互相平分的.四边形是平行四边形。因为平行四边形的性质是从边、角、对角线三个方面研究的,所以,我将判定方法也从这三个方面入手,将教材内容进行调整,本节课从边进行研究判定方法。
二、充分利用小组合作学习
在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上,教学反思《平行四边形判定课后反思》。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
三、本节课题量不算太大,但做到了几点:
(1)一题多变
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西---核心问题。本课的核心问题就是,平行四边形的判定方法的选择。自认为从课前小练变到典型例题,还是比较合理的。因为,前面的练习其实就是为例题做了一定铺垫,学生可以建立起知识联系,寻求解题突破口。但从典型例题变到能力训练题,并不理想,没有紧扣“平行四边形的判定”而变。
(2)一题多解
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。本课中,典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
(3)多题一法
本课从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
四、在对课案的反复打磨期间,自己也收获颇丰。
尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
教学永远是一门遗憾的艺术,吹尽黄沙始现金。让我们以“没有最好,力求更好”来不断改进我们的教学,实现真正意义上的与时俱进。
平行四边形判定教学反思6
在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。在对课案的反复打磨期间,本人收获颇丰。
但有些环节中的处理做得不是很好,定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。探索判定定理时,安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;最后的`练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给学生思考。
改进措施:
1、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
2、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
3、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
4、对学生的学习与做题多些方法性的指导。
在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
平行四边形判定教学反思7
平行四边形的判定是新人教版八年级数学下册第十八章第一节第二部分内容,是在学习习近平行四边形的性质的基础上进一步探究学习的,这一部分内容主要探究平行四边形的四条判定以及判断和性质的综合运用,培养学生的探究精神、创新精神和应用意识,也为后期学习特殊的平行四边形探索方法和奠定基础。
在教学时我主要采用了以下方法:
1、实验操作法。为了探索平行四边形的判定方法,我引导学生从实验入手,通过亲自动手操作,在操作中从感官上获取认识。
2、引导发现法。在学生实验的过程中,及时引导,细致观察,探索并发现判定一个四边形为平行四边形的条件,猜测平行四边形的判定方法,为归纳平行四边形的判定方法的可行性提供先决条件。
3、探究讨论法。在猜测得出平行四边形的判定方法后,引导学生在小组内充分进行讨论,从不同角度验证方法的正确性,进而归纳出平行四边形的判定方法。
4、练习法。采用讲练结合的方式让学生不仅学会探究,更要能够灵活运用,增强应用意识。
5、加强了变式训练。通过一题多变、一题多证、多题同证等变式训练,既巩固了学生对知识的灵活运用,也训练和发展学生的逻辑思维。
反思自己的教学,还是获得了一些成功之处:
1、培养了学生的.动手能力。通过多媒体、生活问题、实验教具等方式呈现问题情境,给学生足够时间亲自动脑、动手、动口参与教学,与老师共同探究判别方法,感悟知识的发生、发展过程。
2、训练了学生的思维能力。引导学生从不同角度、不同方面进行相互讨论、彼此交流,是他们的思维能力的得到了极大的发展和提升。
3、培养学的探究精神和创新精神。通过多层次、多角度例题及练习变式,培养学生思维的广阔性和深刻性,提升探究能力、开拓创新精神。
4、增强应用意识。通过对实际生活中的一些实例和问题进行探究解决,使学生进一步认识到数学应用于生活的重要性,增强学生的数学应用意识。
当然,在教学中也还存在许多不足:
1、对教学设计与时间地分配还不够合理,还要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
2、课教学的节奏把握还不到位,需要在以后的教学中,争取让更多的学生消化好课堂新知,理解好知识点与例题。
3、学生的主体作用彰显不够,在课堂上要放心地让学生去尝试错误,多些让学生自主思考,充分发挥学生的主体作用。
4、对学生的学习与练习的方法指导还不足,应该多些方法性的引导。
总之,在以后的教学中要充分激发学生学习数学的兴趣,让学生积极参与、讨论,导中有练、有思、有研,改进教师先讲知识,然后再进行强化训练的做法,使讲、练、思、研融合在一起,让学生充分体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。
平行四边形判定教学反思8
一、教学设计思路:
本节课是《4.2平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从孩子作业反映上来看,孩子们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。
因此,本节课的教学环节我做了这样的设计:
第一环节:课前阅读:一方面是复习旧知,另一方面是使学生尽快进入课堂教学;
第二环节,课前小测:五道基础性题目检测学生之前的与上节课所学的知识;
第三环节,定理的选择:一道判断有几个平行四边形的题目,判断过程中让学生选择适当的定理来证明;
第四环节,探索两条对边分别相等的四边形是平行四边形的判定定理;
第五环节,课本上的随堂练习巩固知识点;
第六环节,辨别两个判定定理的易混点:一个是一组对边平行,另一组对边相等,另一个是两条边相等,另外两条边也相等;
第七环节,练习:三道练习题。其中有时间时最后一题进行适当的变式。
二、教学完成情况:
教学任务基本完成,就是最后一环节当中变式题目没有讲,不过那个本来就是多预备的。
三、满意与不足之处:
本节课中虽然说教学任务基本完成。但有些环节中的处理做得不是很好。课前阅读与课前小测方面是比较满意的,能做得多关注差生,尽可能地减少差生面,提高孩子的学习信心。但是,第三环节中定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。第四环节探索判定定理时,实验题安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;第六环节是找学生板演时应有所挑选,课堂中选了一个基础好与一个基础差的学生,差些的学生主要看着基础好的学生来完成,没太大意义;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给孩子思考。另外,方法性的.指导也略显不足。
四、改进措施:
作为一个刚毕业一年的老师,经验性的不足也有一定关系。为了更快地完善自己的教学,近期主要注意以下几个方面:
1、抓好课前的准备。从严做起,重在落实。对学生课前练习本、课本等课堂需要用到的东西都要让学生养成习惯做好准备。
2、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
3、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
4、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
5、对学生的学习与做题多些方法性的指导。
平行四边形判定教学反思9
本节课充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的'东西为核心问题。从课前小练变到典型例题,还是比较合理的。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。
平行四边形判定教学反思10
利用性质与判定的互逆,学生对四个判定定理的掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的数学表达和语言能力。
今后应加强的方面:八年级按照课标不要求书写规范的证明过程,学生的`几何证明题仍然是一个弱项,因此有部分学生仍然存在会分析,但是书写不规范,这在今后的教学中需要加强对学生的训练。
平行四边形判定教学反思11
平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。在设计《平行四边形的判定》一节内容时我在第一课时主要探讨平行四边形的判定的四种方法,在探讨时按照性质的探讨思路:从边、角、平分线三点来分别探讨,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。第二课时我主要是利用判定来证明平行四边形以及进行计算。
利用性质与判定的互逆,学生对四个判定的.掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。
几何证明题一直是学生的一个弱点。初二的学生按照课标不要求些规范的证明过程,但是考试却要求书写严格的过程,由于没有规范的例题示范以及有关习题,所以学生的几何证明题仍然是一个弱项,因此习题课上有部分学生仍然存在会分析,但是书写不规范的情况,这在今后的学习中是一个需要改变和提高部分。
平行四边形判定教学反思12
今天学习《平行四边形判定》,主要内容是让学生推理三个判定方法和对判定方法的运用.这节课有以下三个启示:
1. 目标指导要明确.在八班布置三个判定定理的讨论时,结果有些同学过了几分钟竟然不知道该如何处理问题.所以在七班我设法把问题更加明确化,而且指明努力的'方向,结果表明效果好很多.所以要充分估计问题的难度,要让学生能明了思考的方向。
2. 在学生讨论中,要指导学生注意讨论的效率,帮助学生学习如何沟通,如何倾听.这是传统课堂所不能训练的内容.老师除了关心教学内容外,更重要的是要关心学生的一些非智力因素的培养.协调小组同伴之间的关系,帮助提高学习效率。
3. 当有同学上台展示自学成果的时候,老师要关注学生是否认真倾听,而且允许学生在讲解过程中询问为什么.这样,既可以让讲解者能及时梳理清晰自己的思路,语言表达更加准确,而且也能让更多的人跟上节奏,让讲解者和倾听者都能在交流中受益.其实,听比讲更加需要专注力。
第四篇:《平行四边形的判定》教学反思
平行四边形的判定是新人教版八年级数学下册第十八章第一节第二部分内容,是在学习习近平行四边形的性质的基础上进一步探究学习的,这一部分内容主要探究平行四边形的四条判定以及判断和性质的综合运用,培养学生的探究精神、创新精神和应用意识,也为后期学习特殊的平行四边形探索方法和奠定基础。
在教学时我主要采用了以下方法:
1、实验操作法。为了探索平行四边形的判定方法,我引导学生从实验入手,通过亲自动手操作,在操作中从感官上获取认识。
2、引导发现法。在学生实验的过程中,及时引导,细致观察,探索并发现判定一个四边形为平行四边形的条件,猜测平行四边形的判定方法,为归纳平行四边形的判定方法的可行性提供先决条件。
3、探究讨论法。在猜测得出平行四边形的判定方法后,引导学生在小组内充分进行讨论,从不同角度验证方法的正确性,进而归纳出平行四边形的判定方法。
4、练习法。采用讲练结合的方式让学生不仅学会探究,更要能够灵活运用,增强应用意识。
5、加强了变式训练。通过一题多变、一题多证、多题同证等变式训练,既巩固了学生对知识的灵活运用,也训练和发展学生的逻辑思维。
反思自己的教学,还是获得了一些成功之处:
1、培养了学生的动手能力。通过多媒体、生活问题、实验教具等方式呈现问题情境,给学生足够时间亲自动脑、动手、动口参与教学,与老师共同探究判别方法,感悟知识的发生、发展过程。
2、训练了学生的思维能力。引导学生从不同角度、不同方面进行相互讨论、彼此交流,是他们的思维能力的得到了极大的发展和提升。
3、培养学的探究精神和创新精神。通过多层次、多角度例题及练习变式,培养学生思维的广阔性和深刻性,提升探究能力、开拓创新精神。
4、增强应用意识。通过对实际生活中的一些实例和问题进行探究解决,使学生进一步认识到数学应用于生活的重要性,增强学生的数学应用意识。
当然,在教学中也还存在许多不足:
1、对教学设计与时间地分配还不够合理,还要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
2、课教学的节奏把握还不到位,需要在以后的教学中,争取让更多的学生消化好课堂新知,理解好知识点与例题。
3、学生的主体作用彰显不够,在课堂上要放心地让学生去尝试错误,多些让学生自主思考,充分发挥学生的主体作用。
4、对学生的学习与练习的方法指导还不足,应该多些方法性的引导。
总之,在以后的教学中要充分激发学生学习数学的兴趣,让学生积极参与、讨论,导中有练、有思、有研,改进教师先讲知识,然后再进行强化训练的做法,使讲、练、思、研融合在一起,让学生充分体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。
第五篇:平行四边形的判定教学反思
平行四边形的判定教学反思
平行四边形性质和判定的学习是一个互逆的过程,性质是判定学习的基础,所以本章的学习围绕平行四边形的性质展开。《平行四边形的判定》新授课的学习分为4课时。第一课时先探讨判定平行四边形的四种方法,再重点讲解前两种判定方法——两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。判定定理的探讨按照性质展开,即从边、角、平分线三方面展开。有了性质作为基础,对于判定,学生理解起来比较容易。在课堂上我要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。第二课时重点讲解第三种判定定理——一组对边平行且相等的四边形是平行四边形,并将前三种判定方法融会贯通。第三课时重点讲第四种判定方法——两组对角分别相等的四边形是平行四边形。第四课时重点讲第五种判定方法——对角线互相平分的四边形是平行四边形。
收获:利用性质与判定的互逆,学生对四个判定的掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力。
不足:几何证明题一直是学生的一个弱点。只会对照老师给出的分析过程写证明过程,只有个别学生能自己独立写出正确的分析过程。