第一篇:北师大版小学数学第十二册 圆柱的表面积 教学设计
圆柱的表面积
学情分析:
班级27人基本上已经掌握圆的有关知识,通过本节课教学要使灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。
教学目标:
能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,使学生感受到数学与生活的密切联系
通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。
结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
教学重点:
使学生认识圆柱侧面展开图的多样性。
教学难点:
学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算式。
教学用具:
课件、圆柱体的瓶子、剪子
教学过程:
一、创设情境,引起兴趣(圆柱的认识)。
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)
二、自主探究,发现问题。
活动一研究侧面积
1、独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。
2、观察对比:观察展开的图形各部分与圆柱体有什么关系?
3、小组交流:能用已有的知识计算它的面积吗?
4、小组汇报。
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
长方形的面积=圆柱的侧面积即长×宽=底面周长×高,所以,圆柱的侧面积=底面周长×高S 侧 ==C×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h
如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准
备好的圆柱纸盒用此法展开)
活动二研究表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。
学生测量,计算表面积。
2、圆柱体的表面积怎样求呢?
得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×23、动画:圆柱体表面展开过程
三、实际应用
1、解决书上的例题
2、填空
圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()
3、要求一个圆柱的表面积,一般需要知道哪些条件()
4、练习—— 圆柱的认识(练习)
四、板书
圆柱体的表面积
圆柱的侧面积 = 底面周长×高 → S侧=ch
↓↑↑
长方形 面积 = 长× 宽
圆柱的表面积 = 圆柱的侧面积+底面积×
2教学反思:
本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合。
1、把握重点,突破难点,合理利用教材
对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知。
3、讲解与练习相结合本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
第二篇:北师大版小学数学第十二册 圆柱的体积 教学设计
圆柱的体积
学情分析:
根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学目标:
1. 通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积
公式这一教学过程,向学生渗透转化思想。
2.3. 通过圆柱体体积公式的推导,培养学生的分析推理能力。理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式
计算圆柱的体积。
教学重点:
圆柱体体积的计算
教学难点:
圆柱体体积公式的推导
教学用具:
圆柱体学具、课件
教学过程:
一、复习引新
1.求下面各圆的面积(回答)。
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
要求说出解题思路。
2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。
3.提问:什么叫体积?常用的体积单位有哪些?
4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)
二、探索新知
1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)
2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像
上面说的转化成一个长方 形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一 起来讨论。
3.公式推导。(有条件的可分小组进行)
(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。(切拼转化)
(3)探索求圆柱体积的公式。
根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教
材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。
(4)讨论并得出结果。
你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 相等,这个长方体的高与圆柱体的高相等。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:圆柱的体积=底面积×高(板书:圆柱的体积=底面积×高)用字母表示:
(板书:V=Sh)
(5)小结。
圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?
4.教学算一算
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)
教学“试一试”
小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。
三、巩固练习练习册里的练习题
四、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。
教学反思
圆柱的体积一课,重点是体积公式的推导。公式导出后,如何进行计算应用。
教学中学生存在的问题是:
1、学生对推导过程理解有困难,不深入;
2、在计算的过程中,单位名称用错,体积单位用面积单位。
3、对于书中所给的立体图形,认识不到位,不能正确分辨直径、半径以及圆柱的高,做题出错。圆柱的高也可以叫做圆柱的长(个别学生不清楚)
突破难点的方法:
1、为了避免单位名称的错误,可在课前复习中设计单位换算的填空题,辨析题等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。
2、在学生利用学具理解公式的推导过程时,应放手让学动手动脑自己解决,但动手之前一定要把任务布置清楚,让孩子们自己发现圆柱与长方体各部分之间的关系,从而推导出圆柱的体积公式。
3、注意引导学生参与到探索知识的发生发展过程中,突破以往
数学学习单
一、被动的学习方式,关注学生的实践活动和直接经验,“通过自己的活动”获得情感、能力、智力的全面发展。小学阶段,操作活动是数学活动的重要组成部分,也是学生学习活动的重要方式。
第三篇:北师大版小学数学第十二册_圆柱的体积_教学设计2
圆柱的体积
学情分析:通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学目标:
通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
通过圆柱体体积公式的推导,培养学生的分析推理能力。
理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学重点:圆柱体体积的计算教学难点:圆柱体体积公式的推导 教学用具:
圆柱体学具、课件
教学过程:
一、创设情境
1出示大小不同的,生活中常见的圆柱形物体,引导学生观察,比较。(师:这些都是生活中常见的圆柱)
师:看到这些圆柱体你们想知道些什么?依据学生的回答板书“圆柱的体积”。(学生可能回答圆柱的体积,容积,表面积等)
师问:如何知道这些圆柱的大小呢?也就是说圆柱的体积与什么有关呢?能否转化我们已学过的立体图形来计算呢?
我们学过哪些立体图形呢?(学生回答长方体和正方体的体积公式)
出示幻灯片演示。
二.实际操作,帮助迁移
1那么圆柱的大小与什么有关呢?学生想象回答。
生得出:圆柱的大小与它的底面积和高有关。那么圆柱的体积可能等于什么(圆柱的体积底面积乘以高)
2{回忆交流}:当初是怎样将圆转化已学过的图形来推导圆的面积公式的?配合学生的回答,课件演示推导过程。小组合作,共同探究
猜想:要解决圆柱的体积问题,你们能够用转化的方法吗? 请同学们在小组内拿出学具操作研讨,能否把圆柱可以转化成我们学过的立体图形?
同学们说出圆柱可以转化成我们学过的立体图形,并介绍自己想到的转化方法。
小组合作后,学生上台展示将学具中的圆柱的底面分成若干个相等的扇形,然后打圆柱切开,在把它转化成一个近似的长方体。
观察讨论全班交流
转化后近似的长方体与原圆柱有怎样的关系呢?
1为什么要说是近似的长方体?
2把圆柱转化成近似的长方体后,什么变了?什么没变?
分的份数越多,圆柱中圆面就越接近长方形,圆柱就越接近长方体。转化后的长方体和原来的圆柱相比较,体积不变,底面积不变,高不变;表面积变了,形状变了„„
(3)课件演示,探索求圆柱体积的公式。
演示:屏幕上出现一个底面红色,侧面蓝色的圆柱,圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成长方体。这个长方体的底面积与圆柱体的底面积 相等,这个长方体的高与圆柱体的高相等。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:圆柱的体积=底面积×高(板书:圆柱的体积=底面积×高)用字母表示(板书:V=Sh)
计算圆柱的体积必须知道哪些条件?让学生说一说。
4.教学算一算
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)
教学“试一试”
小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。
三、巩固练习练习册里的练习题
四、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体。
第四篇:北师大版小学数学第十二册 反比例 教学设计
教学内容:反比例
学情分析
班级学生基本上已经正比例有关知识,通过本节课是学生能根据能根据反比例的意义,判断两个相关联的量是不是成反比例。教学目标:
1、结合丰富的实例,认识反比例。
2、能根据反比例的意义,判断两个相关联的量是不是成反比例。
3、利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。教学重点:
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。教学难点:
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。教学过程:
一、复习
1、什么是正比例的量?
2、判断下面各题中的两种量是否成正比例?为什么?(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。(3)正方形的边长和它的面积。
二、导入新课
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
三、进行新课 情境
(一)认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境
(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样
变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考
同桌交流,用自己的语言表达
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定
情境
(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系
写出关系式:每杯果汁量×杯数=果汗总量(一定)
5、以上两个情境中有什么共同点?
反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
活动四:练习题
P26页第1、2、3题 关系式:X×Y=K(一定)
教学反思:
反比例关系是一种重要的数量关系,它渗透了初步的函数思想。所以本节课体现了以下2点:
1、温故知新,渗透难点。本节课《成反比例的量》中重点和难点都是学生理解“成反比例”这个概念,而这个概念的得出要从研究数量关系入手,实质上是对数量之间关系一种新的定义,一种新的内在揭示。对于学生来说,数量关系并不陌生,在以前的应用题学习中是反复强调过的,本节课的教学并不仅仅停留在数量关系上,而是要从一个新的数学角度来加以研究,用一种新的数学思想来加以理解,用一种新的数学语言来加以定义。“成反比例的量”与数量关系是有本质联系的,都是研究两种数量之间的关系,而且是两种数量之间相乘的关系,因此在复习题中我让学生大量的复习了常见的乘法数量关系,并且联系教材复习了教材及练习中涉及到的一些数量关系,渗透了难点。
2、重概念的形成过程,加强思维训练。
学习数学概念的最终目的是应用于实际,去灵活解决实际问题,而实现这个目标归根结底依赖于对概念的本质理解。成功的概念教学是要在得出概念之前下功夫,要设计多种教学环节,利用各种教学手段使学生充分体验得出概念的思维过程,先做到对概念本质的理解,再顺理成章的引出概念的物质外壳---即用语句表达。
例如我在教学《成反比例的量》时,我通过复习常见的数量关系,从生活事例中引出数量关系,然后给这种数量关系一种新的理解,将这种数量关系重新定义为成反比例关系,给具备这种数量关系的数量重新定义为成反比例的量,沿着这条线索学生由浅入深,由表及里的体验了概念形成的过程。为帮助学生建构“反
比例”的意义,课堂流程重点设计两大板块。其一是“选择材料、主体解读”的“原型体验”板块。在这一板块中,借助三则具体材料让学生经历商量选择、独立解读、交流互评和推荐典型等数学活动,积累了较多的与反比例有关的信息和感性认识;其二是交流思维、点化引领的数学化生成板块。在这一板块中,学生立足小组间的交流和思维共享,借助教师适时介入的适度点拨,生成了“反比例”数学概念,并通过回馈材料的概念解释促进了理解的深入,并能利用概念准确的判断两种量是否成反比例。
第五篇:北师大版小学数学第十二册 比例尺 教学设计
教学内容:比例尺
学情分析
班级学生基本上已经比例有关知识,通过本节课是学生能结合具体情境,认识比例尺,能根据图上距离,实际距离,比例尺中的两个量求第三个量,运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
教学目标:
1、结合具体情境,认识比例尺,能根据图上距离,实际距离,比例尺中的两个量求第三个量。
2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。
教学重点:认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知
识解决实际问题的能力。
教学难点:认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知
识解决实际问题的能力。
教学过程:
呈现情境图
思 考、讨 论
我家的房屋平面图
1、比例尺1:100是什么意思?
图上距离
2、比例尺=--------------
实际距离
3、练习独立完成P30页第2、3题。
4、P30页第4题,怎样求窗户的图上距离?注意比成相成的单位后再计算。
5、指导完成P30页第5题。
注意求比例尺时,图上距离与实际距离的单位要统一。
P31页第1题,说明清楚两地距离一般假设是直线距离,计算时,注意单位换算。P31页第2题,自己尝试独立完成。
放手让学生自己研究。
教师对困难的学生加以指导
试一试
练一练
教学反思:
在教学比例尺的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离。而且在教学的过程中,方法也有不同,学生很容易混淆。
第一个容易混淆的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的方法是在设未知数的时候,单位上就出现了不同,以至于学生不知道如何区分,什么时候该怎么设。
第二个就是方法的选择上,其实在这一块知识上,利用图上距离和实际距离的倍比关系,也是一种很好的解法。但是如何让学生理解这种方法的原理很重要,从学生的课堂和课后情况来看,很多学生其实并没有从根本上理解这种解法的原理,只是在一样的画葫芦罢了。
根据学生的这一情况,今天又对比例尺的内容重新整理了一遍,其实关键还是在于学生没有真正的理解比例尺的概念。例如:比例尺1:500000这是在图上距离和实际距离的单位统一的时候的比,所以在用列方程进行解答的时候,如何进行解设只要抓住一个要点:对应的图上距离和实际距离的单位是相同的才能列出方程。这样就不用去顾及怎么设,只要抓住图上距离和实际距离的单位相同就可以了,怎么设都是可以解答的。
对于第二个问题,倍比关系的理解,实际还是对于比例尺的理解不够深。例如:比例尺1:500000表示的图上距离是实际距离的1/500000,实际距离是图上距离的500000倍,图上的1厘米实际是5千米,这就是线段比例尺,在有些问题中利用线段比例尺还会给计算带来方便。
在学生出现问题之后,针对学生的情况,及时地给学生适当的进行归纳整理,会加强学的理解,帮助学生更好的掌握!