机器视觉检测卷烟条盒包装质量

时间:2019-05-13 10:13:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《机器视觉检测卷烟条盒包装质量》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《机器视觉检测卷烟条盒包装质量》。

第一篇:机器视觉检测卷烟条盒包装质量

机器视觉检测卷烟条盒包装质量

1.引言

机器视觉系统是指通过机器视觉产品,如CCD、CMOS和光电管等,将被摄取的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,再根据判别的结果控制现场的设备。典型的工业机器视觉应用系统包括如下部分:光源,镜头,CCD照相机,图像处理单元(或图像采集卡),图像处理软件,监视器,通讯/输入输出单元等。

随着中国加入WTO,市场竞争日益激烈,卷烟企业为了提高产品的竞争力,更好的开拓市场,在加大卷烟质量的技改力度、提高卷烟质量的同时,对卷烟制品的包装形式及包装质量也加大了改造力度,以在激烈的市场竞争中更好的巩固和开拓市场。卷烟产品包装质量的检测,是市场营销过程中保证质量的一个重要手段。传统的烟支条盒包装质量完全由人眼检测,而长时间工作会使人眼产生视觉疲劳,难以避免产品错检、漏检情况的出现。基于机器视觉开发的检测系统使得在产品质量的检测过程中用机器代替人眼来做测量和判断,降低了人为因素对产品质量的影响,在提高卷烟包装质量的技改方面满足了企业的需求。

2. 系统的设计方案

系统采用线性光源以产生照明能量集中、光强分布均匀的一条光带;采用多个相机对条盒需要检测的各个面进行拍照,以保证检测的全面性;采用外触发模式使各个面的图像分通道进入图像采集单元;经过处理单元对各通道的图像进行复杂的表面检测运算,如果发现任何一个通道的图像存在表面质量缺陷,则对下位机给出控制信号,使执行单元在该不合格条盒通过时将其剔除;系统显示器实时显示各通道图像及其检测结果,并给出缺陷的分析结果。

系统的图像采集单元包括图像采集卡、D/A转换卡、光源、CCD相机,工业控制计算机作为图像处理单元,以PLC控制系统控制执行单元。

3. 图像采集

图像的获取实际上是将被测物体的可视化图像和内在特征转化成能被计算机处理的数据,它直接影响到系统的稳定性及可靠性。一般利用光源、光学系统,相机、图像采集卡、图像处理单元获取被测物体的图像。

光源是影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少30%的应用效果。条盒的外包装透明纸对光的反射、折射效果都很强,所以系统的照明系统采用多种型号的LED条形光源组合构成,照明方式为反射式照明,为延长光源的使用寿命,保持光源的高亮度、高稳定性,相机拍照时采用频闪光,频闪速度与相机的扫描速度同步。

在机器视觉中,CCD摄像机以其体积小巧、性能可靠、清晰度高等特点得到了广泛应用。按照其所用的CCD器件可分为线阵式和面阵式两大类。线阵式摄像机一次只能获得图像的一行信息,被拍摄的物体必须以直线形式从摄像机前移过,才能获得完整的图像,而面阵式摄像机则可以一次获得整幅图像的信息。在条盒包装质量检测系统中需要一次取得条盒外包装五个面的图像,设计中采用四个面阵式CCD摄像机同步拍照。

图像采集卡是控制摄像机拍照、完成图像采集和数字化、协调整个系统的重要设备。它一般具有以下模块:1.A/D转换模块2.时序及采集控制模块3.图像处理模块4.PCI总线接口及控制模块5.相机控制模块6.数字输入/输出模块。系统设计采用外触发模式对条盒进行拍照,图像采集卡通过TTL信号与外部装置(传感器、光源频闪控制器、PLC等)进行通信,用于响应频闪、拍照和给出剔除信号。

4.图像的分析处理

目前卷烟条盒包装主要存在破损、翘边、反包、包装错位、封签(偏移、叠角、缺失)等缺陷,在图像处理单元利用图像定位、边缘检测、斑点分析等算法,对各个通道的图像进行分析,以确定产品包装是否存在质量缺陷。

4.1定位配准(Locator)

定位配准是图像与标准模板进行缺陷检测的必要条件,定位准确与否直接关系到整个视觉系统的成败。传统的物体定位技术通过寻找统计模板(参考图像)与物体(产品图像)间的灰度级相关度的方法来决定物体的X、Y坐标,本系统定位采用几何特征匹配,通过设置兴趣域并学习兴趣域内物体的几何特征,然后在图像内寻找相似形状的物体,不依赖于特殊的像素灰度,提高了定位物体的能力,在改变物体角度、尺寸、明暗度等条件的情况下仍能精确定位物体。应用中的特点:

·基于图像中条盒轮廓或边缘找寻和定位条盒;

·设定模板后,所有查找都基于模板操作;

·对于相似的模板进行加权处理,能自动去模糊化(二意性);

·容许阴影、对比度低、边缘不清或背景噪音;

·定位器返回找到条盒特征的X、Y坐标。

4.2边缘检测(Edge)

边缘是指图像局部亮度变化最显著的部分,主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间。图像中被查找的边缘被标记为从全暗至全亮或从全亮至全暗范围内的灰度值变化,边缘工具从图像中去除常量或变化缓慢的背景,保留作为图像特征的边缘,并计算边缘的幅度和角度。边缘的幅度指穿过边缘时灰度值的变化量;边缘的角度是指边缘与垂直方向的夹角。下图为两个三角形。其中,箭头的方向表示边缘的角度,箭头的大小表示边缘的幅度。每一三角形具有同样的边缘角度,但由于背景的灰度值不同,左边三角形的幅度大于右方三角形。大多数由真实图像产生出的边缘幅度图像包含虚假的或噪声边缘像素,这些边缘像素是视频噪声、反射或其它图像缺陷所造成的。通过在边缘幅度图像中设置阀值,可消除这些虚假像素。设置阀值在消除虚假边缘的同时,还常会消除真正的边缘。因为真正的边缘常由一些邻近像素的集合构成。通过在边缘图像中设置边缘滞后阀值,可在消除虚假边缘的同时,保留真正的边缘。边缘滞后阀值消除了一些像素,这些像素的灰度较那些与其它边缘像素不相邻的像素低一定的幅度,较边缘幅度图像高一定的幅度。这一方法保留了形成真正边缘的连续边缘像素,而消除了由噪声或其它图像缺陷而形成的边缘像素。

系统的设计中通过在边缘工具中设置边缘滞后阀值和幅度范围来检测条盒边缘及透明纸褶皱的缺陷。

4.3斑点分析(Blob Analysis)

Blob分析可为视觉系统提供图像中斑点的数量、位置、形状和方向,还可提供相关斑点间的拓扑结构,其是一种对闭合目标形状进行分析处理的基本方法。

Blob分析从场景的灰度图象着手进行分析,在进行分析以前,利用二值化(Bilinear Interpolation)把图像分割为构成斑点(Blob)和局部背景的像素集合,典型的目标像素被赋值为1,背景像素被赋值为0。分割时设定了两种方法固定阀值分割(Hard Threshold)和动态阀值分割(Soft Threshold)。

当图像被分割为目标像素和背景像素后,进行连通性分析,在图像中寻找一个或多个相似灰度的“斑点”,并将这些“斑点”按照四邻域或者八邻域方式进行连通性分析,将目标像素聚合为目标像素或斑点的连接体,就形成了一个Blob单元。通过对Blob单元进行图形特征分析,可以将单纯的图案灰度信息迅速转化为图案的形状信息,包括图形的质心、面积、周长等。使用Blob分析,通过多级分类器的过滤,在一定程度上可满足对条盒透明纸破损、反包、盒皮印刷等缺陷的检测需求。

5.系统的总体开发

在条盒外包装质量检测系统中,采用的处理方式是基于PC机的检测处理系统。开发时综合考虑了系统与相机、采集卡、外部PLC、以及PC本身外设的连接与通信控制,提供了友好的人机界面和可靠历史记录存储数据库;检测到质量缺陷时,提示缺陷类别,对执行单元给出剔除信号。

执行单元是系统的一个关键环节,其作用就是响应上位机给出的剔除指令,准确无误地剔除不合格的条盒。在生产流水线运行的高峰时期,速度可达到8条/s,为保证系统的稳定性和快速性,设计中电控系统采用西门子的S7-200 PLC,执行机构中应用高速的电磁阀组和喷吹腔体,使其能够对剔除信号给出快速响应。

东莞市奥普特自动化科技有限公司

第二篇:烟标印刷质量机器视觉检测

烟标印刷质量机器视觉检测

在机器视觉检测中,每一种检测都有其特殊性,对应不同的检测对象与检测目的,需要不同的检测方法。本文结合烟标印刷质量机器视觉检测项目,介绍机器视觉检测的具体方法。

1概述

1.1烟标印刷的特点和烟标印刷质量检测的现状

烟标印刷是技术含量与质量要求最高的印刷之一。正是由于烟标印刷有着严格的质量标准,所以即使采用先进的进口印刷机械,产品也存在较多的次品。我国的烟标印刷企业目前一般采用人工在印中抽样及印后逐一目测的方法分拣次品。在烟标印刷企业常常出现这样一种现象:印刷车间,从国外进口的高档印刷机飞快的运转,几名工人轻松地注视着监控仪器;而在一旁的印刷质量检测区,几十上百的工人在紧张地对印好的成品作逐一检测。可见目前的检测方法效率低、成本高、工人劳动强度大,同时人工检测主观性强,容易造成检测标准的不统一。印刷企业通常还需要对次品进行统计,以便查找次品产生的原因,在采用人工检测时只能对次品进行抽样统计,要想实现全部次品的分类统计是很困难甚至是不可实现的。如果采用机器视觉检测,当前烟标印刷质量检测中存在的诸多问题便可迎刃而解。对烟标印刷质量机器视觉检测的有关理论问题进行研究,在此基础上研制出一套可以代替人的视觉对烟标印刷质量进行检测的系统,将大大提高烟标印刷企业的生产效率、生产质量以及经济效益。

1.2烟标印刷缺陷

烟标可能存在多种的印刷缺陷,如重影,烫金残缺,飞墨,墨色不均等,主要可归为以下几类:

1)套色缺陷。其表现为图案边缘出现重影,图案之间相对位置偏移,实质为印刷套色出现偏差。

2)烫金缺陷。其表现为烫金不全甚至没有或烫金位置偏移。

3)污迹。其表现为表面浮脏,或是有墨迹。

4)压凸缺陷。压凸部分与对应的文字或图案没有对准,或压凸的深度不符合要求。

以上几类缺陷有的有着具体的检测标准,如套色的偏差要求限制在0.2mm,而大多数 则是凭人的主观判断,如烫金污迹等。

(a)标准烟标图像

(b)有套色问题的烟标图像 图1 标准烟标图像和有套色问题烟标图像的对比

(a)标准演变图像

(b)有套色问题的烟标图像 图2.标准烟标图像和有套色问题烟标图像的对比(高分辨率、局部)

图1为标准烟标和有套色问题的烟标的对比图像,不过由于分辨率的原因,两幅图像的差别很难分辨。图2是局部对比图,由于分辨率的提高,差异已经可以容易的看到:问题烟标的字迹不清,有重影,部分边缘颜色错误。1.3机器视觉烟标印刷质量检测的难点

机器视觉烟标印刷质量检测有以下一些难点:

1、套色检测精度高

烟标印刷最大的特点就是精细,质量标准很高,套色的精度一般要求达到0.2mm所以在较低分辨率下很难显示出套色问题(如图1),这就需要提高分辨率。但随着分辨率的提高,图像尺寸也增加,图像处理的运算量也大大提高,给图像处理带来了一些困难。

2、污迹分布随机

由于污迹分布的随机性,烟标图像的每一部分都必须进行检测,使得检测的运算量很大,这在采用高分辨率图像后显得更为突出。

3、干扰因素多

烟标并不是一个平面的印刷品,其上还有压痕(为方便折叠而压的凹槽)、切口(这会使得烟标的某些部位上翘或下压),这些不规则的压痕和切口会影响到烟标图案的相对位置,给检测带来困难。

4、各印刷缺陷互相干扰

如烫金图案的缺损,可能会被误判为污迹;当污迹恰好覆盖烫金图案时,污迹也可能被误判为烫金缺损。

2特征定位

烟标的印刷质量检测主要就是检测出套色,烫金,污迹等印刷缺陷,但是在进行这些缺陷检测之前需要作一些的工作,为这检测提供必要的信息。这些工作主要包括:特征定位和图像配准。

有关位置的印刷缺陷检测均需要位置信息,而通过特征定位则可以求得位置信息。特征定位的准确程度直接关系到后续检测的效果,所以特征定位是烟标印刷质量检测的关键步骤之一。

2.1特征的类型

图3为三种不同种类的烟标图像(图3中标注的英文字母对应图4中各烟标特征在整幅烟标图像中的位置)。由这些图像可以看出烟标具有大量的特征,这些特征主要分为以下几种类型:

1、水平边缘

位于两种不同颜色区域的水平连接处,如图4(a)

2、水平双边缘

表现为水平细线,如图4(b)

3、垂直边缘

位于两种不同颜色区域的垂直连接处,如图4(c)

图3 不同种类的烟标

图3中标注的英文字母对应图4中各烟标特征在整幅烟标图像中的位置。

图4 不同类型的特征

2.2烟标图像特征定位的搜索范围

烟标图像有三个重要的特点:一是图像旋转角很小(如图3(b))的旋转角仅为0.06度),所以在局部可以认为没有旋转;二是图像间比例尺差异很小(仅为千分之几);三是图像间平移也很小。这三个特点决定了标准图像和目标图像的对应特征的位置(图像坐标)相差很小,这就意味着对目标图像特定特征的搜索可限制在一个较小的范围内,如果能求得目标图像对应标准图像的概略位置,则这个范围更小。

烟标图像同时还有另外一些特点,这些特点又使得特征的搜索范围必须变大。一是烟标上存在的大量压痕和切口,压痕和切口的细微差别就会使特征的位置发生变化;二是烟标的套色偏差,套色偏差会使特征的相对位置发生改变。

综合以上,影响目标图像的特征搜索范围的因素有:特征的概略位置精度,压痕切口偏差,标准图像套色偏差,目标图像套色偏差。特征的概略位置精度同采用的求法有关,本文下一节将对其进行讨论;压痕切口偏差为经验值,可统计得到;套色偏差可采用本文4节方法求得。

3图像配准

图像配准是印刷缺陷检测的基础,套色、烫金、污迹等检测只有在目标烟标图像同标准烟标图像配准的前提下才能进行。

烟标图像有很多特点,其中一个就是有大量特征存在。图像配准的算法很多,如基于边缘的配准算法,基于角点检测的配准算法等等,本文则主要针对烟标图像的特点提出了一种基于特征定位的图像配准方法。该方法的基本步骤为:首先进行特征定位,接着计算几何变换参数,最后重采样生成配准图像。3.1特征定位

特征定位的方法见第2节。特征选取应注意:

1、优先选取直角点。

2、水平边缘/沐平双边缘同垂直边缘/垂直双边缘应成对选取,即选一条水平边缘/水平双边缘就要选一条垂直边缴垂直双边缘,而且这两条边缘应尽量靠近。

3、多选取一些特征以作冗余校验,在选取文字/标志特征时更应如此。

4、避免选择彼此距离过近的特征。

3.2重采样

求得变换参数以后,标准图像上的所有点在待检测图像上的同名点的位置就可以求出来了。而这些位置的坐标值可能不是整数,所以不能直接得到这些位置上的点的灰度值,这就需要进行内插,也称为重采样。

4套色检测

4.1套色不准产生的原因

导致套色不准的原因主要有以下一些:

1、设备精度差引起的套色不准

印刷机上的滚筒齿轮、版台齿条、连杆轴承、递纸牙!凸轮以及联动前规和侧规运动的机件发生磨损松动时,易使印品套色失准。

2、机器调整不当引起的套色不准

在印刷过程中,若叼牙的叼纸量过小,叼不住纸边,压印时就容易产生滑移。递纸牙、叼牙开闭动作失调,叼纸牙的压力不足,输纸系统的某些部件失调,都会导致套色不准。此外,印刷压力过大,包衬盲目增厚,包衬松动也是造成印刷版面走样(版面拉大),套色失准的原因。

3、纸张伸缩变形引起的套色不准

纸张含水量异常、纸边卷曲时,会出现套色不准现象。

4、操作不当引起的套色不准

印版底托不良,压力过大,油墨层薪稠度过大,纸张裁切不规范都会使得套色失准。4.2基于套色十字丝的印刷套色检测

烟标上都印有套色标志,而这些标志通常呈十字丝状,称为套色十字丝。套色印刷的每一种颜色都对应一个十字丝,在套色完全准确的情况下,各颜色的十字丝完全重合(如图5(a)),而在套色不准的情况下,各色十字丝彼此不能完全重合(如图5(d)),它们之间的偏差就是套色偏差。所以检测印刷套色偏差可以通过检测套色十字丝来完成。本文将这种检测方法称为基于套色十字丝的印刷套色检测。4.3二值图像处理

由于图像噪声的影响,分割后的二值图像还要进行进一步的处理。图像背景中的一些噪声点,也可能被划分成十字丝,反映在二值图像上就是,除图像中央十字丝本来所在的位置存在黑像素外,其他区域还零星分布着一些黑像素(设分割后的图像,目标为黑,背景为白,下文均如此)。为了去除这些零星黑像素,本文提出了一种孤立点剔除算法。

5烫金缺陷检测

烫金是指在一定的温度和压力下将电化铝箔烫印到承印物表面的工艺过程。电化铝烫印的图文呈现出强烈的金属光泽,色彩鲜艳夺目、永不褪色。尤其是金银电化铝,以其富丽堂皇、精致高雅的装演点缀了印刷品表面,增强了印品的艺术性,使产品具有高档的感觉。所以烫金工艺被广泛地应用于高档、精美的包装装横商标、挂历和书刊封面等印刷品上。烫金的主要材料是电化铝,它是以涤纶薄膜为片基,涂上醇溶性染色树脂层,经真空喷镀金属铝,再涂上胶粘层而制成。其工艺主要是利用热压转移的原理,在合压作用下,电化铝与烫印版、承印物接触,由于电热板的升温使烫印版具有一定的热量,电化铝受热使热熔性的染色树脂层和胶粘剂熔化,染色树脂层粘力减小,而特种热敏胶粘剂熔化后粘性增加,铝层与电化铝基膜剥离的同时转印到了承印物上,随着压力的卸除,胶粘剂迅速冷却固化,铝层牢固地附着在承印物上,完成烫印过程。烟标作为高档印刷品,也大量采用了烫金工艺。

在烫金的过程中有多种因素可能影响烫金的质量,其中最主要因素有烫金的温度、压力和速度。如果烫金温度过高,熔化过度,烫印图文周围的电化铝也熔化脱落而产生糊版,同时高温还会使电化铝染色树脂和铝层发生化学变化,烫印产品亮度降低或失去金属光泽;如

果烫金温度过低,熔化不充分,也会造成烫印不上或烫印不牢,印迹不牢固、易脱落,或者缺笔断划、印迹发花。即便烫金温度合适,如果压力不足,也无法使电化铝良好地转移到承印物上,就会产生印迹发虚、花版、掉色等问题;相反,如果压力过大,衬垫和承印物的压缩变形过大,印迹则会发粗,甚至粘连、糊版。烫金速度越快,烫印接触时间越短,热熔性的染色树脂层和胶粘剂就可能来不及充分熔化,从而导致印迹发虚甚至烫印不上;而如果烫印速度过慢,会使电化铝接触时间过长,虽然粘结比较牢固,但印迹会变粗。除了温度,压力,速度三大因素以外,其它如纸张,电解铝质量也都对烫金质量产生影响。这些因素使得烫金质量的控制比较困难,而烫金缺陷在所有印刷缺陷中的出现的几率也是比较高的,所以烫金质量的检测就显得尤为重要。

第三篇:机器视觉教学大纲

《机器视觉》教学大纲 课程编码:08241059 课程名称:机器视觉 英文名称:MACHINE VISION 开课学期:7 学时/学分:36/2(其中实验学时:4)课程类型:专业方向选修课 开课专业:机械工程及自动化 选用教材:贾云得编著 《机器视觉》 科学出版社 2002年 主要参考书:

1.ROBOTICS: Control, Sensing, Vision, and Intelligence, K.S.Fu,McGraw-Hill Publishing Company, 1987 2.张广军编著,机器视觉,科学出版社,2005年 执笔人:

本课程主要内容包括:二值图像分析、图像预处理、边缘检测、图像分割、纹理分析、明暗分析、彩色感知、深度图与立体视觉。通过本课程的学习,学生应掌握机器视觉的基础理论、基本方法和实用算法。

一、课程性质、目的与任务 机器视觉课程是机械工程及自动化专业在智能机器方向的一门专业方向选修课。机器智能化是机械学科的重要发展方向,也是国际上跨学科的热门研究领域。而机器视觉是智能机器的重要组成部分,它与图象处理、模式识别、人工智能、人工神经网络以及神经物理学及认知科学等都有紧密的关系。本课程对于开阔学生视野、使学生了解本专业的发展前沿,把学生培养成面向二十一世纪的复合型人才具有重要的地位和作用。通过本课程的学习,学生也能掌握一定的科学研究方法与技能,为有潜力成为研究型人才的学生打下一定基础。

二、教学基本要求 本课程主要内容包括:二值图像分析、图像预处理、边缘检测、图像分割、纹理分析、明暗分析、深度图与立体视觉。通过本课程的学习,学生应掌握机器视觉的基础理论、基本方法和实用算法。

本大纲仅列出达到教学基本要求的课程内容,不限制讲述的体系、方式和方法,列出的内容并非要求都讲,有些内容,可以通过自学达到教学基本要求。

使用CAI课件作为辅助教学手段可以节省大量时间,传递更多的信息量,所以本课程建议使用CAI课件。

作业是检验学生学习情况的重要教学环节,为了帮助学生掌握课程的基本内容,培养分析、运算的能力,建议布置作业5-8次,并在期末前安排一次综合作业作为主要考查环节。

实验是教学的一个主要环节,实验时间共4学时,每次实验每小组4-6人,使每个学生均有亲自操作的机会。

三、各章节内容及学时分配 1. 人类视觉与机器视觉(4学时): 人类视觉原理与视觉信息的处理过程;

机器视觉理论框架与应用;

成像几何学基础。

2. 值图像分析与区域分析(4学时):阈值、几何特性、投影、游程长度编码、二值图像算法;

区域和边缘、分割、区域表示、分裂和合并。

3. 图像预处理(4学时):直方图修正、图像线性运算、线性滤波器、非线性滤波器。

4. 边缘检测和轮廓表示(4学时):梯度、边缘检测算法、二阶微分算子、LoG算法、图像逼近、Canny边缘检测器;

数字曲线及其表示、曲线拟合、Hough变换。

5.纹理(4学时):纹理分析统计方法、有序纹理的结构分析、基于模型的纹理分析、用分形理论分析纹理、从纹理恢复形状。

6. 明暗分析(4学时):图像辐射度、表面方向、反射图、从图像明暗恢复形状、光度立体。

7. 双目立体视觉(4学时):双目立体视觉原理、精度分析、系统结构、立体成像、立体匹配、系统标定。

8. 三维视觉技术(4学时):结构光三维视觉原理、光模式投射系统、标定方法;

光度立体视觉、由纹理恢复形状、激光测距法。

四、实验:

1. 实验目的与任务 本课程实验综合运用机器视觉基本理论、机器视觉实验装置和计算机图像处理软件,加深理解机器视觉的基本概念,掌握机器视觉图像基本处理方法,培养学生的动手能力和分析问题解决问题的能力。

2. 实验教学基本要求(1)掌握机器视觉图像基本处理方法:除噪、边缘增强、边缘检测。

(2)掌握三维物体的机器视觉识别方法:结构光法实验装置、三维物体数据的获取和三维物体的重建方法。

3. 实验教材或指导书 自编。

4. 实验项目一览表 序号 实验项目 内容提要 实验 类型 学时 分配 主要仪器 设 备 实验 地点 备注 1 视觉图像基本处理方法 滤波、图像增强与边缘检测 综合 2学时 配备图像处理软件的微机 机械设计及自动化实验室 2 三维物体的机器视觉识别方法 结构光法的图像数据获取、处理与三维模型重建 综合 2学时 结构光实验系统 机械设计及自动化实验室 五、考核方式:

(1)考核形式为考查,采用五级分制,考核环节为平时出勤、作业、实验和期末综合作业;

(2)平时成绩占35%,实验占30%,期末综合作业占35%。

第四篇:机器视觉课后心得体会

基本概念“机器视觉”,即采用机器代替人眼来做测量和判断。

机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)把图像抓取到,然后将该图像传送至处理单元,通过数字化处理,根据像素分布和亮度、颜色等信息,来进行尺寸、形状、颜色等的判别。进而根据判别的结果来控制现场的设备动作。

机器视觉主要用计算机来模拟人的视觉功能,但并不仅仅是人眼的简单延伸,更重要的是具有人脑的一部分功能一一从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。

机器视觉与计算机视觉的不同机器视觉不同于计算机视觉,它涉及图像处理、人工智能和模式识别

机器视觉是专注于集合机械,光学,电子,软件系统,检查自然物体和材料,人工缺陷和生产制造过程的工程,它是为了检测缺陷和提高质量,操作效率,并保障产品和过程安全。它也用于控制机器。机器视觉是将计算机视觉应用于工业自动化。

机器视觉的技术进展在机器视觉系统中;关键技术有光源照明技术、光学镜头、摄像机、图像采集卡、图像处理卡和快速准确的执行机构等方面。在机器视觉应用系统中;好的光源与照明方案往往是整个系统成败的关键;起着非常重要的作用;它并不是简单的照亮物体而已。光源与照明方案的配合应尽可能地突出物体特征量;在物体需要检测的部分与那些不重要部份之间应尽可能地产生明显的区别;增加对比度;同时还应保证足够的整体亮度;物体位置的变化不应该影响成像的质量。在机器视觉应用系统中一般使用透射光和反射光。对于反射光情况应充分考虑光源和光学镜头的相对位置、物体表面的纹理;物体的几何形状、背景等要素。光源的选择必须符合所需的几何形状、照明亮度、均匀度、发光的光谱特性等;同时还要考虑光源的发光效率和使用寿命。光学镜头相当于人眼的晶状体;在机器视觉系统中非常重要。一个镜头的成像质量优劣;即其对像差校正的优良与否;可通过像差大小来衡量;常见的像差有球差、彗差、像散、场曲、畸变、色差等六种。

摄像机和图像采集卡共同完成对物料图像的采集与数字化。高质量的图像信息是系统正确判断和决策的原始依据;是整个系统成功与否的又一关键所在。目前在机器视觉系统中;CCD 摄像机以其体积小巧、性能可靠、清晰度高等优点得到了广泛使用。CCD 摄像机按照其使用的CCD 器件可以分为线阵式和面阵式两大类。线阵CCD 摄像机一次只能获得图像的一行信息;被拍摄的物体必须以直线形式从摄像机前移过;才能获得完整的图像;因此非常适合对以一定速度匀速运动的物料流的图像检测;而面阵CCD 摄像机则可以一次获得整幅图像的信息。图像信号的处理是机器视觉系统的核心;它相当于人的大脑。如何对图像进行处理和运算;即算法都体现在这里;是机器视觉系统开发中的重点和难点所在。随着计算机技术、微电子技术和大规模集成电路技术的快速发展;为了提高系统的实时性;对图像处理的很多工作都可以借助硬件完成;如DSP、专用图像信号处理卡等;软件则主要完成算法中非常复杂、不太成熟、尚需不断探索和改变的部分。

从产品本身看,机器视觉会越来越趋于依靠PC技术,并且与数据采集等其他控制和测量的集成会更紧密。且基于嵌入式的产品将逐渐取代板卡式产品,这是一个不断增长的趋势。主要原因是随着计算机技术和微电子技术的迅速发展,嵌入式系统应用领域越来越广泛,尤其是其具备低功耗技术的特点得到人们的重视。另外,嵌入式操作系统绝大部分是以C语言为基础的,因此使用C高级语言进行嵌入式系统开发是一项带有基础性的工作,使用高级语言的优点是可以提高工作效率,缩短开发周期,更主要的是开发出的产品可靠性高、可维护性好、便于不断完善和升级换代等。因此,嵌入式产品将会取代板卡式产品。应用:机器视觉伴随计算机技术、现场总线技术的发展,技术日臻成熟,已是现代加工制造业不可或缺的产品,广泛应用于食品和饮料、化妆品、制药、建材和化工、金属加工、电子制造、包装、汽车制造等行业。代替传统的人工检测方法,极大地提高了投放市场的产品质量,提高了生产效率。

由于机器视觉是自动化的一部分,没有自动化就不会有机器视觉,机器视觉软硬件产品正逐渐成为协作生产制造过程中不同阶段的核心系统,无论是用户还是硬件供应商都将机器视觉产品作为生产线上信息收集的工具,这就要求机器视觉产品大量采用“标准化技术”,直观的说就是要随着自动化的开放而逐渐开放,可以根据用户的需求进行二次开发。当今,自动化企业正在倡导软硬一体化解决方案,机器视觉的厂商在未来5-6年内也应该不单纯是只提供产品的供应商,而是逐渐向一体化解决方案的系统集成商迈进。在未来的几年内,随着中国加工制造业的发展,对于机器视觉的需求也逐渐增多;随着机器视觉产品的增多,技术的提高,国内机器视觉的应用状况将由初期的低端转向高端。由于机器视觉的介入,自动化将朝着更智能、更快速的方向发展。

第五篇:机器视觉课后心得体会

经过机器视觉技术及应用这门课程的学习,我觉得受益匪浅。可以说这门课程更偏重于实践,也很好的锻炼了我们,老师讲课很认真,ppT准备的很详细,对于一些关键问题的讲解更是深入浅出。机器视觉技术,即采用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品即图像摄取装置,分CMOS和CCD两种把图像抓取到,然后将该图像传送至处理单元,通过数字化处理,根据像素分布和亮度、颜色等信息,来进行尺寸、形状、颜色等的判别,进而根据判别的结果来控制现场的设备动作。机器视觉主要用计算机来模拟人的视觉功能,但并不仅仅是人眼的简单延伸,更重要的是具有人脑的一部分功能一一从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。

机器视觉不同于计算机视觉,它涉及图像处理、人工智能和模式识别,机器视觉是将计算机视觉应用于工业自动化。

目前在机器视觉系统中;CCD 摄像机以其体积小巧、性能可靠、清晰度高等优点得到了广泛使用。机器视觉伴随计算机技术、现场总线技术的发展,技术日臻成熟,已是现代加工制造业不可或缺的产品,广泛应用于食品和饮料、化妆品、制药、建材和化工、金属加工、电子制造、包装、汽车制造等行业。在未来的几年内,随着中国加工制造业的发展,对于机器视觉的需求也逐渐增多;随着机器视觉产品的增多,技术的提高,国内机器视觉的应用状况将由初期的低端转向高端。加之机器视觉的介入,自动化将朝着更智能、更快速的方向发展。

通过本课程的学习,我们掌握了一些机器视觉方面的基本知识。这门课对于我们生活方面有很大的实用性,可以让我们了解到机器视觉的基本构造,对成为技术应用型人才,适应社会和培养实践能力与技能都起到了很大的作用。这样的学习让我们将知识更灵活的运用,更好的将知识和实践结合在一起并转化为技能。

通过这门课程的学习,我们懂得更多,收获更多,提升了自身操作能力的同时又学到了很多东西,我相信在以后的课堂学习和实践学习中可以掌握更多更深入的知识,不断的提高自身的学习与应用能力。

下载机器视觉检测卷烟条盒包装质量word格式文档
下载机器视觉检测卷烟条盒包装质量.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    机器视觉技术在条包烟外观质量检测上的应用.

    技术与应用 机器视觉技术在条包烟 外观质量检测上的应用 孙 军1 甘益员1 肖 荣2 (1.湖南中烟工业有限责任公司四平卷烟厂,吉林 四平136001; 2. 大树智能科技(南京)有限公司,南京 2......

    基于机器视觉智能交通灯控制系统

    机器视觉的论述作业 题目 :基于机器视觉智能交通灯控制系统学院名称 :电气工程学院专业班级 :姓名 : 学号 :时 间 : 1 绪论.......................................................

    机器视觉系统整合解决方案研究

    机器视觉系统整合解决方案研究 机器视觉系统的原理是:将感产品或区域的图像进行采集,然后根据其图像信息用专用的图像处理软件进行处理,根据处理结果软件能自动判断产品的位置......

    机器视觉系统典型应用行业

    机器视觉系统典型应用行业 机器视觉技术的优越性 由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程......

    机器视觉课程之数字图像及其性质

    深圳稻草人机器视觉 C++运动控制卡编程培训 机器视觉课程之数字图像及其性质 2.1基本概念 这一章我们要介绍一些木书中用到的基本概念和数学工具。缺少完整数学背景的读者......

    技能培训专题 机器视觉系统资料介绍

    机器视觉系统资料介绍一、概述机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传......

    机器视觉将引领未来智能自动化

    机器视觉技术将引领未来智能自动化 机器视觉技术作为一项综合学科,是计算机学科一个重要分支,也是一项新兴产业。纵观行业发展,机器视觉技术发展至今经历了不同的阶段,其功能以......

    机器视觉在物联网中的应用

    机器视觉在物联网中的应用 物联网是新一代信息技术的重要组成部分,顾名思义,物联网就是物物相连的互联网,其实现方式主要是通过各种信息传感设备,实时采集任何需要监控、连接、......