第一篇:数学家小故事100字
华罗庚 有一次,他跟邻居家的孩子一起出城去玩,他们走着走着;忽然看见路旁有座荒坟,坟旁有许多石人、石马。这立刻引起了华罗庚的好奇心,他非常想去看个究竟。于是他就对邻居家的孩子说: “那边可能有好玩的,我们过去看看好吗?” 邻居家的孩子回答道:“好吧,但只能呆一会儿,我有点害怕。” 胆大的华罗庚笑着说:“不用怕,世间是没有鬼的。”说完,他首先向荒坟跑去。两个孩子来到坟前,仔细端详着那些石人、石马,用手摸摸这儿,摸摸那儿,觉得非常有趣。爱动脑筋的华罗庚突然问邻居家的孩子:“这些石人、石马各有多重?” 邻居家的孩子迷惑地望着他说:“我怎么能知道呢?你怎么会问出这样的傻问题,难怪人家都叫你„罗呆子‟。” 华罗庚很不甘心地说道:“能否想出一种办法来计算一下呢?” 邻居家的孩子听到这话大笑起来,说道:“等你将来当了数学家再考虑这个问题吧!不过你要是能当上数学家,恐怕就要日出西山了。” 华罗庚不顾邻家孩子的嘲笑,坚定地说:“以后我一定能想出办法来的。” 当然,计算出这些石人、石马的重量,对于后来果真成为数学家的华罗庚来讲,根本不在话下。金坛县城东青龙山上有座庙,每年都要在那里举行庙会。少年华罗庚是个喜爱凑热闹的人,凡是有热闹的地方都少不了他。有一年华罗庚也同大人们一起赶庙会,一个热闹场面吸引了他,只见一匹高头大马从青龙山向城里走来,马上坐着头插羽毛、身穿花袍的“菩萨”。每到之处,路上的老百姓纳头便拜,非常虔诚。拜后,他们向“菩萨”身前的小罐里投入钱,就可以问神问卦,求医求子了。华罗庚感到好笑,他自己却不跪不拜“菩萨”。站在旁边的大人见后很生气,训斥道: “孩子,你为什么不拜,这菩萨可灵了。” “菩萨真有那么灵吗?”华罗庚问道。一个人说道:“那当然,看你小小年纪千万不要冒犯了神灵,否则,你就会倒楣的。” “菩萨真的万能吗?”这个问题在华罗庚心中盘旋着。他不相信一尊泥菩萨真能救苦救难。庙会散了,看热闹的老百姓都回家了。而华罗庚却远远地跟踪着“菩萨”。看到“菩萨”进了青龙山庙里,小华罗庚急忙跑过去,趴在门缝向里面看。只见 “菩萨”能动了,他从马上下来,脱去身上的花衣服,又顺手抹去脸上的妆束。门外的华庚惊呆了,原来百姓们顶礼膜拜的“菩萨”竟是一村民装扮的。华罗庚终于解开了心中的疑团,他将“菩萨”骗人的事告诉了村子里的每个人,人们终于恍然大悟了。从此,人们都对这个孩子刮目相看,再也无人喊他“罗呆子”了。正是华罗庚这种打破砂锅问到底的精神,陈景润 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28= 5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。“老师,我没有胡闹”
数学家小时候的故事——高斯
印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。
2、大海边的阿基米德 2005-5-29 18:21:39 来 源:《中国校外教育》 网络资源 阅读517次 阿基米德11岁那年,离开了父母,来到了古希腊最大的城市之一的亚历山大里亚求学。当时的亚历山大里亚是世界闻名的贸易和文化交流中心,城中图书馆异常丰富的藏书,深深地吸引着如饥似渴的阿基米德。当时的书是订在一张张的羊皮上的,也有用莎草茎剖成薄片压平后当作纸,订成后粘成一大张再卷在圆木棍上。那时没有发明印刷术,书是一个字一个字抄成的,十分宝贵。阿基米德没有纸笔,就把书本上学到的定理和公式,一点一点地牢记在脑子里。阿基米德攻读的是数学,需要画图形、推导公式、进行演算。没有纸,就用小树枝当笔,把大地当纸,因为地面太硬,写上去的字迹看不清楚,阿基米德苦想了几天,又发明了一种”纸“,他把炉灰扒出来,均匀地铺在地面上,然后在上面演算。可是有时天公不作美,风一刮,这种”纸“就飞了。一天,阿基米德来到海滨散步,他一边走一边思考着数学问题。无边无垠的沙滩,细密而柔软的沙粒平平整整地铺展在脚下,又伸向远方。他习惯地蹲下来,顺手捡起一个贝壳,便在沙滩上演算起来,又好又便捷。回到住地,阿基米德十分兴奋地告诉他的朋友们说:”沙滩,我发现沙滩是最好的学习地方,它是那么广阔,又是那么安静,你的思想可以飞翔到很远的地方,就象是飞翔在海面上的海鸥一样。“神奇的沙滩、博大的海洋,给人智慧,给人力量。打那以后,阿基米德喜欢在海滩上徜洋徘徊,进行思考和学习。从求学的少年时代开始一直保持到生命的最后一息。公元前212年,罗马军队攻占了阿基米德的家乡叙拉古城。当时,已75岁高龄的阿基米德正在沙滩上聚精会神地演算数学,对于敌军的入侵竟丝毫未觉察。当罗马士兵拔出剑来要杀他的时候,阿基米德安静地说:”给我留下一些时间,让我把这道还没有解答完的题做完,免得将来给世界留下一道尚未证完的难题。“ 由于阿基米德孜孜不倦、刻苦钻研,终于成为古希腊伟大的数学家、物理学家、天文学家和发明家,后人将他与牛顿、欧拉、高斯并称为”数坛四杰“、”数学之神“。我国数学泰斗华罗庚说:”天才在于积累。聪明在于勤奋。“面对知识的大海,人们应该象阿基米德那样,信念是罗盘,执著和勇毅作双浆,不懈追求,毕生探索。扬帆远航!
3、国际象棋发明人的报酬 2004-11-23 11:40:32 选自《 数海钩沉——世界数学名题选辑》 作者:高希尧 阅读419次 这是印度的一个古老传说,舍罕王打算重赏象棋发明人、宰相西萨·班·达依尔。这位聪明的大臣的胃口看来并不大,他跪在国王面前说: „陛下,请您在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,第三格内给四粒,用这样下去,每一小格内都比前一小格加一倍。陛下,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧!‟ „爱卿,你所求的并不多啊。”国王说道,心里为自己对这样一件奇妙的发明赏赐的许诺不致破费太多而暗喜。“你当然会如愿以偿的,”国王命令如数付给达依尔。计数麦粒的工作开始了,第一格内放1粒,第二格内放2粒第三格内放2‟粒,…还没有到第二十格,一袋麦子已经空了。一袋又一袋的麦子被扛到国王面前来。但是,麦粒数一格接一格飞快增长着,国王很快就看出,即便拿全印度的粮食,也兑现不了他对达依尔的诺言。原来,所需麦粒总数 1+2+2^2+2^3+2^4+……+2^63=2^64-1 =***709551615。这些麦子究竟有多少?打个比方,如果造一个仓库来放这些麦子,仓库高4公尺,宽10公尺,那么仓库的长度就等于地球到太阳的距离的两倍。而要生产这么多的麦子,全世界要两千年。尽管印度舍罕王非常富有,但要这样多的麦子他是怎么也拿不出来的。这么一来,舍罕王就欠了宰相好大一笔债。要么是忍受达依尔没完没了的讨债,要么是干脆砍掉他的脑袋。结果究竟如何,可惜史书上没有记载。从这个故事中,不难看出,印度古代对等比级数已有相当的研究。类似印度“国际象棋发明人的报酬”问题还出现在别的国度。十八世纪初期,俄国马格尼茨的《算术》一书中的“卖马‟问题,就与“国际象棋发明人的报酬”相类似,有异曲同工之妙。“卖马”原题如下: 某人卖马一匹,得钱156卢布。但是买主买到马以后又懊悔了,要把马退还给卖主,他说这匹马根本不值这么多钱。于是卖主向买主提出了另一种计算马价的方案说,如果你嫌马太贵了,那末就只买马蹄上的钉子好了,马就算白送给你。每个马蹄铁上有6枚钉子,第一枚钉子只卖1/4个戈比(1卢布等于100戈比),第二枚卖半个戈比,第三枚一个戈比,后面每个钉子价格依此类椎。买主认为钉子的价值总共也花不了10个卢布,还能白得一匹好马,于是就欣然同意丁。结果买主算账后才明白上当。试问买主在这笔交易中要亏损多少?
数学家的故事——苏步青 苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。„天下兴亡,匹夫有责‟,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心 1596-1650)法国哲学家,数学家,物理学家,解析几何学奠基人之一。他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论,对后世的哲学。数学和自然科学发展起到了巨大的作用。笛卡儿分析了几何学和代数学的优缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法,这种方法就是用代数方法,来研究几何问题--解析几何,《几何学》确定了笛卡儿在数学史上的地位,《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生,思格斯把它称为数学的转折点,以后人类进入变量数学阶段。笛卡儿还改进了韦达的符号记法,他用a、b、c……等表示已知数,用x、y、z……等表示未知数,创造了“=”,“”等符号,延用至今笛卡儿在物理学。斜 回答采纳率:14.3% 2009-01-26 09:29 您已经评价过!好:14 您已经评价过!不好:11 20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为”计算机之父“.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称”智慧之都“的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以”径一周三“做为圆周率,这就是”古率“.后来发现古率误差太大,圆周率应是”圆径一而周三有余“,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--”割圆术“,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的”割圆术“方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做”祖率". 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
第二篇:数学家小故事
1,高斯(1777—1855年)德国数学家、物理学家和天文学家.高斯在童年时代就表现出非凡的数学天才.年仅三岁,就学会了算术,八岁因发现等差数列求和公式而深得老师和同学的钦佩.大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件.解决了两千年来悬而未决的难题,1799年以代数基本定理的四个漂亮证明获博士学位.高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义.并在天文学,大地测量学和磁学的研究中都有杰出的贡献.1801年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代.非欧几里得几何是高斯的又一重大发现,他的遗稿表明,他是非欧几何的创立者之一.高斯致力于天文学研究前后约20年,在这领域内的伟大著作之一是1809年发表的《天体运动理论》.高斯对物理学也有杰出贡献,麦克斯韦称高斯的磁学研究改造了整个科学.高斯的一生中,还培养了不少杰出的数学家.
女数学家诺德
1933年1月,希特勒一上台,就发布第一号法令,把犹太人比作“恶魔”,叫嚣着要粉碎“恶魔的权利”.不久,哥廷根大学接到命令,要学校辞退所有从事教育工作的纯犹太血统的人.在被驱赶的学者中,有一名妇女叫爱米•诺德
(A.E.Noether 1882—1935),她是这所大学的教授,时年5l岁.她主持的讲座被迫停止,就连微薄的薪金也被取消.这位学术上很有造诣的女性,面对困境,却心地坦然,因为她一生都是在逆境中度过的.诺德生长在犹太籍数学教授的家庭里,从小就喜欢数学.1903年,21岁的诺德考进哥廷根大学,在那里,她听了克莱因、希尔伯特、闽可夫斯基等人的课,与数学解下了不解之缘.她学生时代就发表了几篇高质量的论文,25岁便成了世界上屈指可数的女数学博士.诺德在微分不等式、环和理想子群等的研究方面做出了杰出的贡献.但由于当时妇女地位低下,她连讲师都评不上,在大数学家希尔伯特的强烈支持下,诺德才由希尔伯特的“私人讲师”成为哥廷根大学第一名女讲师.接下来,由于她科研成果显著,又是在希尔伯特的推荐下,取得了“编外副教授”的资格,虽然她比起很多“教授”更有实力.
诺德热爱数学教育事业,善于启发学生思考.她终生未婚,却有许许多多“孩子”.她与学生交往密切,和蔼可亲,人们亲切地把她周围的学生称为“诺德的孩子们”.我国代数学家曾炯之就是诺德“孩子”们中的一个.在希特勒的淫威下,诺德被迫离开哥廷根大学,去了美国工作.在美国,她同样受到学生们的尊敬和爱戴,同样有她的“孩子们”.1934年9月,美国设立了以诺德命名的博士后奖学金.不幸的是,诺德在美国工作不到两年,便死于外科手术,终年53岁.她的逝世,令很多数学同僚无限悲痛.爱因斯坦在《纽约时报》发表悼文说:“根据现在的权威数学家们的判断,诺德女士是自妇女受高等教育以来最重要的富于创造性数学天才.”
第三篇:数学家小故事
也许数学家们的研究是我们难于理解的,但数学家们的故事我们不妨看看。
●“文革”中,批斗陈景润的人宣布:让哥德巴赫猜想见鬼去吧!1+2有什么了不起!1+2不就等于3么?吃着农民种的粮食,住着工人盖的房子,有解放军战士保护着,还领着国家的工资,研究什么1+2=3,什么玩艺儿?伪科学!陈腾地跳上桌子,一步便迈向洞开的窗户,纵身往下一跳!命不该绝。他从三楼窗口往下跳,伸出的屋沿挡了他一下,一个罕见的奇迹!跳楼的陈景润安然无恙,只是大腿上擦破了点皮,有涔涔的鲜血冒出来。一个造反派干将,见到跳楼后平安无事的陈景润,说:“真不愧是个知名的数学家,连跳楼都懂得选择角度!”
●一次,数学家欧基里德教一个学生学习某个定理。结束后这个年轻人问欧基里德,他学了能得到什么好处。欧基里德叫过一个奴隶,对他说:“给他3个奥波尔,他说他学了东西要得到好处。”在数学还非常哲学化的古希腊,探究世界的本原、万物之道,而要得到什么“好处”,受到鄙视是可以理解的。
●一次拓扑课,Minkowski向学生们自负的宣称:“这个定理没有证明的最要的原因是至今只有一些三流的数学家在这上面花过时间。下面我就来证明它。”…….这节课结束的时候,没有证完,到下一次课的时候,Minkowski继续证明,一直几个星期过去了……一个阴霾的早上,Minkowski跨入教室,那时候,恰好一道闪电划过长空,雷声震耳,inkowski很严肃的说:“上天被我的骄傲激怒了,我的证明是不完全的……。
● Hilbert曾有一个学生,给了他一篇论文来证明Riemann猜想,尽管其中有个无法挽回的错误,Hilbert还是被深深地吸引了。第二年,这个学生不知道怎么回事死了,Hilbert要求在葬礼上做一个演说。那天,风雨瑟瑟,这个学生的家属们哀不胜收。Hilbert开始致词,首先指出,这样的天才这么早离开我们实在是痛惜呀,众人同感,哭得越来越凶。接下来,Hilbert说,尽管这个人的证明有错,但是如果按照这条路走,应该有可能证明Riemann猜想,再接下来,Hilbert继续热烈的冒雨讲道:“事实上,让我们考虑一个单变量的复函数.....”众人皆倒。
●贝塞克维奇(Abram S.Besicovich,1891-1970年)是具有非凡创造力的几何分析学家,生于俄罗斯,一战时期在英国剑桥大学。他很快就学会了英语,但水平并不怎么样。他发音不准,而且沿习俄语的习惯,在名词前不加冠词。有一天他正在给学生上课,班上学生在下面低声议论教师笨拙的英语。贝塞克维奇看了看听众,郑重地说:“先生们,世上有5000万人说你们所说的英语,却有两亿俄罗斯人说我所说的英语。”课堂顿时一片肃静。
● 德国女数学家爱米·诺德,虽已获得博士学位,但无开课“资格”,因为她需要另写论文后,教授才会讨论是否授予她讲师资格。当时,著名数学家希尔伯特十分欣赏爱米的才能,他到处奔走,要求批准她为哥廷根大学的第一名女讲师,但在教授会上还是出现了争论。一位教授激动地说:“怎么能让女人当讲师呢?如果让她当讲师,以后她就要成为教授,甚至进大
学评议会。难道能允许一个女人进入大学最高学术机构吗?”另一位教授说:“当我们的战士从战场回到课堂,发现自己拜倒在女人脚下读书,会作何感想呢?” 希尔伯特站起来,坚定地批驳道:“先生们,候选人的性别绝不应成为反对她当讲师的理由。大学评议会毕竟不是洗澡堂!”
●波兰伟大的数学家伯格曼(Stefan Bergman,1898-1977年)离开波兰后,先后在美国布朗大学、哈佛大学和斯坦福大学工作。他不大讲课,生活支出主要靠各种课题费维持。由于很少讲课,他的外语得不到锻炼,无论口语还是书面语都很晦涩。但伯格曼本人从不这样认为。他说:“我会讲12种语言,英语最棒。”事实上他有点口吃,无论讲什么话别人都很难听懂。有一次他与波兰的另一位分析大师用母语谈话,不一会对方提醒他:“还是说英语吧,也许更好些。”
1950年国际数学大会期间,意大利一位数学家西切拉(Sichera)偶然提起伯格曼的一篇论文可能要加上“可微性假设”,伯格曼非常有把握地说:“不,没必要,你没看懂我的论文。”说着拉着对方在黑板上比划起来,同事们耐心地等着。过了一会西切拉觉得还是需要可微性假设。伯格曼反而更加坚定起来,一定要认真解释一下。同事们插话:“好了,别去想它,我们要进午餐了。”伯格曼大声嚷了起来:“不可微—不吃饭。(”No differentiability, no lunch)最终西切拉留下来听他一步一步论证完。
还有一次伯格曼去西海岸参加一个学术会议,他的一个研究生正好要到那里旅行结婚,他们恰好乘同一辆长途汽车。这位学生知道他的毛病,事先商量好,在车上不谈数学问题。伯格曼满口答应。伯格曼坐在最后一排,这对要去度蜜月的年轻夫妇恰巧坐在他前一排靠窗的位置。10分钟过后,伯格曼脑子里突然有了灵感,不自觉地凑上前去,斜靠着学生的座位,开始讨论起数学。再过一会,那位新娘不得不挪到后排座位,伯格曼则紧挨着他的学生坐下来。一路上他们兴高采烈地谈论着数学。幸好,这对夫妇婚姻美满,有一个儿子,还成了著名数学家。
●哥德尔(Kurt Godel,1906-1978年)的举止以“新颖”和“古怪”著称,爱因斯坦是他要好的朋友,他们当时都在普林斯顿。他们经常在一起吃饭,聊着非数学话题,常常是政治方面的。麦克阿瑟将军从朝鲜战场回来后,在麦迪逊大街举行隆重的庆祝游行。第二天哥德尔吃饭时煞有介事地对爱因斯坦说,《纽约时报》封面上的人物不是麦克阿瑟,而是一个骗子。证据是什么呢?哥德尔拿出麦克阿瑟以前的一张照片,又拿了一把尺子。他比较了两张照片中鼻子长度在脸上所占的比例。结果的确不同:证毕。
哥德尔一生花了很大精力想搞清楚连续统假设(CH)是否独立于选择公理(AC)。在60年代早期,一个初出茅庐的年轻数学家柯恩(Paul J.Cohen),与斯坦福大学的同事们聊天时扬言:他也许可以通过解决某个希尔伯特(Hilbert)问题或者证明CH独立于AC而一举成名。实话说,柯恩当时只是傅里叶分析方面的行家,对于逻辑和递归函数,他只摆弄过不长时间。柯恩果然去专攻逻辑了,大约用了一年的时间,真的证明了CH与AC独立。这项成果被认为是20世纪最伟大的智力成就之一,他因此获得菲尔兹奖(Fieids Medal,比自然科学界的诺贝尔奖还难获得)。柯恩的技术是“力迫”(forcing)法,现已成为现代逻辑的一种重要工具。
当初的情形是:柯恩拿着证明手稿去高等研究院找哥德尔,请他核查证明是否有漏洞。哥德尔起初自然很怀疑,因为柯恩早已不是第一个向他声明解决了这一难题的人了。在哥德尔眼里,柯恩根本就不是逻辑学家。柯恩找到哥德尔家,敲了门。门只开了6英寸的一道缝,一支冷冰冰的手伸出来接过手稿,随后门“砰”地关上了。柯恩很尴尬,悻悻而去。不过,两天后,哥德尔特别邀请柯恩来家里喝茶。柯恩的证明是对的:大师已经认可了。●维纳(1894-1964年)是最早为美洲数学赢得国际荣誉的大数学家,关于他的轶事多极了。维纳早期在英国,有一次遇见英国著名数学家李特尔伍德(Littlewood)时说:“噢,还真有你这么个人。我原以为Littlewood只是哈代(Hardy)为写得比较差的文章署的笔名呢。”维纳本人对这个笑话很懊恼,在自传中极力否认此事。此故事的另一种版本说的是朗道(Edmund Laudau):朗道很怀疑李特尔伍德的存在性,为此专程去英国亲自看了这个人。
维纳后来赴美国麻省理工学院任职,长达25年。他是校园中大名鼎鼎的人物,人人都想与他套点近乎。有一次一个学生问维纳怎样求解一个具体问题,维纳思考片刻就写出了答案。实际上这位学生并不想知道答案,只是问他“方法”。维纳说:“可是,就没有别的方法了吗?”思考片刻,他微笑着随即写出了另一种解法。维纳最有名的故事是有关搬家的事。一次维纳乔迁,妻子熟悉维纳的方方面面,搬家前一天晚上再三提醒他。她还找了一张便条,上面写着新居的地址,并用新居的房门钥匙换下旧房的钥匙。第二天维纳带着纸条和钥匙上班去了。白天恰有一人问他一个数学问题,维纳把答案写在那张纸条的背面递给人家。晚上维纳习惯性地回到旧居。他很吃惊,家里没人。从窗子望进去,家具也不见了。掏出钥匙开门,发现根本对不上齿。于是使劲拍了几下门,随后在院子里踱步。突然发现街上跑来一小女孩。维纳对她讲:“小姑娘,我真不走运。我找不到家了,我的钥匙插不进去。”小女孩说道:“爸爸,没错。妈妈让我来找你。”
有一次维纳的一个学生看见维纳正在邮局寄东西,很想自我介绍一番。在麻省理工学院真正能与维纳直接说上几句话、握握手,还是十分难得的。但这位学生不知道怎样接近他为好。这时,只见维纳来来回回踱着步,陷于沉思之中。这位学生更担心了,生怕打断了先生的思维,而损失了某个深刻的数学思想。但最终还是鼓足勇气,靠近这个伟人:“早上好,维纳教授!”维纳猛地一抬头,拍了一下前额,说道:“对,维纳!”原来维纳正欲往邮签上写寄件人姓名,但忘记了自己的名字……。
第四篇:数学家小故事
数学家小故事
9岁那年,苏步青的父亲挑上一担米当学费,走了50公里山路,送苏步青到平阳县城,当了一名高小的插班生。从山里到县城,苏步青大开眼界,什么东西都新奇。整天玩呀、闹呀,到期末考试,他在班里得了倒数第一名。
有一次,老师把苏步青叫到办公室,给他讲一个牛顿的小故事,苏步青见老师不批评他,还给他讲故事,心里很感激。陈老师见他垂着头,摸摸他的头后说:“我看你这个孩子挺聪明,只要肯努力,一定可以考第一名。”又说:“你爸爸、妈妈累死累活,省吃俭用,希望你把书念好。像你现在这样子,将来拿什么来报答他们?”苏步青的眼泪不受控的流了下来,第一次感到自己做错了事。此后,他完全变成了懂事的孩子,不再贪玩,刻苦读书,到期末考试得了全班第一名。
第五篇:古今中外数学家小故事
古今中外数学家小故事
1.陈景润 1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 ·威尔(A?Weil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。
2.数学家的墓志铭 一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
3.高斯 印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。
4.费马 数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。
自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过。5.泰勒斯(古希腊数学家、天文学家)泰勒斯来到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度.泰勒斯说可以,但有一个条件--法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.秦勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理.