第一篇:小学六年级数学教案列方程解应用题
教学重点
通过复习,使学生能够准确的找出题目中的等量关系.教学难点
通过复习,使学生能够准确的找出题目中的等量关系.
教学过程
一、复习准备.
1.求未知数.
×=-=÷=
1-=÷=1-=
解方程求方程的解的格式是什么?
2.找出下列应用题的等量关系.
①男生人数是女生人数的2倍.
②梨树比苹果树的3倍少15棵.
③做8件大人衣服和10件儿童衣服共用布31.2米.
④把两根同样的铁丝分别围成长方形和正方形.
我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)
二、复习探讨.
(一)教学例3.
一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?
1.读题,学生试做.
2.学生汇报(可能情况)
(1)(90+75)×
4提问:90+75求得是什么问题?再乘4求的是什么?
(2)90×4+75×4
提问:90×4与75×4分别求的是什么问题?
(3)÷4=90+7
5提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
(4)÷4-75=90
提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
(5)÷4-90=75
提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
3.讨论思考.
(1)用方程解这道应用题,为什么你们认为这三种方法都正确?
(等号的左右表示含义相同)
(2)列方程解应用题的特点是什么?
两点:
变未知条件为已知条件,同时参加运算;
列出的式子为含有未知数的等式,并且左右表示的数量关系一致
(3)怎样判定用方程解一道应用题是否正确?(方程的左右是否为等量关系)
4.小结.
(1)小组讨论:用方程解应用题和用算术方法解应用题,有什么不同点?
(2)小组汇报:
①算术方法解应用题时,未知数为特殊地位,不参加运算;用方程解应用题时,未知数与已知数处于平等地位,可以参加列式.
②算术方法解应用题时,需要根据题意分析数量关系,列出用已知条件表示求未知数的量;用方程解应用题时,根据题目中的数量关系,列出的是含有未知数的等式.
(二)变式反馈:根据题意把方程补充完整.
1.甲乙两站之间的铁路长660千米.一列客车以每小时90千米的速度从甲站开往乙站,同时有一辆货车以每小时75千米的速度从乙站开往甲站.经过多少小时两车相遇?
2.甲乙两站之间的铁路长660千米.一列客车从甲站开往乙站,同时有一辆货车从乙站开往甲站.经过4小时两车相遇,客车每小时行90千米,货车每小时行多少千米?
教师提问:这两道题有什么联系?有什么区别?
三、巩固反馈.
1.根据题意把方程补充完整.
(1)张华借来一本116页的科幻小说,他每天看页,看了7天后,还剩53页没有看.
_____________=
53_____________=116
(2)妈妈买来3米花布,每米9.6元,又买来元毛线,每千克73.80元.一共用去139.5元.
_____________=139.5
_____________=9.6×3
(3)电工班架设一条全长米长的输电线路,上午3小时架设了全长的21,下午用同样的工效工作1小时,架设了280米.
_____________=280×3
2.解应用题.
东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?
小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.
3.思考题.
甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?
四、课堂总结.
通过今天的复习,你有什么收获?
五、课后作业.
1.师傅加工零件80个,比徒弟加工零件个数的2倍少10个.徒弟加工零件多少个?
2.徒弟加工零件45,比师傅加工零件个数的多5个.师傅加工零
第二篇:小学六年级数学教案列方程解应用题教案
小学六年级数学教案列方程解应用题教案
教学目的
1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.
2.通过复习,使学生能够准确的找出题目中的等量关系.
3.培养学生的分析以及综合能力.能够从不同角度解决同一个问题.
教学重点
通过复习,使学生能够准确的找出题目中的等量关系.
教学难点
通过复习,使学生能够准确的找出题目中的等量关系.
教学过程
一、复习准备.
1.找出下列应用题的等量关系.
①男生人数是女生人数的2倍.
②梨树比苹果树的3倍少15棵.
③做8件大人衣服和10件儿童衣服共用布31.2米.
④把两根同样的铁丝分别围成长方形和正方形.
我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)
二、复习探讨.
(一)教学例3.
一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?
1.读题,学生试做.
2.学生汇报(可能情况)
(1)(90+75)×4
提问:90+75求得是什么问题?再乘4求的是什么?
(2)90×4+75×4
提问:90×4与75×4分别求的是什么问题?
(3)÷4=90+75
提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
(4)÷4-75=90
提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
(5)÷4-90=75
提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
3.讨论思考.
(1)用方程解这道应用题,为什么你们认为这三种方法都正确?
(等号的左右表示含义相同)
(2)列方程解应用题的特点是什么?
两点:
变未知条件为已知条件,同时参加运算;
列出的式子为含有未知数的等式,并且左右表示的数量关系一致
(3)怎样判定用方程解一道应用题是否正确?(方程的左右是否为等量关系)
4.小结.
(1)小组讨论:用方程解应用题和用算术方法解应用题,有什么不同点?
(2)小组汇报:
①算术方法解应用题时,未知数为特殊地位,不参加运算;用方程解应用题时,未知数与已知数处于平等地位,可以参加列式.
②算术方法解应用题时,需要根据题意分析数量关系,列出用已知条件表示求未知数的量;用方程解应用题时,根据题目中的数量关系,列出的是含有未知数的等式.
(二)变式反馈:根据题意把方程补充完整.
1.甲乙两站之间的铁路长660千米.一列客车以每小时90千米的速度从甲站开往乙站,同时有一辆货车以每小时75千米的速度从乙站开往甲站.经过多少小时两车相遇?
2.甲乙两站之间的铁路长660千米.一列客车从甲站开往乙站,同时有一辆货车从乙站开往甲站.经过4小时两车相遇,客车每小时行90千米,货车每小时行多少千米?
教师提问:这两道题有什么联系?有什么区别?
三、巩固反馈.
1.根据题意把方程补充完整.
(1)张华借来一本116页的科幻小说,他每天看 页,看了7天后,还剩53页没有看.
_____________=53
_____________=116
(2)妈妈买来3米花布,每米9.6元,又买来 元毛线,每千克73.80元.一共用去139.5元.
_____________=139.5
_____________=9.6×3
(3)电工班架设一条全长 米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米.
_____________=280×3
2.解应用题.
东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?
小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.
3.思考题.
甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?
四、课堂总结.
通过今天的复习,你有什么收获?
五、课后作业.
1.师傅加工零件80个,比徒弟加工零件个数的2倍少10个.徒弟加工零件多少个?
2.徒弟加工零件45,比师傅加工零件个数的 多5个.师傅加工零件多少个?
六、板书设计
列方程解应用题
等量关系 具体问题具体分析
例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?
第三篇:六年级小学列方程解应用题
列方程解应用题 列方程解应用题的意义
★ 用方程式去解答应用题求得应用题的未知量的方法。2 列方程解答应用题的步骤
★ 弄清题意,确定未知数并用x表示; ★ 找出题中的数量之间的相等关系; ★ 列方程,解方程;
★ 检查或验算,写出答案。3列方程解应用题的方法
★ 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。
★ 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。4列方程解应用题的范围
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算; d 分数、百分数应用题; e 比和比例应用题。
5.常见的一般应用题
一、以总量为等量关系建立方程 练一练
① 降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?
② 甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?
③ 两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?
④ 两地相距249千米,一列火车从甲地开往乙地,每小时行55。5千米,行了多少小时还离乙地有27千米?
⑤ 买5个本子和3支铅笔一共用去10.4元,已知铅笔每支0.9元,每本子多少元?
⑥ 服装厂要做984套衣服,已经做了120套,剩下的要在12天内完成平均每天做多少套?
⑦ 某生产小组9个工人要生产1926个零件,每人每小时可生产20个,工作5.5小时后,要求剩下的任务必须在4小时内完成,每人每小时必须生产多少?
⑧ 电机厂计划生产1980台电动机,已经生产了4天,每天生产45台,由于改进了技术,以后每天比原来增产15台,实际完成任务需几天?
二、以总量为等量关系建立方程 练一练
① 学校买来乒乓球和蓝球一共135个,买来的乒乓球是蓝球的8倍,两种球各多少个?
② 有一个上下两层的书架一共放了240书,上层放的书是下层的2倍,两层书架各放书多少本?
③ 图书馆买来文艺科技书共235本,文艺书的本数比科技书的2倍多25本,两种书各买了多少本?
④ 甲、乙、丙三人为灾区捐款共270元,甲捐的是乙捐的3倍,乙是丙的两倍,三人各捐多少元?
⑤A、B两个码头相距379.4千米,甲船比乙船每小时快3.6千米,两船同时在这两个码头相向而行,出发后经过三小时两船 还相距48.2千米,求两船的速度各是多少?
三、以相差数为等量关系建立方程 练一练:
① 新华书店发售甲种书90包,乙种书68包,甲种书比乙种书多1100本,每包有多少本?
② 一篮苹果比一篮梨子重30千克,苹果的千克数是梨子的2.5倍,求苹果和梨子各多少千克?
③ 两块正方形的地,第一块地的边长比第二块地的边长的2倍多2米,而它们的周长相差56厘米,两块地边长是多少?
④ 小亮购买每支0.5元和每支1.2元的笔共20支,付20元找回404元,两种笔各买了多少支?
⑤ 甲、乙两数之差为100,甲数比乙数的3倍还多4,求甲、乙两数?
⑥ 两个水池共贮水60吨,甲池用去6吨,乙池又注入8吨水后,乙池的水比甲池的水少4吨,原来两池各贮水多少吨?
⑦ 师徒两人共同加工一批零件,徒弟每天做30个,师傅因有事只做了6天,比徒弟少做了3天还比徒弟多做12个零件,师傅每天做几个?
8食堂买的白菜比萝卜的3倍少20千克,萝卜比白菜少70千克,白菜、萝卜食堂各买了多少千克?
四、以题中的等量为等量关系建立方程 练一练:
① 甲厂有钢材148吨,乙厂有112吨,如果甲厂每天用18吨,乙厂每天用12吨,多少天后两厂剩下的钢材相等?
② 一个两层的书架,上层放的书是下层的3倍,如果把上层的书放90本到下层,则两层的书相等,原来上下层各有书多少本?
③ 甲车间有54人,乙车间有48人,在式作时,为了使两车间人数相等,甲车间应调多少人去乙车间?
④ 超市存有大米的袋数是面粉的3倍,大米买掉180袋,面粉买掉50袋后,大米、面粉剩下的袋数相等,大米、面粉原各多少袋?
⑤ 某校有苦于人住校。若每一间宿舍住6人,则多出34人;若每一间宿舍住7人,则多出4间宿舍。问有多少人住校?有几间宿舍?
⑥ 甲仓所存的面粉是乙仓的3倍,如果从甲仓运走900千克,从乙仓运出80千克,则两仓所存的面粉相等,两仓原有面粉各多少千克?
⑦ 有 箱桔子,甲箱的重量是乙箱的1.8倍,如果从甲箱中取出1.2千克放篱乙箱,那么两箱的重量相等了,原来甲乙两箱各多少千克?
⑧ 一个通讯员骑自行车要在规定的时间内把信件送到某地,他每小时15千米查以早到24分钟,每小时骑12千米要迟到15分钟,规定时间是多少?他去某地的路程有多远?
⑨ 一列火车从甲地开往乙地每小时 50千米,一小时后另一列火车也从甲地开往乙 地每小时行60千米,结果两列火车同时到达乙3地,甲、乙两地相距多少千米?
⑩甲级糖每千克16.60元,乙级糖每千克8.80元。商店用80千克甲级糖和若干乙级糖混合后平均每千克售价14.00元,乙级糖要多少千克?
五、以较大的量或几倍数为等量关系建立方程 练一练:
① 修一条水渠计划需70人挖土,50人运土,而实际上挖土人数是运土人数的3倍,问从运土的人中调多少人去挖土?
② 电力公司现有职工1240人,比五年前的6倍不多40人,五年前电力公司有多少人?
③ 有两堆煤,甲堆有32吨,乙堆有57吨,以后甲堆每天增加4吨,乙堆每天增加9吨,几天后乙堆的煤是甲堆的2倍?
④ 甲乙两厂用同样的原料生产同样的产品,甲厂有720吨,乙厂有540吨,两厂同时生产并每天都用去20吨,多少天后甲厂所剩的原料是乙厂所剩原料的2倍?
⑤ 甲乙两个工程队,甲队原有240人,乙队原有168人,因工作需要将甲队的人数调整到乙队的2倍,应由乙队抽调多少人到甲队?
⑥ 兄妹两人各有钱若干,如果兄给妹20元两人钱数就相等,如果妹给兄25元,则兄的钱是妹的2倍,问兄妹两人各有多少钱?
⑦ 兄妹有相等的存款,如果兄给妹160 元,那么妹的存款是兄的3倍,求兄妹两人存款之和?
⑧ 弟弟今年5岁,哥哥今年18岁,几年后哥哥的年龄是弟弟的2倍?
⑨ 父亲今年45岁,儿子今年15岁,几年前父亲的年龄是儿子的11倍?
⑩甲原有的钱是乙的4倍,若甲给乙40元则甲的钱是乙的3倍,甲、乙现有钱各多少?
六、根据题目中条件选择解题方法 练一练:
① 地球绕太阳一周要用365天,比水星绕太阳一周要用的时间的4倍多13天,水星绕太阳一周要用多少天? ②
③ 某厂计划今年生产机器480台,比去年的2倍少30台,去年生产机器多少台?
④ 世界上最小的鸟是蜂鸟,一只蜂鸟重2.1克,一只麻雀的体重比蜂鸟的50倍多1克,一只麻雀衙多少克?
⑤ 我国发射的第一颗人造地球卫星重173千克,比美国发射的第一颗人造地球卫星的2倍还重0.38千克。美国发射的第一颗人造地球卫星重多少千克?
⑥ 某厂今年烧煤50吨,去年烧的煤比今年的2倍少10吨,去年烧煤多少吨?
1.甲乙两堆煤共100吨,如果从甲堆运出10吨给乙堆,这时甲重量是乙的1.5倍,甲乙两堆原来各有多少吨煤?
2.第一个正方形的边长比第二个的2倍多1厘米,它们的周长相差24厘米。求这两个正方形的面积各多少。
3.一块长方形菜地,长是宽的5倍,如果宽增加8米,长减少2米,求原来长方形菜地的面积。
第四篇:列方程解应用题
列方程解应用题
【例1】水果店运来的西瓜的个数是白兰瓜的个数的2倍,如果每天卖白兰瓜40个,西瓜50 个,若干天后卖完白兰瓜时,西瓜还剩360个。水果店运来的西瓜和白兰瓜共多少个?
【例2】有甲、乙两桶油,若从甲桶倒入乙桶15千克,则两桶油质量相等;若从乙桶倒入甲桶48千克后,则甲桶油是乙桶油质量的4倍。甲桶原来有油多少千克?
【例3】甲乙丙三人,甲的年龄是乙的2倍时,丙是20岁,当乙的年龄是丙的2倍时,甲35岁,那么甲65岁时,丙是多少岁?
【例4】甲、乙、丙、丁四人今年分别是16、12、11、9岁。问,多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?
【例5】甲、乙、丙、丁四个人组成代表队参加数学比赛,甲得了88分,丙得了85分,丁得了90分,乙的分数比四个人的平均分多4分。问乙的成绩是多少?
【例6】414是三个数的和,这三个数分别能被5、6、7整除,所得的商相同。问;这三个数分别是多少?商是多少?
【例7】小余买了5元、1元2角、8角的三种邮票共20张,总值43元6角,其中5元和1元2角的邮票张数相同。问:小余三种邮票各购多少张?
【例8】某校五、六年级师生秋游去公园划竹筏,若每筏坐12人,则少3个竹筏;若每筏坐14人,则多出4个竹筏。问:公园一共有几个竹筏?五年级师生共多少人?
【例9】一架飞机所带燃料最多可飞行15.75小时。飞机去时顺风,飞行速度每小时1500千米,返回时逆风,速度是每小时1200千米。问:这架飞机最多飞出去多少千米就要往回飞?
【例10】一个三位数的数字是由大到小的顺序排列的三个连续整数,这个三位数除以3所得的商比这个三位数的百位数与个位数交换后所得新的三位数小238,求原来的三位数。
【例11】东西两镇相距3450米,甲、乙从东镇,丙从西镇同时出发相向而行,甲、乙、丙速度分别是每分钟45、50、60米,那么多少分钟后乙正好在甲、丙的中间?
【例12】小余买两种练习本若干本,单价分别是1元和1元5角,共付出12元,问:两种本子各买了多少本?
消去法解题
【例1】甲买了8盒糖和5盒蛋糕共用去171元,乙买了5盒糖和2盒蛋糕共用去90元。每盒糖和每盒蛋糕各多少元?
【例2】小明买了3只小鸭,7只小鸡和1只小兔,共付15.9元;小豪买了4只小鸭,10只小鸡和1只小兔共付了21元。如果小兰只买小鸭、小鸡、小兔各1只,则应付多少元?
【例4】8头梅花鹿和13只羊每天共吃青草182千克,13头梅花鹿和8只羊每天共吃青草217千克。问:1头梅花鹿和1只羊每天各吃青草多少千克?
列方程专项练习
1、一条鲨鱼头长3.5米,身长等于头长加尾长,尾长等于头长加身长的一半。问:这条鲨鱼有多长?
2、一道除法算式中,商是除数的7倍,除数是余数的4倍,商与除数、余数的和是528。问:被除数是多少?
3、用绳子量井深,将绳子2折则多出井外9米,将绳子3折则多出井外0.5米。问井有多深?
4、商店里有一批服装,卖掉90套女装后,剩下的服装中,男装是女装的2倍,又卖掉378套男装后,剩下的女装是男装的5倍。问:商店里原有男、女装各多少套?
5、一个两位数,十位上数字比个位上数字少2,如果十位上的数字扩大3倍,个位上的数字减去3,所得的两位数比原来的数大57,求原来的两位数。
6、五年级组织爬山活动,上山用了3小时到达离山顶还有22.5千米处,如果从山顶沿原路下山,就要用4小时,已知下山的速度是上山的2倍,问:从山脚到山顶的山路有多长?
7、王师傅加工一批零件,如果每天加工75个,就可以比原计划提前4天完成任务;如果每天加工50个就会比原计划推迟3天完成。王师傅希望能比原计划提前3天完成,他每天应加工多少个?
8、五年级组织去郊外活动,共有师生336人准备租车前往,现有56个座位的大客车和28个座位的小客车若干辆,要使每辆车都满座,问:需大、小客车各多少辆?
9、已知蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀。现有三种小虫共43只,共有294条腿和39对翅膀。问:每种小虫各有几只?
10、小明有面值分别为拾元、伍元、壹元的人民币49张共211元,拾元的张数比伍元的少8张。问:小明有拾元、伍元和壹元的各多少张?
11、有大兔、中兔和小兔共97只,一餐午饭共吃掉蘑菇854个,已知每只大兔子吃13个,每只中兔子吃9个,每只小兔子吃6个。已知中兔比大兔多4只。问:兔场有大、中、小兔子各多少只?
12、甲仓库有大米76吨,乙仓库有大米46吨,现在甲仓库每天进大米5吨,乙仓库每天进大米29吨,多少天后乙仓库的大米是甲仓库的3倍?
13、同学们乘车郊外游玩,如果每辆车坐60人,就余下25人的座位;如果每辆坐55人,就空出10人的座位。问:车有多少辆,有多少同学?
14、五(1)班甲组同学擦玻璃,如果每人擦12块,还剩18块;如果每人擦14块,还剩6块。问:每人擦多少块正好擦完?
15、果蔬农场将855千克的圣女果分装在大小两种纸箱里,每只大箱装6千克,每只小箱装4.5千克。装箱后清点箱数,得知小箱比大箱的3倍还多8箱。问:一共装了多少大箱?多少小箱?
16、牧场上的青草每天匀速生长,已知这片草可供15头牛吃20天,或者供84只羊吃10天,如果4只羊吃草量相当于1头牛的吃草量。那么现有9头牛和96只羊一起吃,可以吃几天?
17、一个六位数的左端数字是1,如果把左端的数字1移到右端,所得的新数是原数的3倍,求原数是几?
18、兔妈妈给小兔们分蘑菇,如果每只小兔分6个,就会多出48个蘑菇;如果每只小兔分8个蘑菇,就有一只小兔分不到。问:一共就有多少蘑菇?
19、果园里有梨树若干棵,苹果树是梨树的3倍。如果每天给15棵苹果树和9棵梨树修枝,当梨树全部修枝后,还剩96棵苹果树没有修枝。问:果园里有苹果树、梨树各多少棵?
20、一个两位数,各位数字之和的4倍正好比这个数少9,这个两位数最大是多少?
21、运一批西瓜,如果用2辆大卡车和6辆小卡车运,15次可以运完;如果用9辆大卡车和5辆小卡车运,5次可以运完。现在只有4辆小卡车运,问:多少次可以运完?
22、学校教务处购买2台打印机和10个U盘共用去2360元,如果用一台打印机换回8个U盘,可以少花62元。问:打印机和U盘单价各是多少?
23、有一个两位数,十位数字比个位数字大2,如果把个位上的数字与十位上的数字对调,所得的两位数比原数小18,求这个两位数是多少?
24、三个连续自然数,它们的和为108,求这三个数。
25、一个三位数、各个数位上的数字相加之和是9,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字小1,求这个三位数。
第五篇:列方程解应用题
《列方程解应用题》教学实录及评析
执教者:郭江海评析者:李汝凤
教学内容:人教版9册P114例4,做一做,练习二十八1—2,4,8题。教学目标:
1、学生会用方程解答“已知比一个数的几倍多(少)几是多少,求这个数”的应用题。会灵活选用算术与方程解答一倍量已知与未知的应用题。
2、培学生从不同角度思考同一个问题的能力。
3、体验数学与现实生活的联系,培养学生的应用意识和解决简单实际问题的能力。
4、能过对挫折的体验,培养学生质疑的习惯和对数学的兴趣。教学重点和难点:从已知条件中找数量间相等的关系,列出方程。
一、创设情境,复习旧知
师:最近少年文艺团的小团员遇到了一个难题,想请你们帮帮忙,你们愿意吗? 生:愿意!
出示题目:少年文艺团舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人,合唱队有多少人?
学生独立解答,同桌探讨解题思路,生板演。
师:请一位同学说说计算列式。
生:23×3+15
=69+15
=84(人)
师:请你说说解题思路。
生:我是从这一句中知道的“合唱队的人数比舞蹈队的3倍多15人”也就是“舞蹈队的3倍多15人,是合唱队”只要舞蹈队人数×3加上15人就求出,合唱队的人数。
师:请你们用线段图表示这道题,该如何表示呢?
生:我知道舞蹈队的人数为倍数,先画1倍数,然后合唱队的人数是他的3倍多15人,就画3个倍数的长度再加上15人。
师:根据学生的回答板演并画出线段图,并标出问题。
师:从这个线段图中可以知道,1倍数已知,也就是23的3倍多15的数十多少,因此很快列出算式。
师:现在小文艺团长又遇到了一个小麻烦,想请你们帮助解答,你们有信心吗? 生:有!
出示题目:少年文艺团合唱团有84人,比舞蹈队的3倍还多15人,舞蹈队有多少人?
师:你们能比较一下两道题的已知条件和问题有哪些相同的点、不同点吗? 生1:“比舞蹈队人数3倍多15人”这句话是相同的。
生2:他们都是有舞蹈队、合唱队两个数量之间的关系问题。
生3:他们不同的地方是,已知条件与问题调换位置。
师:同学们观察的真仔细,这道题目就是我们以前见过的“已知比一个数的几倍多几是多少”求这个数的应用题,今天我们就来学习列方程解应用题。
(评:把学生熟悉的情境引入课堂,使数学与生活有机地结合起来,使学生在课的开始就感觉到应用题在生活中的重要性,使学生感受到我们生活的每一个角落都有数学,我们学的是有用的数学,从而以积极的状态投入新知的探究。)
二、探究新知,引入新课
师:请同学们选用自己喜欢的方法来解这道题。
让学生独立解答,选择学生不同的解法,学生板演。
生1:(84-15)÷3=23(人)
生2:84÷3+15=43(人)
生3:(84+15)÷3=33(人)
生4:解:设舞蹈队的人数为X人。
3X+15=84
3X=84-15
X=23
生5:还可以这样列方程:84-3X=15
师:这道题出现多种方法解答。我们先来画线段图。请一位同学说说该怎么画线段图?
生:这道题的线段图与前面的一题的线段图大致一样只不过1倍数变成了问题了。
根据学生回答,画线段图。
师:请你们根据线段图说说以上的几种列式的方法谁对谁错?
生1:我觉得第二个同学的列式是错误的,因为他是把舞蹈队的人数的3倍的人数看成84人,实际上舞蹈队人数的3倍不是84人而是比84还少15人。
生2:根据刚才说的我觉得第三个同学说的也是错的,应该说是舞蹈队人数的3倍,是合唱队人数少15人。用算术解来完成,先求3倍是多少用(84-15)÷3 生3:根据前面两个同学的分析,第一个同学完成的是正确的,合唱队的人数十舞蹈队的3倍多15人,也就是X的3倍多15人方程就很容易列出来了。
师:这节课我们就是学习列方程解这类应用题,我们就一起来探讨一下这类应用题的思路。我请个同学说说,你是怎样解这道题的?
生1:我是抓住列方程解应用题的关键是找等量关系式。找等量关系式中的一种方法,找到题中的关键句。
师:那你能不能说说这道题里的关键句?
生1:合唱队比舞蹈队的3倍多15人。我用合唱队的人数—舞蹈队的人数×2=15,列出方程:84-3X=15
生2:我也是找这句关键句,但是我是反过来说舞蹈队的3倍多15人是合唱队的人数,列出方程:3X+15=84
师:同学们做的很好,能抓住学习的重点,今天这种类型的应用题就可以抓住关键句来找等量关系式。刚才我们弄清了列方程算理。现在我们来比较一下算术解和方程解。
生1::我觉得这道题要用算术解不好做,因为算术解还要考虑3倍的数是多少?需要逆向思考。
生2:我觉得方程解比较好做,因为方程只要顺着题意来做,不要拐弯抹角,变逆思考为顺思考。
生3:我觉得方程简便,不要写解和设,我觉得方便。
师:通过刚才的比较,我们发现方程比算术解易思考,不容易出错。在今后的学习中我们要注意“几倍多几”的应用题,要先判断1倍数是已知,还是未知,“它知”用算术解容易,“未知”用方程解容易思考。
(评析:力求让学生去发现和概括出规律性的知识,无论在体会列方程解应用题的优越性,还是在多种方法的择优上,等等,都尽量让学生充分地体验,使学生在分析、对比中,探索规律,不仅拓宽了学生的思维空间,更体现了学生的数学学习活动是一个生动活泼、主动的和富有个性的过程。)
三、实践应用,巩固新知
1、找等量关系(课件出示)
(1)今年养兔的只数比去年的3倍少8只
(2)红毛衣的件数比蓝毛衣的2倍还多13件
(3)买3个篮球比4个排球多用去5元
(4)比小孩服装的5倍少3套是大人服装。
2、任意地选择两个条件,提出一个问题,组成一道应用题,然后把它解答出来,看谁做得又快又多。
师:请一名学生说说该怎么列式。并说说它的等量关系式。
生:今年养兔34只,今年养兔的只数比去年的3倍少8只,去年养兔多少只? 生:这道题的等量关系式是今年养兔的只数×3-8=去年养兔只数。
师:那你怎么这么快就找到等量关系式?
生:我找到了关键句,所以就能很快的找到等量关系式,并列出方程。
3、游戏(机动)
师:指名问学生几岁?×××同学的年龄是我女儿的3倍少1岁,猜猜我的女儿几岁?
请同桌两人做这个游戏,利用你爸爸、妈妈或其他人的年龄编题,让你的同桌猜一猜。
4、对比练习,灵活选择方法
A、各出一道题目“一倍数已知”与“一倍数未知”的应用题
师:下面俩道题,请同学们选择适当的方法解答。
生自己解答,两生板演,集体订正。
师:请你们把两道题里的关键句画出来。两题的关键句是一样的也就是两道题的数量关系式一样,为什么第一题选择方程而第二题选择算术方法呢?请四人小组讨论交流一下。
生1:1倍数已知用算术方法简单。1倍数未知的时候用方程解简单一些。师:是不是请你们验证一下。
出示两道题目,只选方法不必计算列式。
(评析:采用分层练习,力求在练习过程中,既巩固新知,又发展学生的数学思维,使学生在发散性、多维度的思维活动中提高解决实际问题的能力,培养学生的创新意识。)
四、全课小结
1、师:谈谈这节课你有什么收获?
2、师:通过刚才的练习,你觉得解答我们今天学习的这类应用题的关键是什么? 学生发言,师归纳总结。
(评析:通过总结,学生进一步明确了找关键句中的等量关系是解题的关键。)课后反思:
1、列简易方程解应用题是中学学习方程解应用题的基础,对
于小学生来说是不容易的,由于小学生仍处于从形象思维向抽象思维过渡的关键时刻,所以如何做好过渡,是值得我们研究的。本节课采用画线段图,帮助分析数量关系。并在教学中指导学生画图,这样利用线段图使数量关系明显地显现出来,有助于帮助学生设未知数,找等量关系式和列出方程。
3、教会多种学习方法。本节课除了画线段图帮助学生理解以
外,还要考虑指导学生学习方法如: 阅读法,在教会学生阅读的方法,找等量关系式,在教学新知识时我采用不同的读法例如:“合唱队比舞蹈队的3倍多15人”也可以这样读“舞蹈队人数的3倍多15人是合唱队的人数”采用不同的阅读方法就出现不同的方程。还有使用比较法,让学生比较相同的数量关系的应用题,如何选择不同的方法,放手让学生讨论思考得出结论。这些方法对今后学生的继续学习数学是十分必要的,并且这样有利于学生的成长,让学生能轻松的遨游在数学学习的海洋中。
总评:本节课教师能够努力营造宽松、民主和谐的学习环境,引导学生积极参与学习过程。重视师生、生生间的交流、小组讨论、同桌合作,给学生提供自主的活动空间和交流的机会,引领学生通过自己的探索来获取知识,改变以往教师教和学生学的方式。如解题的一般步骤与方法探讨,从准备的演练至例题的尝试,再到方法的归纳无不体现着“以学生为本”的思想理念。整个教学过程,学生学得轻松活泼、积极主动,成为学习的主体;教师教得轻松自如,适时点拨,真正起到一个引导者、促进者的作用