第一篇:数学小故事
1、数学小故事
(1)七桥问题(一笔画问题)
18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。如图1所示:河中的小岛A与河的 左岸B、右岸C各有两座桥相连结,河中两支流间 的陆地D与A、B、C各有一座桥相连结。当时哥尼 斯堡的居民中流传着一道难题:一个人怎样才能一次 走遍七座桥,每座桥只走过一次,最后回到出发点? 大家都试图找出问题的答案,但是谁也解决不了这个问题。
七桥问题引起了著名数学家欧拉(1707—1783)的关注。他把具体七桥布局化归为图所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线 只画一次不准重复),并且最后返回起点?
欧拉经过研究得出的结论是:图是不能一笔画出的图形。这就是说,七桥问题是无解的。这个结论是如何产生呢?
如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。如果画笔经过一个n次,那么就有2n条线与该点相连结。因此,这个图形中除起点与终点外的各点,都与偶数条线相连。
如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。
(2)奇特的墓志铭
在大数学家阿基米德的墓碑上,镌刻着一个有趣的几何图形:一个圆球镶嵌在一个圆柱内。相传,它是阿基米 德生前最为欣赏的一个定理。
在数学家鲁道夫的墓碑上,则镌刻着圆周率π的35位数值。这个数值被叫做。”鲁道夫数”。它是鲁道夫毕生心血的结晶。大数学家高斯曾经表示,在他去世以后,希望人们在他的墓碑上刻上一个正17边形。因为他是在完成了正17边形 的尺规作图后,才决定献身于数学研究的„„
不过,最奇特的墓志铭,却是属于古希腊数学家丢番图的。他的墓碑上刻着一道谜语般的数学题: “过路人,这座石墓里安葬着丢番图。他生命的1/6是幸福的童年,生命的1/12是青少年时期。又过了生命的1/7他才结婚。婚后5年有了一个孩子,孩子活到他父亲一半的年纪便死去了。孩子死后,丢番图在深深的悲哀中又活了4年,也结束了尘世生涯。过路人,你知道丢 番图的年纪吗?”丢番图的年纪究竟有多大呢?
设他活了X岁,依题意可列出方程。这样,要知道丢番图的年纪,只要解出这个方程就行了。
这段墓志铭写得太妙了。谁想知道丢番图的年纪,谁就得解一个一元一次方程;而这又正好提醒前来瞻仰的人们,不要忘记了丢番图献身的事业。
在丢番图之前,古希腊数学家习惯用几何的观点看待遇到的所有数学问题,而丢番图则不然,他是古希腊第一个大代数学家,喜欢用代数的方法来解决问题。现代解方程的基本步骤,如移项、合并同类项、,方程两边乘以同一因子等等,丢番图都已知道了。他尤其擅长解答不定方程,发明了许多巧妙的方法,被西方数学家誉为这门数学 分支的开山鼻祖。
丢番图也是古希腊最后一个大数学家。遗憾的是,关于他的生平。后人几乎一无所知,既不知道他生于何地,也不知道他卒于何时。幸亏有了这段奇特的墓志铭,才知道他曾享有84岁的高龄。(3)希腊十字架问题
图上那只巨大的复活节彩蛋上有一个希腊十字架,从它引发出许多切割问题,下面是其中的三个。
(a)将十字架图形分成四块,用它们拼成一个正方形;有无限多种办法把一个希腊十字架分成四块,再把它们拼成一个正方形,下图给出了其中的一个解法。奇妙的是,任何两条切割直线,只要与图上的直线分别平行,也可取得同样的结果,分成的四块东西总是能拼出一个正方形。
(b)将十字架图形分成三块,用它们拼成一个菱形;(c)将十字架图形分成三块,用它们拼成一个矩形,要求其长是宽的两倍。
第二篇:数学小故事
数学小故事
聪明的小男孩
从前,一个国王经常给身边的大臣出难题来取乐,如果大臣答对了,他将用小恩小惠给点赏赐;如果答不出来,那将受罚,甚至被砍头。
一天,国王指着宫里的一个池塘问:“谁能说出池子里有多少桶水,我就赏他珠宝。如果说不出来,我就要‘赏’你们每人50大鞭。”大臣们被这突如其来的问题难住了。
正在大臣们心慌意乱之际,走过来一个放牛的小男孩。他问清了事情的缘由之后说:“我愿意见见这位国王。”
大臣们把小男孩带到了国王身边。国王见眼前的小男孩又黑又瘦又小,便怀疑说:“这个问题答上来有奖,答不上来可要被砍头的,你知道吗?”在场的人都替这个小男孩捏了一把汗,可小男孩却不慌不忙地回答出国王的问题。国王无奈之下,拿出珠宝奖励给了小男孩。小朋友们,你知道他是怎样回答的吗? 八戒吃了几个山桃
八戒去花果山找悟空,大圣不在家。小猴子们热情地招待八戒,采了山中最好吃的山桃整整100个,八戒高兴地说:“大家一起吃!”可怎样吃呢,数了数共30只猴子,八戒找个树枝在地上左画右画,列起了算式,100÷30=3.....1
八戒指着上面的3,大方的说,“你们一个人吃3个山桃吧,瞧,我就吃那剩下的1个吧!”小猴子们很感激八戒,纷纷道谢,然后每人拿了各自的一份。
悟空回来后,小猴子们对悟空讲今天八戒如何大方,如何自已只吃一个山桃,悟空看了八戒的列式,大叫,“好个呆子,多吃了山桃竟然还嘴硬,我去找他!”
哈哈,你知道八戒吃了几个山桃?
分苹果
小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。小咪的爸爸是怎样做的呢?
第三篇:数学小故事
数学小故事 ①
找零钱
一家手杖店来了一个顾客,买了30元一根的手杖.他拿出一张50元的票子,要求找钱.
店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头.
顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的.店主不得已向邻居赔偿了50元.随后出门去追那个顾客,并把他抓住说:“你这个骗子,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失.”
这个顾客却说:“一根手杖的费用就是邻居给你换零钱时你留下的30元,因此我只拿了你70元.”
请你计算一下,手杖店真正的损失是多少?这里要补充一下,手杖的成本是20元.如果这个顾客行骗成功,那么共骗得了多少钱? ②
蒲丰试验
一天,法国数学家蒲丰请许多朋友到家里,做了一次试验。蒲丰在桌子上铺好大一张白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半。蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。③
蜗牛何时爬上井?
一只蜗牛不小心掉进了一只枯井里,它趴在井底上哭起来,一只癞蛤蟆过来,翁声翁气的对蜗牛说:“别哭了,小兄弟,哭也没用,这井壁又高又滑,掉到这里只能在这里生活了。我已经在这里生活了许多年了。蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀!我决不能像它那样生活在又黑又冷的井底里。”蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬出去,请问这口井有多深?”“哈哈哈„„,真是笑话,这井有10米深,你小小年纪。又背负着这么重的壳,怎么能爬出去呢?”“我不怕苦不怕累,每天爬一段,总能爬出去!” 第二天,蜗牛吃得饱饱的,开始顺着井壁往上爬了,它不停的爬呀爬,到了傍晚,终于爬了5米,蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就可以爬出去了。”想着想着,不知不觉睡着了,早上,蜗牛被一阵呼噜声吵醒了,一看,原来是癞大叔还在睡觉,他心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后,从井壁上滑下来4米,蜗牛叹了一口气,咬咬牙,又开始往上爬,到傍晚又往上爬了5米,可晚上,蜗牛又滑下来4米,就这样,爬呀爬,滑呀滑,最后坚强的蜗牛终于爬上了井台。聪明的小朋友你能猜出来蜗牛用了多少天才爬上井台的吗?
第四篇:数学小故事
数学符号的故事
很久很久以前,数学王国里乱糟糟的,没有任何秩序。0~9十个兄弟不仅在王国中称王称霸,而且他们彼此之间总是吹嘘自己的本领最大。数字天使看见这种情况很生气,于是就派“>”、“<”和“=”三个小天使到数学王国,要求他们一定要让王国变得有秩序起来。
三个小天使来到了数学王国,0~9十兄弟轻蔑地盯着他们,“9”问道:“你们三个是干什么的?我们的王国不欢迎你们。”
“=”天使笑了笑说:“我们是天使派到你们王国的法官,帮助你们治理好你们的国家。我是„等号‟在我两边的数字总是相等的;这两位是„大于号‟和„小于号‟他们开口朝谁,谁就大,尖尖朝谁,谁就小。”
0~9十兄弟一听他们是数字天使派来的法官,以及“=”的介绍,都乖乖地服从“>”、“<”和“=”的命令。从此以后,数学王国越来越强盛,而且有着十分严格的秩序,任何人都不会违反。
动物中的数学“天才”
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。
丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?”
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
阿拉伯数字的由来
小明是个喜欢问问题的孩子。有一天,他对0-9这几个数字产生了兴趣:为什么它们被称为“阿拉伯数字”呢?
于是他就去问他的当数学老师的妈妈:“0-9既然叫„阿拉伯数字‟,那么肯定是阿拉伯人发明的了,妈妈对吗?”
妈妈摇摇头,说:“阿拉伯数字实际是印度人发明的。大约在1500年以前,印度人就已经用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就可以写成。后来,由于各国之间的接触,这些数字传入阿拉伯,阿拉伯人觉得它们很简单,于是在自己的国家开始广泛使用并且把他传到全欧洲。就这样,它们慢慢地就成了我们今天使用的数字。因为阿拉伯人在传播这种数字方面,起的作用很大,人们也就习惯了称这种数字为„阿拉伯数字‟。”
小明高兴地说:“原来是这样。妈妈,这可不可以叫做„将错就错‟呢?”小明和妈妈都笑了。
儿歌比赛
数学学校举行儿歌比赛,大象老师做裁判。
小猴聪聪第一个举手。聪聪清了清嗓子,开始朗诵道:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加一,得数算得快又准。”
聪聪刚刚说完,小狗佳佳兴起手,说:“我的儿歌和聪聪的很相似。”大象老师说:“好!那我们听听你的儿歌。”佳佳大方地走上台,朗诵道:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。十位退一是一十,退了以后少个一。十位数字怎么减,十位退一再去减。”
大家为他们的精彩表演鼓掌。大象老师说:“他们的儿歌主我们明白了进位加法和退位减法,所以,我们觉得他们两个人都得冠军,好不好?”大家同意老师的意见,高兴的鼓掌祝贺他们俩。
一个故事引发的数学家
陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。
一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。
每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。
它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。
从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
数学家的“健忘”
我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。
有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫 人说,今天是您六十大寿,特来表示祝贺。” 吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住?
其实,吴文俊对日期的记忆力是很强的。他在将近花甲之年的时候,又先攻 了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。
后来,那位祝寿的来客在闲谈中问起他怎么连自己生日也记不住的时候,他知着回答:
“我从来不记那些没有意义的数字。在我看来,生日,早一天,晚一天,有 什么要紧?所以,我的生日,爱人的生日,孩子的生日,我一概不记,他从不想 要为自己或家里的人庆祝生日,就连我结婚的日子,也忘了。但是,有些数字非记不可,也很容易记住……”
第五篇:数学小故事
数学小故事:美丽的植树图案
很久很久以前,阿拉伯数字王国的国王过20岁生日,罗马数字王国派人送来了20棵珍贵的树,作为生日礼物。
阿拉伯数字国王十分高兴,他命令“20”大臣将这20棵树栽在宫廷花园里,每行要有4棵,还要使行数最多。这可是一个很难很难的问题啊。“20”大臣张榜招贤,凡是能巧妙地栽这20棵树的人将有重赏。可是,谁也设计不出来。
“20”大臣日夜思索,翻了大量的资料,又用石子进行了一次次的试验。他画了成千成万个图样。画着,试着,忽然,他眼睛一亮,看到了一张极其美妙的图案。
“20”大臣立即把图案奉献给国王。国王见了非常高兴,“20”大臣指着图案对国王说:“陛下,您看,图中所栽的树不论横数、竖数或斜数,每行都是4棵,这样最多18行。”
国王赞叹不止,说:“这样美丽奇妙的植树图案,我在任何公园都没有看见过,简直太美妙了。我要重重地赏您!”
“20”大臣站了起来,笑了笑说:“陛下,别赏我,这并不是我发明的。”
“什么?这不是你的发明?”国王问。
“对,这是一位名叫山姆·劳埃德的数学家发明和设计的,我只是把他设计的图案用到植树问题上来。”“20”大臣据实说。
“好,好,你能用上这个图案,也是有功的。”说着,国王宣布了对“20”大臣的奖赏,并将这个图案命名为“20图案”,是世界上最美丽的植树图案。
国王立即派人按照“20图案”把20棵树栽在宫廷的花园里。从此,这美丽的植树图案就一直流传至今。