第一篇:通信接口避雷器
通信接口避雷器考虑的主要因素如下:
· 线路上可能感应的浪涌形式(例如波形、时间参数和最大峰值);
· 接口电路模拟雷电冲击击穿电压临界指标;
· 保护对象在正常工作状态下的数据信号电平;
· 保护装置在模拟雷电冲击下的残压参数指标;
· 保护装置的耐冲击能力;
· 系统的工作频率;
· 保护对象的接口方式;
· 工作电压。
电源避雷器关键参数: Ⅰ.最大放电电流Imax:
使用8/20μs波冲击避雷器一次,能承受的最大放电电流。可根据当地的雷暴强度Ng(或年均雷暴日Td)以及环境因素作适当选择。
Ⅱ.最大持续耐压Uc(rms):
指避雷器在此电压值下能连续工作而不影响其作为避雷器的参数。Uc与保护电压Up成非线性正比。
Ⅲ.残压Ur和保护电压Up:
残压Ur:指在额定放电电流In下的残压值。
保护电压Up:保护电压Up与Uc电压和Ur有关,Ur 根据氧化锌压敏电阻特性,当选用的压敏电阻的Uc值高时,其Up和Ur也会相应提高,如在放电电流为10kA(8/20μs)时: Uc=275V Ur(10kA,8/20μs)≤1200V Uc=385V Ur(10kA,8/20μs)≤1600V Uc=440V Ur(10kA,8/20μs)≤1800V 3.电源防雷器的分类: Ⅰ.按放电电流区分: 耐受10/350μs波产品:该波形是模拟直击雷波形,波形能量大,目前有空气间隙型和压敏电阻型产品。如易龙公司的EPP100型。 耐受8/20μs波产品:该波形是模拟感应雷波形,是目前使用较多的波形。常见放电电流参数有100kA,80kA,65kA,40kA,20kA等,使用氧化锌压敏电阻。如易龙公司的EPP100/EPP80/ EPP65/EPP50/EPP40/EPP30/EPP20型。 雷电防护基本原理 雷电及其它强干扰对通信系统的致损及由此引起的后里是严重的,雷电防护将成为必需。雷电由高能的低频成份与极具渗透性的高频成份组成。其主要通过两种形式,一种是通过金属管线或地线直接传导雷电致损设备;一种是闪电通道及泄流通道的雷电电磁脉冲以各种耦合方式感应到金属管线或地线产生浪涌致损设备。绝大部分雷损由这种感应而引起。对于电子信息设备而言,危害主要来自于由雷电引起的雷电电磁脉冲的耦合能量,通过以下三个通道所产生的瞬态浪涌。金属管线通道,如自来水管、电源线、天馈线、信号线、航空障碍灯引线等产生的浪涌;地线通道,地电们反击;空间通道,电磁小组的辐射能量。 其中金属管线通道的浪涌和地线通道的地电位反击是电子信息系统致损的主要原因,它的最见的致损形式是在电力线上引起的雷损,所以需作为防扩的重点。由于雷电无孔不入地侵袭电子信息系统,雷电防护将是个系统工程。雷电防护的中心内容是泄放和均衡。 1.泄放是将雷电与雷电电磁脉冲的能量通过大地泄放,并且应符合层次性原则,即尽可能多、尽可能远地将多余能量在引入通信系统之前泄放入地;层次性就是按照所设立的防雷保护区分层次对雷电能量进行削弱。防雷保护区又称电磁兼容分区,是按人、物和信息系统对雷电及雷电电磁脉冲的感受强度不同把环境分成几个区域:LPZOA区,本区内的各物体都可能遭到直接雷击,因此各特体都可能导走全部雷电流,本区内电磁场没有衰减。LPZOB区,本区内的各物体不可能遭到直接雷击,但本区电磁场没有衰减。LPZ1区,本区内的各物体不可能遭到直接雷击,流往各导体的电流比LPZOB区进一步减少,电磁场衰减和效果取决于整体的屏蔽措施。后续的防雷区(LPZ2区等)如果需要进一步减小所导引的电流和电磁场,就应引入后续防雷区,应按照需要保护的系统所要求的环境区选择且续防雷区的要求条件。保护区序号越高,预期的干扰能量和干扰电压越低。在现代雷电防护技术中,防雷区的设置具有重要意义,它可以指导我们进行屏蔽、接地、等电们连接等技术措施的实施。 2.均衡就是保持系统各部分不产生足以致损的电位差,即系统所在环境及系统本身所有金属导电体的电位在瞬态现象时保持基本相等,这实质是基于均压等电位连接的。由可靠的接地系统、等电位连接用的金属导线和等电位连接器(防雷器)组成一个电位补偿系统,在瞬态现象存在的极短时间里,这个电位补偿系统可以迅速地在被保护系统所处区域内所有导电部件之间建立起一个等电位,这些导电部件也包括有源导线。通过这个完备的电位补偿系统,可以在极短时间内形成一个等电位区域,这个区域相对于远处可能存在数十千伏的电位差。重要的是在需要保护的系统所处区域内部,所有导电部件之间不存在显著的电位差。 3.雷电防护系统由三部分组成,各部分都有其重要作用,不存在替代性。外部防护,由接闪器、引下线、接地体组成,可将绝大部分雷电能量直接导入地下泄放。过渡防护,由合理的屏蔽、接地、布线组成,可减少或阻塞通过各入侵通道引入的感应。内部防护,由均压等电位连接、过电压保护组成,可均衡系统电位,限制过电压幅值。 随着银行系统现代化、信息化建设的不断发展,电子设备被广泛应用于金融网络的运行系统中。这些大量精密电子设备的使用及联网,使安装在弱电系统中的设备,经受着电源质量不良(如电源谐波放大、开关电磁脉冲)、直击雷、感应雷、工业操作瞬间过电压、零电位飘移等浪涌和过电压的侵袭,造成网络运行中断、甚至设备永久性损坏,由此而带来了巨大的直接经济损失,间接损失更是无法估量。因此,银行系统电子设备雷电过电压及电磁干扰防护,是保护通信线路、设备及人身安全的重要技术手段,是确保通信线路、设备正常运行必不可缺少的技术环节,是银行系统金融电子化建设及运行管理工作的重要组成部分。 1、雷击损坏原因的分析 银行系统的雷击案例大部分是由感应雷击及地电位反击而引起的。对于室外的入户线路,电源线和信号线均存在遭感应雷击的可能,虽然采取了埋地、穿管屏蔽、接地等措施,但也只能导走大部分雷电流,并不能将芯线上的感应雷电流导走,就是这部分芯线上的感应雷电流造成了设备的损坏。对于内部传输线路,当建筑物本身或附近落雷后,周围会形成强大的磁场,这些强磁场会对各种传输线路形成感应过电压或耦合过电压,从而造成损坏。对本身屏蔽及抗干扰能力较差的设备,强磁场可直接对内部芯片造成干扰甚至损坏。据研究当磁场强度Bm≥0.07×104 T时,无屏蔽的计算机会发生暂时性失效或误动作;当Bm≥2.4×104 T- -时,计算机元件会发生永久性损坏。而雷电电流周围出现的瞬变电磁场强度往往超过2.4×10-4 T。另外当建筑物本身或附近落雷后,地网电位升高,从而形成“反击”,造成损害。 2、等电位联结措施 等电位联结技术是现代防雷技术的核心内容,现行国标及IEC标准都是围绕此项内容展开的,SPD(电涌保护器)也是一种等电位联结器件。等电位联结技术应采取共用接地系统。等电位连接主要由以下三部分组成:一是建(构)筑物(群)外部的等电位连接措施。即外部与之相连的各建(构)筑物之间的等电位;二是建筑物内部的等电位措施。即建筑物本身的钢筋结构、金属门窗、室内的水管、采暖管、机房的金属屏蔽层、金属隔断、静电地板的金属支架等均应与等电位母排或接地基准平面进行电气联结;三是设备的等电位连接措施。即设备本身的金属外壳直接与等电位母排或接地基准平面进行电气联结,设备的各种传输线路通过SPD与外壳实现等电位连接。另外关于银行信息中心机房内的等电位连接措施应设计为 M 型等电位连接。M型等电位联结一方面可以使各设备工作地线最短,消除高频干扰,满足设备正常工作要求;另一方面又不会出现低频(工频)杂散电流的干扰,尤其是在雷击情况下能使各设备处在真正的等电位状态下而避免损坏。 3、屏蔽措施 IEC/TC-81(国际电工委员会第81防雷小组)的技术定义将系统防雷工作总结为:DBSE技术-即分流(Dividing)、均压(bonding)、屏蔽(Shielding)、接地(Earthing)四项技术加之有效的防护设备的综合。屏蔽措施是系统防雷工程中一项必不可少的工作,是减少雷电电磁干扰的基本措施。屏蔽措施主要有以下三点:一是建筑物本身的屏蔽措施。即法拉第笼式的金属屏蔽结构,必要时应对机房增加屏蔽措施,如加装高密度铜网和高密度钢网,并做好门、窗的屏蔽措施;二是传输线路的屏蔽措施。即各种传输线,包括外部传输线路和内部传输线路,均应穿金属管进行布线,即使机房内静电地板下的传输线路也应如此。传输线路应远离外墙特别是建筑物的主钢筋,传输管线的两端应可靠接地;三是设备的屏蔽。即设备本身应具备一定的屏蔽措施,设备的金属外壳应可靠接地。 4、电涌保护器(SPD)的安装 4.1供电线路的SPD防护 银行系统中心机房动力电一般采用从配电房引出的2路专线供电,进入机房后设置了专用配电柜。配电柜内一路供机房内UPS用电,另一路供机房精密空调用电。分行电源SPD应按三级保护的要求进行设计:第一级在配电房低压母线侧安装每相通流量为50KA的 10/350us波形SPD,如DEHNportMaxi;第二级在机房专用配电柜输入总线上安装每相通流量为60KA的8/20us波形的SPD,如DEHNguard385;第三级在UPS输入端和精密空调的供电端安装每相通流量为20KA的8/20us波形的SPD,如DEHNguard275。对于下属网点营业部,可按两级保护要求进行设计:第一级在机房专用配电柜输入总线上安装通流量为100KA的8/80us复合测试波形的SPD,如DEHNVGA280;第二级在UPS输入端安装每相标称通流为20KA的8/20us波形的SPD,如DEHNguard275。由于二、三级SPD均属限压型且处于同一房间,设备安装时应保证它们之间大于5米的规定。4.2信号线路的SPD防护 4.2.1对于进入信息中心机房内的所有电话外线,应在配线架上安装一级初保护避雷器。4.2.2 X.25、DDN、ISDN等电话专线,应在进入调制解调器前串接电话专线SPD,作为二级细保护。 4.2.3计算机网络系统的小型机、服务器、网络交换机、路由器、等设备,除线路的传输过程中应做好屏蔽与接地措施外,应在网络接口处需安装信号SPD。 4.2.4选择安装信号SPD时,必须了解网络的拓朴结构,网络的传输速率,选用的传输介质等内容。 4.2.5对于采用光缆传输的信号线,不需加装SPD,但光缆的金属 外皮、金属加强筋应在进入光端机前可靠接地。5.补充说明 5.1关于信息系统接地系统 关于弱电设备接地的问题,主要经历了独立接地、联合接地、共用接地三个阶段的讨论,同时,对接地电阻值的要求也很苛刻,银行系统信息中心接地电阻一般要求小于1欧姆。IEC标准及我国现行国标已经明确要求采用共用接地系统,完善等电位联结措施,而对接地电阻值的大小已经淡化。以前银行系统信息中心普遍要求采用独立地网,这种劳民伤财的做法也应该废除了。5.2关于SPD的安装 大部分的防雷工程公司特别注意对SPD的选取,其实再好的防雷设备也需要优良的工程来保障。许多国内外知名的防雷产品安装上去后,设备照样遭雷击,笔者发现主要是安装SPD时的线路布设不合理或者是接线太长。国标要求接至等电位联结板的接地导线要短而直,长度一般不应大于0.5m。同时,为避免不必要的感应回路,SPD与被保护设备之间应采用无回路或小回路方式安装,输入、输出线严格分开布设。关于SPD的安装希望能够得到重视。 综合应用系统与通信系统接口 应充分利用通信平台提供的CTI和其它形式的接口,在应急值守与指挥调度系统中,用户在应用系统的前台界面进行的操作,应用系统直接调用通信平台提供的接口,使用通讯系统的通讯能力完成诸如电话呼入业务响应、电话呼出、电话会议以及短信、传真、邮件等功能,为用户提供一体化的“一点通”应用解决方案。相应的接口主要包括: 电话呼入(应答、转接、会议) 电话呼出(单呼、会议) 短信(发送、接收) 传真(发送、接收) 邮件(发送、接收) “通信接口技术”思考题 宿迁学院通信工程081/22011-6-2 21.说明RS-232C数据信号线和控制信号线的逻辑电平有哪些规定;TTL电平如何转换成RS-232C规范接口? 2.RS-422/RS-485通信接口在RS-232C基础上性能有哪些改进和提高;TTL电平如何转换成RS-485规范接口? 3.说明IC总线的工作原理;用时序图说明IC总线的数据传输过程;图示数字温度传感器AD7416与IC总线的连接; 4.图示SPI接口的工作原理;图示A/D转换器TLC2543通过SPI接口与单片机的连接; 5.CAN总线的技术规范;CAN总线接口的组成;CAN总线接口电路图; 6.LonWorks总线节点的组成;3150 Neuron芯片的内部结构及其部件功能; 7.USB系统基本框架的组成,基本框架中每个组成部分的功能;USB 2.0支持3种速度模式; 8.USB通信的逻辑结构;USB总线协议,USB总线协议组成的结构关系; 9.FT245BM芯片功能框图,FT245BM芯片内部主要部件的功能;FT245BM与单片机的连接图; 10.什么是RFID技术;RFID的基本组成;Temic系列非接触式读卡器射频卡系统组成:基站芯片U2270B短距离紧密耦合型典型应用电路; 11.无线数传模块PTR2000的引脚功能、3种工作模式。PTR2000的客房温度监控系统的原理图及主要部件的型号和功能; 12.IEEE 802.11标准协议规范:IEEE 802.11各工作组及其主要任务; 13.嵌入式系统直接接入因特网三种常用方式及特点;嵌入式系统通过网关间接接入因特网的三种代表性的方式及特点; 14.图示CS8900A以太网接口芯片的内部结构;图示8位模式下嵌入式以太网系统原理图; 15.图示DCS系统基本结构,说明组成DCS系统五个部分的主要功能; 16.图示门禁系统的组成框图,说明门禁系统中各部分的主要功能; 17.图示TM12864ABA液晶模块与单片机的接口电路; 18.图示FM24C256铁电存储器芯片的内部结构;图示FM24C256芯片的接口电路。 222 避雷器教材 1.1 概述 避雷器的作用是限制过电压以保护电气设备。避雷器的类型主要有保护间隙、阀型避雷器和氧化锌避雷器。保护间隙主要用于限制大气过电压,一般用于配电系统、线路和变电所进线段保护。阀型避雷器与氧化锌避雷器用于变电所和发电厂的保护,在220kV及以下系统主要用于限制大气过电压,在超高压系统中还将用来限制内过电压或作内过电压的后备保护。 1.2 分类及特点 1.2.1 保护间隙 保护间隙,一般由两个相距一定距离的、敞露于大气的电极构成,将它与被保护设备并联,如下图所示,适当调整电极间的距离(间隙),使其击穿放电电压低于被保护设备绝缘时的冲击放电电压,并留一定的安全裕度,设备就可得到可靠的保护。 当雷电波入侵时,主间隙先击穿,形成电弧接地。过电压消失后,主间隙中仍有正常工作电压作用下的工频电弧电流(称为工频续流)。对中性点接地系统而言,这种间隙的工频续流就是间隙处的接地短路电流。由于这种间隙的熄弧能力较差,间隙电弧往往不能自行熄灭,将引起断路器跳闸,这是保护间隙的主要缺点,也是其应用受限制的原因。此外,由于间隙敞露,其放电特性也受气象和外界条件的影响。 1.2.2 阀型避雷器 阀型避雷器由装在密封瓷套中的间隙(又称火花间隙)和非线性电阻(又称阀片)串联构成。在正常情况下,火花间隙将带电部分与阀片隔开。当雷电波的幅值超过避雷器的冲击放电电压时,火花间隙被击穿,冲击电流经阀片流入大地,阀片上出现电压降(残压)。只要使避雷器的冲击放电电压和残压低于被保护设备的冲击耐压值,设备就可得到保护,而且残压愈低设备愈安全。 1.2.3 氧化锌避雷器 氧化锌避雷器,实际上也是一种阀型避雷器,其阀片以氧化锌(ZnO)为主要材料,加入少量金属氧化物,在高温下烧结而成。在工作电压下ZnO阀片可看作是绝缘体。氧化锌避雷器型号含义如右图。氧化锌避雷器相比氧化硅避雷器,有如下优点: (1)无间隙、无续流。在工作电压下,ZnO阀片呈现极大的电阻,续流近似为零,相当于绝缘体,因而工作电压长期作用也不会使阀片烧坏,所以一般不用串联间隙来隔离工作电压。 (2)通流容量大。由于续流能量极少,仅吸收冲击电流能量,故ZnO 避雷器的通流容量较大。 (3)可使电气设备所受过电压降低。在相同雷电流和相同残压下,SiO 避雷器只有在串联间隙击穿放电后才泄放电流,而ZnO避雷器(无串联间隙)在波头上升过程中就有电流流过,这就可降低作用在设备上的过电压。 (4)在绝缘配合方面可以做到陡波、雷电波和操作波的保护裕度接近一致。(5)ZnO避雷器体积小、质量轻、结构简单、运行维护方便。 ZnO避雷器的主要特性常用起始动作电压及压比等表示。起始动作电压又称转折电压,从这一点开始,电流将随电压升高而迅速增加,也即其非线性系数迅速进入0.02~0.05的区域。通常以1mA时的电压作为起始动作电压,其值约为其最大允许工作电压峰值的105%~115%。 压比是指ZnO避雷器通过大电流时的残压与通过1mA电流时的电压之比。例如10kA压比是指通过10kA冲击电流时的残压与通过1mA(直流)时的电压之比。压比越小,意味着通过大电流时的残压越低,则ZnO避雷器的保护性能越好。目前,此值约为1.6~2.0。 简述避雷器伏-秒特性的含义,避雷器与被保护电气设备的伏 -秒特性应如何配合 1、首先明确什么是伏秒特性曲线: 伏秒特性曲线是指在冲击电压波形一定的前提下,绝缘(包括固体介质、液体介质或气体介质的绝缘以及由不同介质构成的组合绝缘)的冲击放电电压与相应的放电时间的关系曲线。 2、再结合图谱来看(方便理解): 从图中可以看出来,避雷器的伏秒特性比较平坦,绝缘子串的伏秒特性相对来说陡一些,当电压在900kv一下的时候,避雷器能够先与绝缘子串放电,对过电压吸收,从而防止绝缘子闪络,保护设备的绝缘。 变压器和避雷器的伏秒特性是如何配合的?为什么? 1概述 35~60kV变压器的中性点不接地或经消弧线圈接地,在结构上是全绝缘的。变压器绕组的端部有避雷器加以保护,当三相来波的时候,中性点的电位由于全反射可能会升高到来波电压的两倍左右,这是十分危险的,但是根据实际运行经验,中性点可以不接保护装置而仍然能够安全运行,原因在于: (1)流过端部的雷电流一般只在2kA以下,故其残压要比预定的5kA时的残压减小20%左右; (2)大多数的来波是从较远处袭来,陡度较小; (3)据统计,三相来波的概率很小,只有10%左右,平均15年才有一次。 因此《交流电气设备过电压保护和绝缘配合》(DL/T620—1997)规定,不接地、经消弧线圈接地和公共电阻系统中的变压器中性点,一般不配保护装置。 110~220kV系统属于有效接地系统,其中一部分中性点直接接地,同时为了限制单相接地电流和满足继电保护的需要,一部分变压器的中性点是不直接接地的。这种系统中的变压器分两种情况,其一是中性点全绝缘,此时中性点一般不会加保护措施;其二是中性点半绝缘(新制变压器均是如此),具体地说,110kV的变压器中性点是35kV的绝缘水平,220kV的变压器中性点则是110kV级的绝缘水平。规程规定有效接地系统中的变压器中性点保护一般应采用间隙保护和避雷器保护相并联的保护方式。 2中性点保护间隙与过电压保护 2.1单相接地过电压 有效接地系统的单相接地时,计算不接地变压器中性点电位时一般是以Xo/X1小于3为界,但是实际上不同地区的电网及变电所的Xo/X1的值相差很大。变压器的中性点处的过电压水平也自然不一样,所以在一般的文章中推荐按照1,15倍的过电压值和Xo/X1=3时取其中的最大值作为最高运行电压Umax,例如在1 10kV系统中最高运行线电压为126kV,中性点的过电压计算公式为: Uo=Umax×K/(K+2)式中:K——Xo/X1的值; Xo——零序阻抗; X1——正序阻抗。 当K=3时Uo=0.6Umax,即单相接地故障时110kV主变压器中性点出现的最高电压稳态值为43.6。 如果系统单相接地时接地变压器侧断路器跳闸,不接地变压器侧断路器拒动,则系统形成局部不接地系统,此时的中性点过电压值更高,其值近似为相电压值,如在110kV变压器中表现的中性点电位的稳态值为73(此时继电保护应动作)。 2.2雷电过电压 在雷雨季节,直接击中变电站或沿线路传到发电厂、变电站的高幅值雷电波造成变压器中性点电位升高,出现较高的雷击过电压,危及电气设备的安全。变压器中性点上出现的最大雷击过电压主要取决于变压器入口处的避雷器残压和变压器的特性。一般雷击过电压计算如下: Um=n/3(1+r)Us 式中:n——侵入雷电波相数; r——变压器振荡衰减系数,纠结式绕组取0.5,连续式绕组取O.8; U5——变压器入口处避雷器上的残压。 以上简单叙述了几种过电压的形式,对变压器绝缘和保护装置的作用,取决于过电压的波形、幅值和持续时间。标准雷电波形并不一定是由雷电引出,例如,当单相接地时,可在非接地相上产生接近于雷电过电压的短波前。 2.3放电间隙的保护作用 采用放电间隙保护的原理是在间隙回路中串入零序电流互感器,利用间隙的放电特性,使其在雷电过电压时放电以保护中性点绝缘。在系统发生故障后,变压器中性点工频电位升高至一定值,零序电流保护动作,切除该不接地变压器,以避免出现中性点接地带故障运行。中性点零序电流保护先以较短的时限切除低压侧的电厂联络线,再以略长的时限跳开变压器各侧的开关。 2.4避雷器的保护作用 无论作为无间隙的氧化锌避雷器还是有间隙的普通阀式避雷器,选择使用的一个共同原则是,使避雷器额定电压不低于避雷器安装点的暂时过电压。JB/T5894-91《交流无间隙金属氧化物避雷器使用导则》指出,中性点有效接地系统中分级绝缘的变压器,当其中性点未接地时,中性点避雷器的额定电压应不低于变压器的最高相电压(并具体提出中性点的标准冲击绝缘水平为1 85kV时,氧化锌避雷器的额定电压为60kV)。 3保护间隙与避雷器伏秒特性的配合 3.1 保护装置伏秒特性配合的基本要求 (1)为了使电气设备得到可靠保护,保护装置应该满足以下基本要求: 保护装置的冲击放电电压Ub(i)应该低于被保护设备的冲击耐压值。以变压器为例,其冲击耐压值通常取其多次截波耐压值Uid,所以Ub(i)应满足下式要求: Ub(i) (2)放电间隙应该有平坦的伏秒特性曲线和尽可能高的灭弧能力。图2中曲线1为绝缘的伏秒特性,避雷器和保护间隙要能起到保护作用,其放电间隙的伏秒特性曲线2应始终低于曲线1,并留一定的间隔。显然,放电间隙的伏秒特性越平坦越好,如果伏秒特性很陡,如图3所示,则可能与绝缘的伏秒特性相交,以致在较短放电的时间范围内不能保护设备。同时由于放电的分散性,间隙和被保护设备的伏秒特性实际上处在一个带状的范围内,因此,要求保护设备伏秒特性的上包络线低于被保护设备伏秒特性的下包络线,如图4所示。 3.2保护间隙的放电特性及伏秒特性 均匀电场间隙在稳态电压下的击穿特性:严格说来,均匀场只有一种,即无限大平行板电极间的电场,这在工程中是无法实现的。工程上所使用的平行板电极一般都是采用了消除电极边缘效应的措施(比如将板电极的边缘弯曲成曲率半径比较大的圆弧形,像高压静电电压表的两个电极就是如此处理的),这时两平行板电极间的距离相对于电极尺寸比较h,就可以将这两个电极间的电场视为均匀场。由于均匀场的两个平行板的形状完全相同,而且平行布置,因而气隙的放电不存在极性效应,而且也不存在电晕现象。一旦气隙放电就会引起整个气隙的击穿,所以其直流、工频交流和冲击放电电压作用下的击穿电压相同,放电的分散性也小,击穿电压与电压作用时间无关。稍不均匀场气隙的击穿特性与均匀场下的击穿特性基本相同。其伏秒特性见图5。 在极不均匀电场中,“棒一棒”间隙和“棒一板”间隙具有典型意义。前者具有完全对称性,后者具有最大的不完全对称性,其他类型的极不均匀电场的气隙击穿特性介于两种典型气隙的击穿特性之间。由实验得出的结论是,不均匀场的放电具有明显的极性效应,而且随着气隙长度的增加,气隙的平均击穿场强明显降低,即存在“饱和”现象。其伏秒特性如图5所示。 由图5中可以看出在岛前的一段时间内均匀电场的击穿特性(也就是在冲击电压下的击穿特性)较陡峭,也就是说在t 其中t1为电压上升时间,to为统计时延,ta为放电发展时间,tb是以上三个参数的和,它是放电所需时间。tb在数值上小于to,所以说间隙在短时间内的放电特性是与放电发展时间有关的,要在这极短的时间内放电,间它的伏秒特性曲线。 3.4 保护间隙与避雷器的伏秒特性配合 (1)对放电间隙的要求:一是对工频来说,从系统运行的要求,当Xo/X1值小于3时,单相接地时放电间隙不应动作,放电电压应大于43.6kV(有效值,峰值电压为61.7kV);当系统形成局部不接地系统,此时的中性点过电压值更高,其值近似为相电压值,如在110kV变压器中表现的中性点电位的稳态值为73kV,单相接地间隙应动作,启动继电保护切除故障,即放电间隙放电电压应小于73kV(有效值,峰值电压为103.2kV);二是间隙在雷电过电压和系统单相接地瞬态过电压下均不应动作。隙的击穿电压是非常大的。 3.3避雷器的放电特性 在目前变压器中性点保护中,选用的主流避雷器的是金属氧化物避雷器MOA。MOA阀片具有优异的非线性伏安特性;它没有火花间隙,一旦作用电压开始升高,阀片立即开始吸收过电压的能量,抑制过电压的发展;没有间隙的放电时延,因而有良好的冲击响应特性。无续流、动作负载轻、能重复动作实施保护;只吸收过电压的能量,而不吸收续流能量,因而动作负载轻。目前110kV使用的避雷器参数(以抚顺海岳电气制造有限公司生产的避雷器为例)。 (2)对避雷器的要求:一是避雷器在工频过电压和操作过电压下不应动作,但在雷电和系统单相接地瞬态过电压下应动作;二是避雷器的放电电压和残压应该小于153kV(变压器绝缘耐操作波强度75.5×√2×1.4=153kV);三是避雷器工频放电电压和灭弧电压应大于73kV(间隙控制电压有效值,峰值为103.2kV)。 (3)放电间隙和避雷器的配合要求(当工频过电压和高频过电压相继出现时,避雷器先动作,然后间隙动作,以保证避雷器的正常工作,这样就没有避雷器爆炸的可能性了): 一是避雷器的灭弧电压应高于间隙最高工频放电电压,这样避雷器在间隙的保护下不致灭不了弧而爆炸;二是避雷器的冲击放电电压低,保证在高频瞬态过电压下由避雷器动作,避免正常系统运行中发生单相接地故障时放电间隙动作,造成零序电流分量,使间隙零序电流误动作;三是间隙最高工频放电电压应比最低相电压低,从而保证能切除形成不接地系统单相接地等不对称故障;四是正常运行时电力系统Xo/x1值应小于3,当Xo/x1值大于3时,运行系统发生单相接地时,放电间隙应动作。 (4)避雷器的最低放电电压值应大干103.2kV,保护间隙的最低放电电压应大于61.7kV,最高放电电压应小于103.2kV。 t在小于to的时候是避雷器和间隙配合的关键,我们正是利用了间隙放电的放电时延(一般为几十毫秒)和金属氧化物避雷器无放电时延的特性解决了他们之间的配合问题。 4结束语 (1)气体的放电特性随着电场的均匀程度的改变而改变,均匀电场中气体的击穿电压稳定,总体的伏秒特性较平坦,但是在较短的时间内存在放电时延的问题。 (2)金属氧化物避雷器的MOA阀片具有优异的非线性伏安特性;它没有火花间隙,一旦作用电压开始升高,阀片立即开始吸收过电压的能量,抑制过电压的发展;没有间隙的放电时延,因而有良好的冲击响应特性。 (3)合理地应用保护间隙和避雷器的伏秒特性配合曲线,并在实验条件下加以校验,使他们能够在各自的规定条件下放电进而发挥各自的作用是很有现实意义的。 变压器中性点保护中避雷器和间隙伏秒特性的配合 (3)放电间隙和避雷器的配合要求(当工频过电压和高频过电压相继出现时,避雷器先动作,然后间隙动作,以保证避雷器的正常工作,这样就没有避雷器爆炸的可能性了): 一是避雷器的灭弧电压应高于间隙最高工频放电电压,这样避雷器在间隙的保护下不致灭不了弧而爆炸;二是避雷器的冲击放电电压低,保证在高频瞬态过电压下由避雷器动作,避免正常系统运行中发生单相接地故障时放电间隙动作,造成零序电流分量,使间隙零序电流误动作;三是间隙最高工频放电电压应比最低相电压低,从而保证能切除形成不接地系统单相接地等不对称故障;四是正常运行时电力系统Xo/x1值应小于3,当Xo/x1值大于3时,运行系统发生单相接地时,放电间隙应动作。 (4)具体的配合曲线如图8所示。 对曲线的解释如下: 图8中1为避雷器的伏秒特性;2为保护间隙伏秒特性(为了使保护间隙有更好的伏秒特性和较小的放电分散性,间隙保护采用平行板电极,它的伏秒特性在相当长的一段时间内是一条直线)。 由上面的分析知,避雷器的最低放电电压值应大干103.2kV,保护间隙的最低放电电压应大于61.7kV,最高放电电压应小于103.2kV。 t在小于to的时候是避雷器和间隙配合的关键,我们正是利用了间隙放电的放电时延(一般为几十毫秒)和金属氧化物避雷器无放电时延的特性解决了他们之间的配合问题。 4结束语 (1)气体的放电特性随着电场的均匀程度的改变而改变,均匀电场中气体的击穿电压稳定,总体的伏秒特性较平坦,但是在较短的时间内存在放电时延的问题。 (2)金属氧化物避雷器的MOA阀片具有优异的非线性伏安特性;它没有火花间隙,一旦作用电压开始升高,阀片立即开始吸收过电压的能量,抑制过电压的发展;没有间隙的放电时延,因而有良好的冲击响应特性。 (3)合理地应用保护间隙和避雷器的伏秒特性配合曲线,并在实验条件下加以校验,使他们能够在各自的规定条件下放电进而发挥各自的作用是很有现实意义的。 变压器中性点保护中避雷器和间隙伏秒特性的配合 [摘要]在我国11 OkV的电力系统中,变压器的中性点是采用非直接接地的运行方式。变压器中 性点保护采用的主要方式是将避雷器和保护间隙并联起来,间隙保护主要作用于工频过电压和 操作过电压,而避雷器则主要动作于雷电过电压。工频过电压相对于雷电过电压的作用时间长 而幅值较小,应用这一特点,提出了保护间隙和避雷器的伏秒特性的配合问题。 [关键词]避雷器 保护间隙 伏秒特性 1概述 35~60kV变压器的中性点不接地或经消弧线圈接地,在结构上是全绝缘的。变压器绕组的端部 有避雷器加以保护,当三相来波的时候,中性点的电位由于全反射可能会升高到来波电压的两倍 左右,这是十分危险的,但是根据实际运行经验,中性点可以不接保护装置而仍然能够安全运行,原因在于: (1)流过端部的雷电流一般只在2kA以下,故其残压要比预定的5kA时的残压减小20%左右; (2)大多数的来波是从较远处袭来,陡度较小; (3)据统计,三相来波的概率很小,只有10%左右,平均15年才有一次。 因此《交流电气设备过电压保护和绝缘配合》(DL/T620—1997)规定,不接地、经消弧线圈接地 和公共电阻系统中的变压器中性点,一般不配保护装置。 110~220kV系统属于有效接地系统,其中一部分中性点直接接地,同时为了限制单相接地电流 和满足继电保护的需要,一部分变压器的中性点是不直接接地的。这种系统中的变压器分两种 情况,其一是中性点全绝缘,此时中性点一般不会加保护措施;其二是中性点半绝缘(新制变压 器均是如此),具体地说,110kV的变压器中性点是35kV的绝缘水平,220kV的变压器中性点则 是110kV级的绝缘水平。规程规定有效接地系统中的变压器中性点保护一般应采用间隙保护和 避雷器保护相并联的保护方式。 2中性点保护间隙与过电压保护 2.1单相接地过电压 有效接地系统的单相接地时,计算不接地变压器中性点电位时一般是以Xo/X1小于3为界,但 是实际上不同地区的电网及变电所的Xo/X1的值相差很大。变压器的中性点处的过电压水平也 自然不一样,所以在一般的文章中推荐按照1,15倍的过电压值和Xo/X1=3时取其中的最大值 作为最高运行电压Umax,例如在1 10kV系统中最高运行线电压为126kV,中性点的过电压计 算公式为: Uo=Umax×K/(K+2)式中:K——Xo/X1的值; Xo——零序阻抗; X1——正序阻抗。 当K=3时Uo=0.6Umax,即单相接地故障时110kV主变压器中性点出现的最高电压稳态值为43.6。 如果系统单相接地时接地变压器侧断路器跳闸,不接地变压器侧断路器拒动,则系统形成局部 不接地系统,此时的中性点过电压值更高,其值近似为相电压值,如在110kV变压器中表现的 中性点电位的稳态值为73(此时继电保护应动作)。 2.2雷电过电压 在雷雨季节,直接击中变电站或沿线路传到发电厂、变电站的高幅值雷电波造成变压器中性点 电位升高,出现较高的雷击过电压,危及电气设备的安全。变压器中性点上出现的最大雷击过 电压主要取决于变压器入口处的避雷器残压和变压器的特性。一般雷击过电压计算如下: Um=n/3(1+r)Us 式中:n——侵入雷电波相数; r——变压器振荡衰减系数,纠结式绕组取0.5,连续式绕组取O.8; U5——变压器入口处避雷器上的残压。 以上简单叙述了几种过电压的形式,对变压器绝缘和保护装置的作用,取决于过电压的波形、幅值和持续时间。标准雷电波形并不一定是由雷电引出,例如,当单相接地时,可在非接地相 上产生接近于雷电过电压的短波前。 2.3放电间隙的保护作用 采用放电间隙保护的原理是在间隙回路中串入零序电流互感器,利用间隙的放电特性,使其在 雷电过电压时放电以保护中性点绝缘。在系统发生故障后,变压器中性点工频电位升高至一定 值,零序电流保护动作,切除该不接地变压器,以避免出现中性点接地带故障运行。中性点零 序电流保护先以较短的时限切除低压侧的电厂联络线,再以略长的时限跳开变压器各侧的开关。 2.4避雷器的保护作用 无论作为无间隙的氧化锌避雷器还是有间隙的普通阀式避雷器,选择使用的一个共同原则是,使避雷器额定电压不低于避雷器安装点的暂时过电压。JB/T5894-91《交流无间隙金属氧化物避 雷器使用导则》指出,中性点有效接地系统中分级绝缘的变压器,当其中性点未接地时,中性 点避雷器的额定电压应不低于变压器的最高相电压(并具体提出中性点的标准冲击绝缘水平为 1 85kV时,氧化锌避雷器的额定电压为60kV)。 3保护间隙与避雷器伏秒特性的配合 3.1 保护装置伏秒特性配合的基本要求 (1)为了使电气设备得到可靠保护,保护装置应该满足以下基本要求: 保护装置的冲击放电电压Ub(i)应该低于被保护设备的冲击耐压值。以变压器为例,其冲击耐压 值通常取其多次截波耐压值Uid,所以Ub(i)应满足下式要求: Ub(i)(2)放电间隙应该有平坦的伏秒特性曲线和尽可能高的灭弧能力。图2中曲线1为绝缘的伏秒特 性,避雷器和保护间隙要能起到保护作用,其放电间隙的伏秒特性曲线2应始终低于曲线1,并 留一定的间隔。显然,放电间隙的伏秒特性越平坦越好,如果伏秒特性很陡,如图3所示,则 可能与绝缘的伏秒特性相交,以致在较短放电的时间范围内不能保护设备。同时由于放电的分 散性,间隙和被保护设备的伏秒特性实际上处在一个带状的范围内,因此,要求保护设备伏秒 特性的上包络线低于被保护设备伏秒特性的下包络线,如图4所示。 3.2保护间隙的放电特性及伏秒特性 均匀电场间隙在稳态电压下的击穿特性:严格说来,均匀场只有一种,即无限大平行板电极间 的电场,这在工程中是无法实现的。工程上所使用的平行板电极一般都是采用了消除电极边缘 效应的措施(比如将板电极的边缘弯曲成曲率半径比较大的圆弧形,像高压静电电压表的两个电 极就是如此处理的),这时两平行板电极间的距离相对于电极尺寸比较h,就可以将这两个电极 间的电场视为均匀场。由于均匀场的两个平行板的形状完全相同,而且平行布置,因而气隙的 放电不存在极性效应,而且也不存在电晕现象。一旦气隙放电就会引起整个气隙的击穿,所以 其直流、工频交流和冲击放电电压作用下的击穿电压相同,放电的分散性也小,击穿电压与电 压作用时间无关。稍不均匀场气隙的击穿特性与均匀场下的击穿特性基本相同。其伏秒特性见 图5。 在极不均匀电场中,“棒一棒”间隙和“棒一板”间隙具有典型意义。前者具有完全对称性,后者具有最大的不完全对称性,其他类型的极不均匀电场的气隙击穿特性介于两种典型气隙的 击穿特性之间。由实验得出的结论是,不均匀场的放电具有明显的极性效应,而且随着气隙长 度的增加,气隙的平均击穿场强明显降低,即存在“饱和”现象。其伏秒特性如图5所示。由图5中可以看出在岛前的一段时间内均匀电场的击穿特性(也就是在冲击电压下的击穿特性)较陡峭,也就是说在t 其中t1为电压上升时间,to为统计时延,ta为放电发展时间,tb 是以上三个参数的和,它是放电所需时间。tb在数值上小于to,所以说间隙在短时间内的放电 特性是与放电发展时间有关的,要在这极短的时间内放电,间它的伏秒特性曲线。 3.4 保护间隙与避雷器的伏秒特性配合 (1)对放电间隙的要求:一是对工频来说,从系统运行的要求,当Xo/X1值小于3时,单相接 地时放电间隙不应动作,放电电压应大于43.6kV(有效值,峰值电压为61.7kV);当系统形成局 部不接地系统,此时的中性点过电压值更高,其值近似为相电压值,如在110kV变压器中表现 的中性点电位的稳态值为73kV,单相接地间隙应动作,启动继电保护切除故障,即放电间隙放 电电压应小于73kV(有效值,峰值电压为103.2kV);二是间隙在雷电过电压和系统单相接地瞬态 过电压下均不应动作。隙的击穿电压是非常大的。 3.3避雷器的放电特性 在目前变压器中性点保护中,选用的主流避雷器的是金属氧化物避雷器MOA。MOA阀片具有优异 的非线性伏安特性;它没有火花间隙,一旦作用电压开始升高,阀片立即开始吸收过电压的能量,抑制过电压的发展;没有间隙的放电时延,因而有良好的冲击响应特性。无续流、动作负载轻、能重复动作实施保护;只吸收过电压的能量,而不吸收续流能量,因而动作负载轻。目前110kV 使用的避雷器参数(以抚顺海岳电气制造有限公司生产的避雷器为例)。 (2)对避雷器的要求:一是避雷器在工频过电压和操作过电压下不应动作,但在雷电和系统单相 接地瞬态过电压下应动作;二是避雷器的放电电压和残压应该小于153kV(变压器绝缘耐操作波强 度75.5×√2×1.4=153kV);三是避雷器工频放电电压和灭弧电压应大于73kV(间隙控制电压有 效值,峰值为103.2kV)。 (3)放电间隙和避雷器的配合要求(当工频过电压和高频过电压相继出现时,避雷器先动作,然 后间隙动作,以保证避雷器的正常工作,这样就没有避雷器爆炸的可能性了): 一是避雷器的灭弧电压应高于间隙最高工频放电电压,这样避雷器在间隙的保护下不致灭不了 弧而爆炸;二是避雷器的冲击放电电压低,保证在高频瞬态过电压下由避雷器动作,避免正常系 统运行中发生单相接地故障时放电间隙动作,造成零序电流分量,使间隙零序电流误动作;三是 间隙最高工频放电电压应比最低相电压低,从而保证能切除形成不接地系统单相接地等不对称故 障;四是正常运行时电力系统Xo/x1值应小于3,当Xo/x1值大于3时,运行系统发生单相接地 时,放电间隙应动作。 (4)避雷器的最低放电电压值应大干103.2kV,保护间隙的最低放电电压应大于61.7kV,最高放 电电压应小于103.2kV。 t在小于to的时候是避雷器和间隙配合的关键,我们正是利用了间隙放电的放电时延(一般为几 十毫秒)和金属氧化物避雷器无放电时延的特性解决了他们之间的配合问题。 4结束语 (1)气体的放电特性随着电场的均匀程度的改变而改变,均匀电场中气体的击穿电压稳定,总体 的伏秒特性较平坦,但是在较短的时间内存在放电时延的问题。 (2)金属氧化物避雷器的MOA阀片具有优异的非线性伏安特性;它没有火花间隙,一旦作用电压 开始升高,阀片立即开始吸收过电压的能量,抑制过电压的发展;没有间隙的放电时延,因而有 良好的冲击响应特性。 (3)合理地应用保护间隙和避雷器的伏秒特性配合曲线,并在实验条件下加以校验,使他们能够 在各自的规定条件下放电进而发挥各自的作用是很有现实意义的。第二篇:综合应用系统与通信系统接口
第三篇:“通信接口技术”思考题(宿迁学院通信081-2)
第四篇:避雷器教材
第五篇:简述避雷器