锅炉的论文锅炉水处理论文-南阳天益#4锅炉(600MW)水冷壁爆管处理及原因分析[精品论文]

时间:2019-05-13 06:26:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《锅炉的论文锅炉水处理论文-南阳天益#4锅炉(600MW)水冷壁爆管处理及原因分析[精品论文]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《锅炉的论文锅炉水处理论文-南阳天益#4锅炉(600MW)水冷壁爆管处理及原因分析[精品论文]》。

第一篇:锅炉的论文锅炉水处理论文-南阳天益#4锅炉(600MW)水冷壁爆管处理及原因分析[精品论文]

精品行业论文

行业论文精品尽在豆丁 http:// 锅炉的论文锅炉水处理论文-南阳天益#4锅炉(600MW)水冷壁爆管处理及原因分析

一、概述

南阳天益发电有限责任公司2€?00MW工程#4机组锅炉为超临界参数变压直流炉。锅炉水流程如下:

主给水管道→省煤器→下降管→水冷壁入口集箱→螺旋水冷壁→螺旋水冷壁出口集箱→过渡段混合集箱→垂直水冷壁入口集箱→垂直段水冷壁→垂直水冷壁出口集箱→水冷壁出口混合集箱→汽水分离器→贮水箱→启动疏水管道→疏水箱→疏水泵→凝汽器

二、爆管情况

(一)第一次爆管

1、爆管情况。2008年3月20日下午17:40,#4机组已带负荷520MW,主汽压力为21Mpa左右,主汽温度为468℃,试运人员于现场检查发现,锅炉垂直水冷壁左墙和右墙54m处有较大响声,且左墙声音明显大于右墙,初步判断为水冷壁管子爆管泄漏。

停炉后进行检查,泄漏部位为垂直水冷壁左墙54m吹灰孔弯管处,开裂口为炉左数第143根管,裂口正对炉内侧。开裂口沿管段纵向方向在管子中心线处开裂。裂口呈直线开裂,长度约50mm,中间宽约12 mm,开裂口已完全贯穿管壁。其前侧一根管被其吹伤两处,深度约3mm。

2、处理情况。割取开裂管段(爆口临近上弯头及下弯头管段),修补前侧水冷壁管段 更换水冷壁短管管段1件,抢修工作于3月21日23:00时全部完工。

(二)第二次爆管

1、爆管情况。3月22日凌晨4:00,#4炉重新点火启动,中午11:00机组带负荷50MW,主汽压力为8Mpa左右,试运人员检查发现,垂直水冷壁右墙54m处有响声,初步判断为第一次水冷壁爆管时该处水冷壁管子已爆管泄漏。

停炉后进行检查,泄漏部位为垂直水冷壁右墙54m吹灰孔向后800mm处,开裂口为炉右第三屏第40、41根管。开裂口沿管段纵向方向在管子与鳍片交界处开裂。裂口呈直线开裂,长度约30mm,宽约5mm,开裂口已完全贯穿管壁。

2、处理情况。割取开裂直管段两段(爆口管段9m和前侧管段1m)。更换水冷壁直管管段2件,抢修工作于3月23日22:00时全部完工。

(三)第三次爆管

1、爆管情况。3月23日夜19:30,#4炉上水,夜22:30点火,到3月24日14:17机组带满负荷600MW,主汽压力为24Mpa左右,主汽温度为538℃,主蒸汽管道安全阀已整定完毕。试运人员检查发现,垂直水冷壁前墙54m处有响声,经判断,不止一处。停炉后,从管火孔处观察,垂直水冷壁左墙有6处泄露,前墙有一处泄露,均分布在54 m到58m处。

停炉后进入炉膛内检查,检查情况如下:

泄漏部位一为垂直水冷壁前墙58m左数第四个观火孔左上侧弯管弯头处。开裂口沿管段纵向方向呈弧形开裂。裂口长度约30mm,宽约10mm,开裂口贯穿管壁。检查其两侧管子,无明显伤痕。

泄漏部位二为垂直水冷壁前墙54m处左数第64根直管段处。开裂口沿管段纵向方向呈弧形开裂。裂口长度约40mm,宽约7mm,开裂口贯穿管壁。检查其两侧管子,炉左侧管子有4根被吹伤。

泄漏部位三为垂直水冷壁左墙55m前数第123根直管段处。开裂口沿管段纵向方向在管子与鳍片交界处开裂。裂口呈直线开裂,长度约30mm,宽约4mm,开裂口已完全贯穿管壁。检查其两侧管子,无明显伤痕。

精品行业论文

行业论文精品尽在豆丁 http:// 精品行业论文

行业论文精品尽在豆丁 http://

泄漏部位四为垂直水冷壁左墙55m前数第40根直管段处。开裂口沿管段纵向方向呈弧形开裂,裂口方向为炉内偏前侧。裂口长度约35mm,宽约6mm,开裂口贯穿管壁。检查其两侧管子,其前侧管子有4根管子被吹伤。

泄漏部位五为垂直水冷壁前墙54m前数第95根直管段处。开裂口沿管段纵向方向呈直线开裂。长度约20mm,宽约3mm,开裂口贯穿管壁。检查其两侧管子,两侧管子均有1处伤痕。

泄漏部位六为垂直水冷壁前墙54m前数第97根直管段处。泄露处位于管子与鳍片连接处,为一小孔。检查其两侧管子,无明显伤痕。

2、处理情况

(1)割开水冷壁螺旋段出口、垂直段入口集箱,进行内部检查。结果在左墙前数第二个垂直段入口集箱内有一体积不大的杂物。

(2)割开水冷壁垂直段出口集箱,进行内部检查,结果发现无异物。

(3)在进行水冷壁垂直段出口集箱内部检查时,用内窥镜检查上部垂直段水冷壁内部时,共检查15根管子,发现有两根管子内部有异物,后割管刨开检查,目测为管子内壁鼓包,长约30mm,宽约8mm,表面为砖红色,内部为黑色粉末状。

(4)选取左水检查出的已经蠕胀的7根管子,从管子中段割开,并用内窥镜检查,发现管子内部有不同程度的小片异物堵塞。需进一步割管检查。

(5)3月28日,试运指挥部决定,水冷壁需大面积更换,更换原则:水冷壁爆管的管子由54.452m处焊口更换到出口集箱焊口处,共8根,每根19米;水冷壁蠕胀的管子由54.452m处焊口更换到63.450焊口处,共7根,每根9米;水冷壁黑管的管子由54.452m处焊口更换到63.450m焊口处,共73根,每根9米;水冷壁被吹伤的管子由54.452m处焊口更换到63.450m焊口处,共9根,每根9米。计97根,共953米。水冷壁管子更换完毕后,对锅炉一次汽系统打一次工作压力的水压试验;然后对锅炉水系统进行酸洗。

(6)重新上水、打压、点火,热态时人工逐根摸排和红外线测温,确认全部畅通。

(7)再次启动,顺利通过168小时试运,建成投产。

三、爆管原因分析

第三次爆管后通过割管和内窥镜检查,发现水冷壁内壁有大量的附着物。对爆破的子、蠕胀管子、发黑的管子进行金相检查后发现,爆破、蠕胀和发黑的管子均发生了金相组织的变化,有程度不一的珠光体球化现象。根据现场查看和金相检验结果判定:多次爆管是因为短时过热导致,而水冷壁管的短期过热是由管内壁存在着附着物造成通流不畅导致超温爆管。

四、结论

对所有爆破管、蠕胀管和黑管全部进行更换,检查外表无异常的管子,不遗漏,并重新进行酸洗、重新做水压试验,最后对水冷壁垂直管道进行全面摸管检查。再次启动顺利通过168小时试运,建成投产。

精品行业论文

行业论文精品尽在豆丁 http://

第二篇:一起锅炉水冷壁爆管原因分析及防范措施

一起锅炉水冷壁爆管原因分析及防范措施

1、前言

2012年8月24日,达钢SLG-75/9.8-QG燃高炉煤气高温高压过热蒸汽锅炉发生了一根水冷壁爆管事件,公司即派人前往现场处理。该燃煤高温高压过热蒸汽锅炉自安装后已经运行了10个多月,经过停炉检查,发现爆管位置发生在标高6.890高炉煤气燃烧器上方高度1米处,系后墙左边一侧第3根管,在标高8米左右的位置。

2、爆管情况及金相分析 2.1爆管破口及截断管口观察

爆管部位呈窗口形破裂(见图一),水冷壁管在爆裂之前,爆口有微弱鼓包现象;爆口边缘较钝并且减薄较多,爆口周围有与爆口相平行的细小的裂纹,窗口形长边沿水冷壁管轴线方向,爆口向火面表面有热负荷较高产生过热和火焰燎烧痕迹。这种状况属于长期过热造成的破坏,水冷壁管的爆破,正是管径在减薄处超过了极限的结果。

图一

现场割断水冷壁管后,发现发生爆管的管子保留部分管口内侧有氧化皮夹层(见图二),而且特别明显。

图二

该爆管位置处于炉膛热负荷较高区域,爆破管向火侧内壁也有明显的暗红色腐蚀

物(见图三)。

图三

2.2爆破管的管径变化情况

经查看切割下的爆管部位管子,发现向火面管壁减薄较为严重。经过测量,管壁减薄处厚度不到3mm,越接近燃烧器位置管壁厚度也变得越薄,最薄处管壁厚度只有2.8mm。爆管部位切割段上口测量尺寸外径由60mm变为61mm,内径为52.7mm;下口测量尺寸外径由60变为61mm,内径为53.1mm,证明水冷壁管内侧受到腐蚀,造成壁厚减薄。管径肉眼观察无明显胀粗,管段无明显塑性变形,且管子胀粗率为1.7%,低于水冷壁管的允许胀粗率3.5%。

2.3金相试验分析

我们在爆管管子上取了3个样,编号为#

1、#

2、#3,#1样为爆口处有过烧和微裂纹的管子,#2样为爆口附近壁厚明显减薄的管子,#3样为距离爆口150mm以上、背火侧的管子。

2.3.1 #1样情况:

①钢管外壁呈现全脱碳和氧化,组织为铁素体,且铁素体长大。有晶界烧化现象(即过烧),呈现鱼骨纹。有数条裂纹,裂纹源位于钢管外壁,开口宽,裂纹头部钝化,呈倒三角,裂缝中有氧化产物,裂纹附近无原始夹杂物缺陷;

②壁厚中间部位组织为:铁素体+偏聚的点状珠光体+球状珠光体;

③内壁部位组织为:铁素体+偏聚的点状珠光体+球状珠光体,无明显脱碳; ④晶粒度7~8级。2.3.2 #2样情况:

①钢管外壁呈现部分脱碳氧化,组织为铁素体+偏聚的点状珠光体+球状珠光体; ②壁厚中间部位组织为:铁素体+偏聚点状珠光体+球状珠光体;

③内壁部位组织为:铁素体+偏聚的点状珠光体+片状珠光体,无明显脱碳; ④晶粒度8级。

2.2.3 #3样情况:沿壁厚方向整体组织为:细小铁素体+片状珠光体,内外壁无明显脱碳,晶粒度8.5级。

金相分析:#3样是钢管正常的原始组织,表明钢管原始组织合格;#2样表明在壁厚减薄部位组织发生变化,原始片状珠光体分解、扩散、偏聚,成长为球状,即珠光体球化;#1样表明珠光体球化更加严重,晶粒长大,且伴随着外表面强烈的氧化、脱碳、甚至过烧。

爆管机理:爆破部位经受高温,组织发生变化,珠光体球化、晶粒长大,基体高温性能明显下降,当低于屈服强度时发生变形,向火侧管径胀粗、壁厚减薄,同时向火侧外壁强烈氧化脱碳造成壁厚减薄(氧化作用)、强度降低(脱碳作用),珠光体球化和氧化脱碳进一步作用,使基体到达断裂极限,于是向火侧外壁出现微裂纹,裂纹长大,最后爆破,同时在壁厚减薄过程中造成过烧。

3、爆管主要原因分析

造成水冷壁管腐蚀爆管的原因是多方面的,有蒸汽腐蚀、碱性腐蚀、酸性腐蚀等,从以上情况综合分析: ①破裂的管子位于燃烧器上方1米左右的位置; ②图一中明显有过烧和火焰燎烧的痕迹;

③金相发现#1样表明珠光体球化更加严重,晶粒长大,且伴随着外表面强烈的氧化、脱碳、甚至过烧;

④管子内壁向火侧有氧化物腐蚀,且呈现均匀腐蚀减薄状态。

因此,我们分析认为,这次爆管可能由于燃烧器安装角度不当造成了炉内火焰偏斜或由于燃烧器上方局部烧损漏气,造成该局部水冷壁热负荷的分布不均,局部热负荷变化幅度较大,使炉内某些管排的温度过高,造成金属管壁温度波动,破坏了水冷壁管内表面钝化膜的连续性,而钝化膜遭到破坏的地方,汽水具有很高的腐蚀活性,其反应式为3Fe+4H2O=Fe3O4+4H2。

正常情况下,当钝化膜未被破坏时,管内铁和炉水产生的氢原子被循环的炉水带走,不会渗入钢中。而当运行的工作条件出现异常时,如热负荷过高,情况就会发生变化,如果产生的氢原子不能很快被炉水带走,就会在较高的温度作用下向向火侧管壁晶间扩散,氢原子通过晶格和晶界向钢内扩散,并与钢中的渗碳体、游离碳发生反应,继而造成氢腐蚀,生成氧化物,同时也会引起碱性腐蚀和氧腐蚀等共同作用,当腐蚀物产生后又会影响管壁传热,加剧管壁温度上升等反复作用,而管子迎火面内侧管壁存在较为均匀的减薄是由于内壁经受汽水腐蚀和热汽水的冲刷,由于氢腐蚀作用

下,靠近边沿的晶粒之间有着比较明显的晶间裂纹,当裂纹达到一定程度后,在高压汽水的冲刷下,晶粒可能脱离基体,长此以往造成管子内壁减薄。炉管在长期热腐蚀减薄和过烧下,导致水冷壁炉管中最脆弱的炉管首先发生爆裂。

4、防范措施

为确保锅炉安全稳定运行,建议采取如下整改防范措施:

4.1检查各燃烧器位置的正确性,特别是后部的燃烧器位置,避免燃烧器位置太靠近水冷壁,火力太大而烧损水冷壁管。

4.2可能的话,采用超声波测厚仪对水冷壁管,特别是对后水冷壁管直段部分进行检查,更换腐蚀严重的管子。施工前,需告知锅监所人员到现场进行监检。4.3加强锅炉给水处理和除氧、除盐及给水含氧量、含铁量等的在线检测手段,及时发现和处理问题,保证给水符合标准要求。

4.4严格执行国家关于锅炉特种设备管理适用的法律、法规及标准规范,强化对锅炉工艺、设备、安全上的管理,定期对锅炉实施检验与检查。

4.5要求业主加强管理和操作。对出现事故状态后,应该立即进行检查分析;对出现以上事故现象后,应立即进行停炉降温操作,而不是为了完成生产目标而继续维持生产导致事故恶化。

第三篇:锅炉水冷壁泄漏、爆管现象、原因及处理

锅炉水冷壁泄漏、爆管现象、原因及处理

一、现象: 1:汽包水位降低,严重时汽包水位急剧下降,给水流量不正常的大于蒸汽流量 2:炉膛负压瞬时偏正且不稳定 3:炉管泄漏检测装置报警

4:从检查孔、门、炉墙等不严密处可能向外喷烟气和水蒸汽,并有明显泄漏声 5:主蒸汽流量、主蒸汽压力下降

6:泄漏后各段烟气温度下降,排烟温度降低 7:锅炉燃烧不稳火焰发暗,严重时引起锅炉灭火 8:引风机投自动时,静叶开度不正常增大,电流增加

二、原因:

1:给水、炉水质量不合格,使管内壁腐蚀或结垢超温 2:炉水泵工作失常、造成炉水循环不良

3:燃烧调整不当,火焰偏斜,造成水冷壁管被煤粉冲刷磨损 4:节流圈安装不当,管内有异物造成水循环不良 5:管壁长期超温运行

6:吹灰器内漏或未正常退出,蒸汽吹破炉管 7:管材质量不合格,焊接质量不良 8:水冷壁结焦 9:大块焦砸坏水冷壁管 10:锅炉长期超压运行 11:锅炉启动升温、升压过快 12:管材老化失效

13:锅炉严重减水处理不当,继续上水使管子急剧冷却或锅炉严重减水使管子过热爆破 14:水冷壁膨胀受阻

三、处理: 1:当水冷壁管泄漏不严重能维持汽包正常水位时,可适当降低参数运行,降负荷运行,密切监视泄漏部位的发展趋势,做好事故预想,汇报值长,请示尽快停炉

2:当水冷壁管爆破不能维持正常水位时,立即停炉。停炉后继续加强上水,水位不能回升时停止上水,省煤器再循环门不应开启 3:水冷壁管爆破严重减水时,应进行下列处理(1):立即停炉,维持引风机运行,排除炉内蒸汽(2):停炉后继续上水,维持汽包水位

(3):若无法维持水位,应停止炉水循环泵及给水泵运行(4):停炉后,电除尘应立即停电

第四篇:锅炉烟气处理论文

锅炉烟气处理

刘宾 热能1003班

2010000874

工业锅炉主要是以煤为燃料。煤在锅炉内燃烧后,产生大量的烟尘及硫和氮的氧化物等有害气体,这些有害气体排放到大气中,严重地污染了周围大气环境。尤其工业锅炉大多集中在城市和市郊区,又属于低空排放,对生产、人民生活和人体健康都会造成极大伤害。因此,通过消烟除尘措施,将锅炉排放的烟尘污染降低到国家规定的允许范围内,对改善大气环境质量是至关重要的。目前布袋除尘效率最高,煤粉中的硫会在燃烧中生成硫氧化物,会腐蚀管道以及污染大气形成酸雨。

关键词:烟气

烟尘

硫氧化物

布袋除尘器

双碱除硫 1.、烟尘的危害

燃煤锅炉排烟中的烟尘由两部分组成。一部分是煤在燃烧过程中放出的硫及氮的氧化物气体,以及碳氢化合物在缺氧条件下分解和裂化出来的微小碳粒(炭黑),烟气中炭黑多时即形成黑烟。另一部分是由于烟气的扰动作用而被带走的灰粒和未燃尽的煤粒,也称飞灰。这些微粒具有很强的吸附能力。很多有害气体、液体或某些金属元素(如镍、铬、锌等)都能吸附在烟尘粒子上,随人的呼吸而被带入人体内,刺激呼吸道,造成气管炎、支气管炎、哮喘,以至进入人体肺泡,引起肺气肿和肺心病等,甚至引起肺癌等病症。烟尘降落到植物叶面上,会妨碍植物的光合作用,造成植物叶片褪绿,农作物产量降低,园林受害。烟尘使空气污染,降低了空气的可见度,会增加城市交通事故;由于烟尘的遮挡,减弱了太阳紫外线辐射,会引起儿童佝偻病;另外,大量废热排入空中,使空气中的灰尘起到形成水蒸气凝结核的作用,会使空气的温度、湿度及雨量发生变化。空气中烟尘浓度大,还将影响某些工业如纺织、食品及仪表等产品质量。

总之,锅炉排放的烟尘是一种空气的污染物,对人体、环境、生态及经济都有严重的危害,必须加以限制,不能任意排放。1.1.布袋除尘器

虽然布袋除尘器的使用已经有了一百多年的历史,但其在电力行业中锅炉上使用了还不到30年。自1973年,美国圣勃雷燃煤电厂(总装机容量为176MW)的四台锅炉将静电除尘改为布袋除尘器以来,布袋除尘器在大容量的电站锅炉上开始广泛地应用,特别是在美国、欧洲和澳大利亚。例如,在澳大利亚新南韦尔斯州的电站锅炉中80%已经采用布袋除尘器。现在布袋除尘器不但在新设计的电厂上广泛使用,有些国家更在对原有的静电除尘器进行改造。目前安装布袋除尘器的最大机组为850MW。

为什么布袋除尘器之所以能在电站锅炉上得到如此迅速地发展,这是因为它有其自身的优点:

1、除尘效率高,其效率一般在99.5%以上,高的能达到99.99%;

2、对亚微米级的粉尘的收集效果很好,除尘器出口的气体含尘浓度都能低于30mg/m3,好的能低于5mg/m3;

3、处理的气体量和含尘浓度的允许化范围大,且除尘效率稳定;

4、对粉尘的特性不敏感,(对煤尘来说,不受比电阻的影响);

5、设备简单,维修方便,不需要高技术的工种。1.2、布袋除尘器的原理

现在不对布袋除尘器的原理作深入的阐述,因为在一些教材中都已经对此作过详细的论述。不过,有必要在此把一些已经成为当今工业术语,并且对设计和评估布袋除尘器的性能非常有用的一些关键概念作一介绍。

大家都有戴口罩的经历,口罩就是一种简易的过滤除尘设备。布袋除尘器的除尘机理很简单,它与口罩的除尘机理一样,是通过滤材料对烟气中飞灰颗粒的机械拦截来实现的。但除此之外,先收到的飞灰颗粒在滤料表面还形成了一层稳定的稠密的灰层(一般称为滤饼或滤床),它又起到了很好的过滤作用,特别是用编制布做滤袋的除尘器,这层滤床起到了主要的过滤作用。过滤组件。过滤组件可以由棉毛纤维、玻璃纤维或各种化学纤维经过纺织(或针刺)成滤料,再缝制成垂直悬挂的滤袋,不同场合要选用不同的滤料。在滤袋上收集到的粉尘通过周期性的机械抖动、过滤后的烟气反吹或压缩空气的脉冲反吹等途径使布袋变形而将灰清除。

烟气能够通过滤袋和滤料表面所形成的滤饼(滤床)是依靠滤层两边的压差—这个压差通常称为管板压差d.p.(有时也称为滤床压差)。飞灰收集中,一个特殊的参数是过滤烟速——每分种每平方米的滤布所过滤的气量。滤床的压差d.p.是与烟速呈线性比例关系,因此也与烟气流量呈线性比例关系。这个固定的比例关系系数通常称为滤阻。按此定义,滤阻与烟气流量无关,有点类似于电阻的概念。我们把平均的过滤速度表示为,气布比——它是烟气量与整个过滤面积之比(单位用m3/m2/min表示)。这个参数在布袋除尘器的选择和设计中是一项非常重要的技术指标。

布袋除尘器其余的压力损失是由布袋除尘器进口法兰之间的烟道和挡板门所产生的。这个压降的大小与烟气的流速的平方成正比关系,因此整个布袋除尘器的压降Δp.与烟气量是二次方的关系。Δp total=K1Q1+K2Q2

K1=Kdrag/A(Kdrag=滤阻,A=过滤的表面积)K2=烟气道和挡板门的压损系数 Q=烟气量

注:在设计最大的过滤压降是选择锅炉吸风机容量的约束条件 1.3、布袋除尘器的分类

布袋除尘器的分类从除尘本质上讲是没有实际意义的,它只是便于人们对布袋除尘器的掌握和记忆,因此,按照不同的定义就有不同的分类。—按气布比来划分:(仅针对电站锅炉而言)

1、高气布比的布袋除尘器,通常气布比:大于1.0m3/m2/min。

2、低气布比的布袋除尘器,通常气布比:小于0.8m3/m2/min。

布袋除尘器气布比的选定是根据布袋除尘器的使用场合、布袋的滤料、清灰的方式、需除尘介质的含尘浓度或成分、场地的大小以及布袋除尘器的布置等方面的因素来考虑的。

—按布袋除尘器的清灰方式划分主要有:

1、烟气反吹式布袋除尘器:它是利用过滤后清洁烟气低速反向吹布袋,使得布袋变形来达到清灰的目的。布袋在袋的封口端垂直悬挂着,灰在袋内收集。该形式的除尘器在清灰时作用在布袋上的机械张力较小,适用于玻璃纤维滤袋的除尘器。

2、机械抖动式(振动式)布袋除尘器:与烟气反吹布袋除尘器一样,灰也是在袋内收集。它对滤袋的机械强度要求较高,所以对玻璃纤维滤袋不适用。

3、脉冲清灰式布袋除尘器:与前两种型式的袋除尘器不同,灰是在滤袋外被收集,滤袋靠袋内部的金属笼支撑。它的清灰是靠清洁的压缩空气周期性地喷入滤袋内,使滤袋变形,把存积在滤袋外面的灰除去。压缩空气的压力、脉冲的强度和持续时间随不同的使用场合调节,根据这些参数可以把脉冲反吹式布袋除尘器又分为:

——高压脉冲式:压缩空气压力为:0.60-0.80Mpa ——中压脉冲式:压缩空气压力为:0.20-0.40Mpa ——低压脉冲式:压缩空气压力为:0.06-0.10Mpa 选择什么形式的布袋除尘器,一般是根据布袋除尘器的使用场合、布袋的滤料、场地的大小、制造厂的设计特点和运行维护的管理等因素来考虑。1.4、布袋除尘器的结构和清灰控制

在前面布袋除尘器的分类一节中已经介绍了根据不同的清灰方式所分的三种形式的布袋除尘器,事实上,还有其它一些清灰的方式,比如磁振动式,声波助振荡式等等。不管采用哪种形式的清灰装置,清灰的目的和需要遵循的原则是一样的。即当滤袋上的积灰不断增加,滤袋的前后压差增加到某一个值时,就要对滤袋进行清灰,使滤袋恢复到比较理想的清洁状态。有两点需注意的是:

1、清灰不能太频繁太剧烈,滤袋表面必须保存一层滤层(不能把滤料上面已经收集到的一层滤层清掉),这就要在清灰强度(包括清灰频率)设计时加以考虑。

2、需要清灰的滤袋压差设定点要根据滤袋的使用情况合理设定。压差设定点不能定得太高,否则,运行时间不长细灰颗粒就会嵌入滤袋太深,影响滤袋使用寿命。在滤袋使用寿命的后期,因细灰颗粒嵌入滤袋已较多,清灰的频率要增加。随着科技的不断发展,清灰的控制现在都采用PLC程控。理论上最理想的清灰程序是每一个滤袋前后压差达到设定值时开始清灰,到压差降到某一个设定值时停止清灰。但事实上测定每个滤袋的压差是不可能的。因此,一般清灰程序都是按每个过滤单元前后的压差和压差变化的时间长短这两个参数来设计的。在正常情况下,清灰系统会根据所测量到的参数按照预先编制好的各种清灰程序进行自动清灰(“定时清灰”或“定压清灰”)。在特殊情况下(比如测量组件故障,运行工况异常……等),可以切换到手动控制进行清灰。当然PLC程控装置具有自动报警功能,出现异常情况会随时报警,提醒运行人员注意或采取应急措施。

不同的清灰方式,有不同的清灰特点,自然其结构也明显不同,就是相同清灰方式的布袋除尘器,因不同的制造厂有各的技术专利,其结构也有不同,因此,在这里只可能把几种类型的布袋除尘器的清灰控制,结合其结构作简单介绍。——烟气反吹式布袋除尘器

这种形式的布袋除尘器在美国电站使用初期用得较多。含尘烟气从布袋除尘器的下部经过进口阀后,流过灰斗上面的缓冲板进入滤袋后,滤袋为圆形。一定数量的滤袋以方阵布置组成一个除尘单元。在前面已经介绍过,布袋是在袋的封口端垂直悬挂着,下部口袋用卡环固定在管板上,袋内没有笼骨(长的滤袋有支撑环),烟气进入袋内把袋鼓起,灰在袋内收集。为了防止滤袋未张紧在底部下垂,滤袋上部的固定有弹簧式和重锤式两种,过滤后的清洁烟气经过出口提板阀排出。

当滤袋两边压差达到设定值时进行清灰。清灰时,要被清灰的这一个除尘单元的出口提升阀关闭,打开反吹提升阀(反吹风由一个低压反吹风机提供),一股低压风进入清洁烟气室与清洁烟气一起反向吹向滤袋,使滤袋压瘪变形,灰抖落掉入灰斗达到清灰的目的。清灰结束,被清灰单元的出口提升阀打开,反吹风提升阀关闭,该单元投入运行。然后转到下一个除尘单元进行清灰。这种方式的清灰动作比较缓慢,作用在滤袋上的机械张力较小,对滤袋的损伤也较轻。但清灰效果相对而言要差一些,所以有时候需连续反吹几次再转到下一个单元清灰。这种清灰方式所配的反吹风机的参数一般为:压头:H=50(mmH2O),流量:Q=总风量/过滤单元(m3/h)。

另外,每个除尘单元的出口提升阀的严密性非常重要的,否则反吹风会泄露掉,影响清灰的效果。

——机械抖动式(振动式)布袋除尘器

机械抖动式(振动式)布袋除尘器:与烟气反吹式布袋除尘器相类似;滤袋也是在袋的封口端垂直悬挂着,袋内没有笼骨(长的滤袋有支撑环),烟气进入袋内把袋鼓起,灰在袋内收集,不同的是:它是依靠滤袋顶部的支承机构的机械抖动(振动)使滤袋摆动起到变形作用,使灰从滤袋上清理下来。抖动(振动)的方式因滤袋上端的悬挂方式不同而略有不同,一般是靠马达驱动滤袋顶部反承机构抖动。

当滤袋前后压差达到设定值时进行清灰,要被清灰的这一个单元的进出口门关闭,除尘单元处于停用状态。马达启动抖动开始(一台马达带动一片组滤袋抖动),持续一段时间后停止,达到清灰的目的。清灰结束,被除尘单元的进出口门打开,该单元投入运行,然后转到下一个除尘单元进行清灰。

这种清灰方式的振打“强度”的设计是很重要的。振打“强度”太大对滤袋的损伤太大,因此振打“强度”不能超过极限(振打“强度”的增大并不能使滤袋清理得更干净)。相反振打“强度”太小又不能起到很好的清灰效果。

振打“强度”是由振幅、振动频率(该两项参数也就确定了振动加速度)和振动持续时间三个主要因素所组成的,它们之间又相互影响。因此,在清灰程序的编制和有关值确定的时候,当振幅或频率确定之后,振动持续时间的长短是很重要的。在调试期间还要根据经验资料和现场情况综合考虑。

这种清灰方式的布袋除尘器与其它方式的布袋除尘器比较,对滤袋的机械强度要求最高,而清灰效果不是最好。

上述两种清灰形式的布袋除尘器所选用气布比都必须是低气布比,因此,体积庞大,造价高。另外,含尘烟气从袋口进入滤袋,袋口处局部烟速大,并存在涡流区,虽然管口设有防磨短管,但滤袋还是比较容易损坏。随着科技的进步,现在已经不主张采用这两种形式的布袋除尘器。

——脉冲清灰布袋除尘器

与前两种形式的布袋除尘器明显的区别是灰在滤袋内部被收集,滤袋靠袋内部的金属笼骨支撑,上端用各种方式固定在花板上。它的清灰是靠清洁的压缩空气周期性地脉冲喷入滤袋,使滤袋变形,使积存在滤袋外面的灰去掉。前面已经讲到它们有高压脉冲、中压脉冲和低压脉冲三种形式,其结构、滤袋的固定方式、脉冲压缩空气的参数等都各不相同。2 烟气硫处理技术

在锅炉燃烧中,由于供应的空气是过量的,产生的烟气中除了烟尘外,还有SO2、SO3、NO和 NO2,以及碳氢化合物等。其中SO2、SO3浓度超标会诱发人体呼吸道疾病,会腐蚀工业设备及建筑物,更严重的会造成酸雨,破坏植被、森林、庄稼和生态平衡。而NO对人体的危害与煤气CO相同,被吸入人体后,使人会因缺氧而麻痹和痉挛。NO2本身毒性比NO和SO2都强,不仅对人体肺部有危害,而且对各种器官和造血组织都有损害。因此,对燃烧后排放的烟气进行脱硫与脱硝是刻不容缓的。

烟气脱硫通常有三种途径:

1.煤燃烧前脱硫。常用的方法是洗煤和煤气化后脱硫,这两种方法难于应用在工业锅炉中。

2.煤在燃烧过程中脱硫,即炉内脱硫:常用的方法有型煤固硫和向锅炉炉膛直接喷固硫剂。这在技术上都是可行的,但设备投资与运行管理费用大。

3.烟气脱硫。目前有回收法和抛弃法两大类。

回收法可回收硫,但流程长,设备多,投资大,效率低和成本高。抛弃法分为喷雾干燥烟气脱硫和石灰湿法脱硫。这两种方法对工业锅炉尤为适用。

喷雾干燥烟气脱硫,是把石灰粉加水搅拌成石灰乳液,经喷雾器雾化成细雾进入脱硫干燥塔,与烟气充分接触反应,吸收SO2并蒸发干燥,生成CaSO4颗粒,随烟气进入袋式除尘器、电除尘器或高效除尘器而排出系统,烟气则得到净化。这种方法,系统简单、投资小,只要雾化和脱硫塔设计、运行良好,可得到较高的脱硫效率。

石灰湿法脱硫,是以石灰水为吸收剂,在脱硫塔内,烟气与吸收液充分接触反应,最后生成硫酸钙与亚硫酸钙水溶液,经沉淀池处理达到可循环使用后的标准后,返回使用。但系统中设备及管道易结垢,需经常冲洗。

此外,采用流化床直接脱硫,也可以不设置投资很大的排烟脱硫装置而达到脱硫的目的。

煤在高温燃烧后产生的氮氧化物与硫化物不同,改变燃烧条件 2.1脱硫技术现状

为了控制大气中二氧化硫,早在19世纪人类就开始进行有关的研究,但大规模开展脱硫技术的研究和应用是从二十世纪50年代开始的。经过多年研究目前已开发出的200余种SO2控制技术。这些技术按脱硫工艺与燃烧的结合点可分为:①燃烧前脱硫(如洗煤,微生物脱硫);②燃烧中脱硫(工业型煤固硫、炉内喷钙);③燃烧后脱硫,即烟气脱硫(Flue Gas Desulfurization,简称FGD)。FGD是目前世界上唯一大规模商业化应用的脱硫方式,是控制酸雨和二氧化硫污染的最主要技术手段。

烟气脱硫技术主要利用各种碱性的吸收剂或吸附剂捕集烟气中的二氧化硫,将之转化为较为稳定且易机械分离的硫化合物或单质硫,从而达到脱硫的目的。FGD的方法按脱硫剂和脱硫产物含水量的多少可分为两类:①湿法,即采用液体吸收剂如水或碱性溶液(或浆液)等洗涤以除去二氧化硫。②干法,用粉状或粒状吸收剂、吸附剂或催化剂以除去二氧化硫。按脱硫产物是否回用可分为回收法和抛弃法。按照吸收二氧化硫后吸收剂的处理方式可分为再生法和非再生法(抛弃法)。

2.2低阻高效喷雾脱硫工艺

喷淋塔也成为喷雾塔,是在吸收塔内上部布置几层喷嘴,脱硫剂通过喷嘴喷出形成液雾,通过液滴与烟气的充分接触,来完成传质过程。空塔喷淋吸收塔主体为矩形塔体,塔体内配置有多个高效喷嘴及高效除雾装置,浆液在吸收塔内通过高效雾化喷嘴雾化,雾化覆盖面积可达200%,形成良好的气液接触反应界面,烟气进入塔内之后,在塔内匀速上升,与雾状喷液进行全面高效混合接触,脱除SO2等酸性气体。根据燃煤含硫量、脱硫效率等,一般在脱硫塔内布置几层喷嘴。喷嘴形式和喷淋压力对液滴直径有明显的影响。减少液滴直径,可以增加传质表面积,延长液滴在塔内的停留时间,两者对脱硫效率均起到积极的作用。液滴在塔内的停留时间与液滴直径、喷嘴出口速度和烟气流动方向有关。带雾点的烟气上升至高效除雾装置时,通过除雾装置的作用,气液进行接触二次吸收并同时得到有效分离,从而避免烟气夹带雾沫,最大限度地减少烟气带水现象。2.3脱硫系统组成

整个工艺由五大部分组成:(1)脱硫剂制备系统

由成品石灰(粒径小于10mm(100%)的粉状石灰)运至厂里后手工加入石灰消化池进行消化,消化后的石灰浆液自流至再生池中进行脱硫液再生反应。

钠碱由运输车给料至钠碱池,在池中与工艺水进行混合直至达到所需的浓度,自流到再生池。(2)烟气系统

热烟气自锅炉出来后进入吸收塔,向上流动穿过喷淋层,在此烟气被冷却到饱和温度,烟气中的SO2等污染物被脱硫液吸收。经过喷淋洗涤后的饱和烟气,经除雾器除去水雾后,通过烟道经引风机进入烟囱排空。

从锅炉出口至脱硫塔进口段的连接烟道采用A3钢制作,并根据需要设置膨胀节。连接烟道上设有挡板系统,以便于烟气脱硫系统事故时旁路运行。挡板采用手动抽板阀门,包括1个入口挡板、1个旁路挡板和1个脱硫装置出口挡板。在正常运行时,入口挡板和出口挡板开启,旁路挡板关闭。在故障情况下,开启烟气旁路挡板,关闭入口挡板和出口挡板,烟气通过旁路烟道绕过烟气脱硫系统直接排到烟囱。

(3)SO2吸收系统

在吸收塔内,脱硫液中的氢氧化钠与从烟气中捕获的SO2、SO3、HF、HCl等发生化学反应,生成亚硫酸钠和亚硫酸氢钠等物质。脱硫后的净烟气通过除雾器除去气流中夹带的雾滴后排出吸收塔。

采用喷淋塔作为吸收塔,喷淋塔是目前中小型锅炉脱硫装置中应用较为广泛的脱硫塔,其具有气液流通量大、压降低、操作弹性宽、不易堵、效率稳定等优点。

吸收塔脱硫主要反应原理如下: a)吸收

在吸收塔中,烟气中的SO2和SO3按照以下反应式被溶液中的水吸收:

SO2 + H2O<==> H2SO3 SO3 + H2O<==> H2SO4 b)中和反应

H2SO3和H2SO4必须很快被中和以保证有效的SO2和SO3.吸收。H2SO3、H2SO4、HCl和HF与悬浮液中碱按以下反应式发生反应:

Na2CO3 + H2SO3 <==>Na2SO3+CO2  +H2O Na2CO3 + H2SO4 <==> Na2SO4 + CO2  + H2O Na2CO3 + HCl <==> NaCl +CO2 +H2O Na2CO3 + HF <==>NaF +CO2 +H2O c)副反应 烟气中所含的氧量将把脱硫反应中生成的亚硫酸钠(Na2SO3)氧化成硫酸钠(Na2SO4): Na2SO3+O2 <==>2 Na2SO4(4)脱硫液循环系统与脱硫渣处理系统

泵前池的脱硫液通过循环水泵泵送到脱硫塔内与烟气接触反应后,从脱硫装置底部排出,排出的含有CaSO4、CaSO3及少量粉尘渣(大部分烟尘在原除尘器中除去)的混合渣浆液体进入再生池、沉淀池,与从石灰浆液池过来的石灰浆液发生再生反应,并进行脱硫副产物的沉淀,上清液流经泵前池,经沉淀后的池底渣浆由人工清出,滤液返流回泵前池,由循环水泵抽送到脱硫装置进行脱硫循环利用。

(5)电气控制系统 ①供电方式

系统内的动力设备为分散式布置,均为三相电源供电,厂内民用动力和民用照明为单路三相电源供电分配使用,设计处理系统供电采用放射式供电方式,优点是安全可靠。

②接地系统

处理系统低压配电系统接地接零保护采用TN--C--S系统,所有电气设备金属外壳均需可靠接地和接零,民用动力、照明接地接零保护采用TT系统。

③低压配电位置的确定

设计要求低压配电位置尽可能靠近负荷中心,由于区内大功率用电设备主要为循环泵、渣浆泵等,其它动力及照明负荷较小,故在泵房内设一电控室,安装电源总柜、动力柜和仪表柜等。

④动力设备起动和控制方式

§所有动力设备均设有欠压、短路和过载保护,电源总柜设过流保护。§民用动力和民用照明设有短路、过载和漏电保护。

§动力电缆采用铠装电缆沿电缆沟暗敷设,无电缆沟地方软电缆和信号电缆均采用穿钢管埋地暗敷设,电缆沟支架均可靠接地,形成接地网。

脱硫系统内所有设备间电缆的设计、供货由供方负责。供货及岛外部分(分界点为脱硫岛外1米)的敷设由业主方负责。脱硫岛采用手动控制.本工程系统涉及的所有规范、标准或材料规格(包括一切有效的补充或附录)均为最新版本,即以合同生效之日作为采用最新版本的截止日期。

对脱硫系统及其辅助系统进行启/停控制、正常运行的监视和调整以及异常与事故工况的报警。工艺系统和仪表、控制设备的设计、供货能够满足上述要求。

本系统供电电源均采用380V,50HZ交流电源,配电柜和动力控制柜根据用电负荷由设计院负责设计。

参考文献:钠碱法脱硫工艺简介

袋除尘器的基本原理、结构和控制布置

脱硫工程设计方案

双碱法烟气处理技术

第五篇:对锅炉爆管事故的分析和处理(范文)

对锅炉爆管事故的分析和处理

来源:中国论文下载中心 [ 09-11-20 09:55:00 ] 作者:丛艳辉 编辑:studa20

【摘 要】通过对一台发生爆管锅炉割管的检验,认为该凝渣管爆管是由于下降管设计不合理,上升管、下降管截面比偏离设计要求,后墙水冷壁管受热强,弯头数量多,局部阻力过大,造成管子内部完全汽化,形成自由水面,导致传热恶化管子发生过热、变形和热疲劳裂纹,造成管子开裂失效,对此,提出技术改造措施。

【关键词】锅炉 分析 处理

一、事故的概况及经过

2005年,本市某工厂,一台SHL20—1.25-AII型蒸汽锅炉炉膛水冷壁管发生爆管事故。受该厂邀请,我单位派员到事故现场进行了事故调查分析。锅炉的技术规范如下:额定蒸发量20吨/时,额定蒸汽压力:l.25Mpa,额定蒸汽温度194℃,(饱和)给水温度60℃,燃烧方式链条炉排层燃。

该工厂于1984年安装了由北京某锅炉厂制造的2台SHL20—1.25-All型锅炉,投产20多年来,这2台锅炉在炉膛出口烟窗部位的第一排凝渣管(共18根管)处,经常因变形逃漏、爆管而频繁进行检修。通常每三年要彻底进行大修一次。特别是在2005年年初一号锅炉大修时,更换了由有资质的正规锅炉制造厂制造且经检验合格的全部受热面管子,但运行了半年突然发生爆管。爆管部位导锅炉后墙炉膛出烟窗的隔火墙数起的第10号管。该根管的迎火面有一横向55毫米、宽35毫米、高I0毫米的鼓疱,鼓疱的顶点裂开一横向长40毫米、宽2毫米的裂口。在爆破口处附近的500毫米管段内,还有五处小鼓包,迎火面有三个,背火面有两个。这些鼓疱都是横向的,长70—80毫米、宽15毫米,高5-6毫米,外观很象弯管时的波浪度。此外,第一排凝渣管的其余15根管全部在同一管段部位向后方弯曲变形,个别管也有小的鼓疱,过热变形管段长约2米,最大弯曲度为295毫米,这部分管段的管径

由直径70毫米,不同程度胀粗达直径74-直径77.5毫米。

二、事故原因分析

经割管检查,管壁有不同程度的变薄,内壁也有过烧的颜色,凡是变薄处呈灰黑色与酸洗后相似,其余管壁还有些氧化铁类附着物,附着物上有片状白色盐类。对爆管采样进行金相和机械性能试验,金相组织为珠光体加铁素体,并有轻微过烧、机械性能比正常降低20%左右。根据现场情况,我们对改锅炉进行了全面检查和分析,认为造成管子过热,发生变形、爆管的原因主要是:

1.循环回路设计不合理,受热面得不到充分的冷却

该锅炉左右炉膛水冷壁的受热面都是上锅筒引出的下降管供水,通过计算,下降管与上升管的截面比都在30%左右,回路的循环高度差大,下降管都布置在炉墙外面,绝热可靠,因而循环比较可靠,受热面没有发生过因为水循环故障引起的缺水变形等现象。而后拱管和后墙水冷壁管水冷壁集箱的下降管由于结构原因,设置在下锅筒上,通过两根Φ89的管子为35根Φ513X3.5的后拱管和后培管供水,下降管与上升管的截面比为19%,下降管截面积偏小,后拱管后是后墙和上部凝渣管,管子弯头数量多,受热面积大,受热较强,虽然其循环回路本身是循环回路,但是凌回路由下锅筒供水,水温较高,同时与对流管束一起形成了复杂的循环回路,后排凝渣管由于从后墙直接引到锅筒,没有向前延伸成为棋管,在烟窗处也没有向前延伸弯曲,水循环阻力小,循环比较可靠,没有发生因冷却不良导致的变形,而拱管由于弯头数量多,循环阻力大,水分配少,造成管内水完全汽化,管于内部结水垢,破坏了冷却条件,造成管于局部过热变形,直至开裂。2.由于循环停滞,形成自由水面

由于第一排凝渣管供水量不足,管内循环水完全汽化,在管内形成自由水面,汽水分界面上冷却不足,管于壁温高,甚至超过钢材的允许使用温度,发生过热和胀粗;而分界线下部,管壁温度接于介质的饱和温度;所以在汽水分界线处形成温度应力。在运行情况下,自由水面是上下波动的,因而温度应力属于交变的应力,达到疲劳极限后,就会产生疲劳破坏。该锅炉的管子发生的胀粗是由于管内水完全蒸发汽化,自由水面之上停滞的蒸汽被外部高温烟气(火焰)加热成为过热蒸汽,当过热蒸汽温度达到500℃以上时,造成强度降低发生的过热变形和胀粗或鼓包,同时高温蒸汽对碳钢生汽水腐蚀,使管壁变薄;由于管于内部发生完全汽化,即便是锅炉用水完全符合标准要求,但是水中溶解的残余硬度包括盐份在蒸发时也会浓缩析出,在管内壁形成水垢,进一步增加管子传热的阻力,使受热面管壁超温,加剧了管子的变形,胀粗和高温氧化腐蚀。

3.锅炉的排污结构不合理

蒸汽锅炉的排污操作是保护受热面管于水循环可靠性的一个重要操作环节。按照通常的规定每班不许排污一次。并且操作也应该符合相应的规定。该锅炉的后墙水冷壁由于结构原因只能在炉墙两侧设置,该锅炉的右侧只设置了一个Dn25的排污阀,为了可以关闭严密,其中的一个阀门采用的是J4lH-16CD的截止阀,在《蒸汽锅炉安全技术监察规程》中规定排污应采用l闸阀,斜截止阀,该锅炉中采用的截止阀违反了《蒸锅炉安全技术监察规程》的规定,排污阻力大;由于锅炉宽度在4米多,只在单侧设置排污,很难把集箱内沉积的杂物排除。同时现场操作人员不全是经过考试合格的锅炉操作人员,不了解排污的具体规定,对排污的操作也不很熟练,在内部检查时发现,集箱内部的沉积物高度超过集箱内直径的三分之一,由于沉积物的存在,缩小了集箱的流通截面积,严重影响水冷壁管子的供水。

三、处理措施

1.把集箱加长,从土锅筒冷水区两侧炉墙外引出下降管。

2.加大下降管管直径,由原来的Φ89增加到Φ108,下降管与上升管的截面比有原来的19%增加到29.5%,接近与正常设计的常规数据。

3.全面更换后墙水冷壁,把弯管直径由原来的R160增加到R300,降低了水冷壁管的局部阻力。

4.后拱管上部分采取耐火涂层保护,降低了后墙管的受热面积,避免内部因吸热量大完全汽化。

5.把排污管由单侧设置改为双侧设置,在集箱内设置了排污吸管,按照内部装置实际的规定,对吸污管的开孔进行了详细的计算,且把排污管径加大到Dn40,全部采用串联的排污阀。

6.建立锅炉操作的各项管理制度,全面使用经过正规培训的有操作经验的锅炉司炉人员,避免因操作失误造成事故隐患。

下载锅炉的论文锅炉水处理论文-南阳天益#4锅炉(600MW)水冷壁爆管处理及原因分析[精品论文]word格式文档
下载锅炉的论文锅炉水处理论文-南阳天益#4锅炉(600MW)水冷壁爆管处理及原因分析[精品论文].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐