【创新方案】2013年高考数学一轮复习 几何证明选讲 第2讲 圆周角定理与圆的切线教案 理 新人教版选修4-1

时间:2019-05-13 10:16:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《【创新方案】2013年高考数学一轮复习 几何证明选讲 第2讲 圆周角定理与圆的切线教案 理 新人教版选修4-1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《【创新方案】2013年高考数学一轮复习 几何证明选讲 第2讲 圆周角定理与圆的切线教案 理 新人教版选修4-1》。

第一篇:【创新方案】2013年高考数学一轮复习 几何证明选讲 第2讲 圆周角定理与圆的切线教案 理 新人教版选修4-1

第2讲 圆周角定理与圆的切线

【2013年高考会这样考】

考查圆的切线定理和性质定理的应用.

【复习指导】

本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切

角等有关知识,重点掌握解决问题的基本方法

.基础梳理

1.圆周角定理

(1)圆周角:顶点在圆周上且两边都与圆相交的角.

(2)圆周角定理:圆周角的度数等于它所对弧度数的一半.

(3)圆周角定理的推论

①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. ②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径.

2.圆的切线

(1)直线与圆的位置关系

(2)①切线的性质定理:圆的切线垂直于经过切点的半径.

②切线的判定定理

过半径外端且与这条半径垂直的直线是圆的切线.

(3)切线长定理

从圆外一点引圆的两条切线长相等.

3.弦切角

(1)弦切角:顶点在圆上,一边与圆相切,另一边与圆相交的角.

(2)弦切角定理及推论

①定理:弦切角的度数等于所夹弧的度数的一半.

②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.

双基自测

1.如图所示,△ABC中,∠C=90°,AB=10,AC=6,以AC为直径的圆与斜边交于点P,1则BP长为________.

解析 连接CP.由推论2知∠CPA=90°,即CP⊥AB,由射影定理知,AC=

2AP·AB.∴AP=3.6,∴BP=AB-AP=6.4.答案 6.42.如图所示,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC

上的点,已知∠BAC=80°,那么∠BDC=________.解析 连接OB、OC,则OB⊥AB,OC⊥AC,∴∠BOC=180°-∠BAC=100°,1∴∠BDC=∠BOC=50°.2答案 50°

3.(2011·广州测试(一))如图所示,CD是圆O的切线,切点为C,点A、B在圆O上,BC=1,∠BCD=30°,则圆O的面积为________.

解析 连接OC,OB,依题意得,∠COB=2∠CAB=2∠BCD=60°,又OB=OC,因此△BOC是等边三角形,OB=OC=BC=1,即圆O的半径为1,所以圆O的面积为π×1=π.答案 π

4.(2011·深圳二次调研)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为________.

解析 连接BD,则有∠ADB=90°.在Rt△ABD中,AB=4,AD=2,所以∠

2A=60°;在Rt△ABC中,∠A=60°,于是有∠C=30°.答案 30°

5.(2011·汕头调研)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,AP=23,则圆O的直径为________.

解析 连接OP,因为∠M=30°,所以∠AOP=60°,因为PA切圆O于P,所以OP⊥AP,在Rt△ADO中,OP=

答案

APtan ∠AOP2

2,故圆O的直径为4.tan 60°

考向一 圆周角的计算与证明

【例1】►(2011·中山模拟)如图,AB为⊙O的直径,弦AC、BD交于点P,若AB=3,CD=1,则sin∠APB=________.[审题视点] 连结AD,BC,结合正弦定理求解.

解析 连接AD,BC.因为AB是圆O的直径,所以∠ADB=∠ACB=90°.又∠ACD=∠ABD,所以在△ACD中,由正弦定理得:===sin∠DACsin∠ACDsin∠ABDCDADADABsin∠ABD12=AB=3,又CD=1,所以sin∠DAC=sin∠DAPcos∠DAP=sin∠ABD3

3又sin∠APB=sin(90°+∠DAP)=cos∠DAP=

答案

2解决本题的关键是寻找∠APB与∠DAP的关系以及AD与AB的关系.

【训练1】 如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于22.3________.

解析 连接AO,OB.因为∠ACB=30°,所以∠AOB=60°,△AOB为等边三角形,故圆O的半径r=OA=AB=4,圆O的面积S=πr2=16π.答案 16π

考向二 弦切角定理及推论的应用

【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.

[审题视点] 先证明△EAB∽△ABC,再由AE∥BC及AB=CD等条件转化为线

段之间的比例关系,从而求解.

解析 ∵BE切⊙O于B,∴∠ABE=∠ACB.又AD∥BC,∴∠EAB=∠ABC,∴△EAB∽△ABC,∴

又AE∥BC,∴BEAB.ACBCEFBEABEF=.AFACBCAF

又AD∥BC,∴AB=CD,∴AB=CD,∴

∴EF=

答案 CDEF5EF,∴,BCAF863015=8415 4

(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明

三角形全等或相似,可求线段或角的大小.

(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.

【训练2】(2010·新课标全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:

(1)∠ACE=∠BCD;

(2)BC2=BE×CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ECB,故即BC2=BE×CD

.BCCD,BEBC

高考中几何证明选讲问题(二)

从近两年的新课标高考试题可以看出,圆的切线的有关知识是重点考查对象,并且多以填空题的形式出现.

【示例】►(2011·天津卷)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为________.

第二篇:【高考精品复习】选修4-1 几何证明选讲 第2讲 圆周角定理与圆的切线

第【高考会这样考】 2讲 圆周角定理与圆的切线

考查圆的切线定理和性质定理的应用.

【复习指导】

本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法

.基础梳理

1.圆周角定理

(1)

(2)

(3)圆周角定理的推论

①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. ②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径.

2.圆的切线

(1)直线与圆的位置关系

(2)①切线的性质定理:圆的切线垂直于经过切点的半径.

②切线的判定定理

过半径外端且与这条半径垂直的直线是圆的切线.

(3)切线长定理

从圆外一点引圆的两条切线长相等.

3.弦切角

(1)

(2)弦切角定理及推论 ①定理:弦切角的度数等于所夹弧的度数的一半.

②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.

双基自测

1.如图所示,△ABC中,∠C=90°,AB=10,AC=6,以AC

为直径的圆与斜边交于点P,则BP长为________.

解析 连接CP.由推论2知∠CPA=90°,即CP⊥AB,由射影定

理知,AC2=

AP·AB.∴AP=3.6,∴BP=AB-AP=6.4.答案 6.42.如图所示,AB、AC是⊙O的两条切线,切点分别为B、C,D

是优弧BC上的点,已知∠BAC=80°,那么∠BDC=________.解析 连接OB、OC,则OB⊥AB,OC⊥AC,∴∠BOC=180°-∠

BAC=100°,1∴∠BDC=2∠BOC=50°.答案 50°

3.(2011·广州测试(一))如图所示,CD是圆O的切线,切点为C,点A、B在圆O上,BC=1,∠BCD=30°,则圆O的面积为________.

解析 连接OC,OB,依题意得,∠COB=2∠CAB=2∠BCD=

60°,又OB=OC,因此△BOC是等边三角形,OB=OC=BC=1,即圆O的半径为1,所以圆O的面积为π×12=π.答案 π

4.(2011·深圳二次调研)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大

小为________.

解析 连接BD,则有∠ADB=90°.在Rt△ABD中,AB=4,AD=2,所以∠A=60°;在Rt△ABC中,∠A=60°,于是有∠C=30°.答案 30°

5.(2011·汕头调研)如图,MN是圆O的直径,MN的延长线与

圆O上过点P的切线PA相交于点A,若∠M=30°,AP=3,则圆O的直径为________.

解析 连接OP,因为∠M=30°,所以∠AOP=60°,因为PA切圆O于P,所以

AP23OP⊥AP,在Rt△ADO中,OP==tan 60°2,故圆

O的直径为4.tan ∠AOP答案

4考向一 圆周角的计算与证明

【例1】►(2011·中山模拟)如图,AB为⊙O的直径,弦AC、BD交于点P,若AB=3,CD=1,则sin∠APB=________.[审题视点] 连结AD,BC,结合正弦定理求解.

解析 连接AD,BC.因为AB是圆O的直径,所以∠

ADB=∠ACB=90°.CDAD又∠ACD=∠ABD,所以在△ACD中,由正弦定理得:==sin∠DACsin∠ACD

ABsin∠ABDAD1=AB=3,又CD=1,所以sin∠DAC=sin∠DAP=3sin∠ABDsin∠ABD

2所以cos∠DAP=

32.2又sin∠APB=sin(90°+∠DAP)=cos∠DAP=2.答案

2解决本题的关键是寻找∠APB与∠DAP的关系以及AD与AB的关系.

【训练1】 如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于________.

解析 连接AO,OB.因为∠ACB=30°,所以∠AOB=60°,△AOB为等边三角形,故圆O的半径r=OA=AB=4,圆O的面积S=πr2=16π.答案 16π

考向二 弦切角定理及推论的应用

【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.

[审题视点] 先证明△EAB∽△ABC,再由AE∥BC及AB=CD等条件转化为线 段之间的比例关系,从而求解.

解析 ∵BE切⊙O于B,∴∠ABE=∠ACB.又AD∥BC,∴∠EAB=∠ABC,BEAB∴△EAB∽△ABC,∴AC=BC.EFBEABEF又AE∥BC,∴AFACBCAF又AD∥BC,∴AB=CD,CDEF5EF∴AB=CD,∴BC=AF,∴8=6,3015∴EF=84.15答案 4

(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.

(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.

【训练2】(2010·新课标全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:

(1)∠ACE=∠BCD;

(2)BC2=BE×CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,BCCD所以△BDC∽△ECB,故BE=BC,即BC2=BE×CD

.高考中几何证明选讲问题(二)

从近两年的新课标高考试题可以看出,圆的切线的有关知识是重点考查对象,并且多以填空题的形式出现.

【示例】►(2011·天津卷)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=2,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为________.

第三篇:选修4-1 几何证明选讲第2讲 圆周角定理与圆的切线

第【复习指导】 2讲 圆周角定理与圆的切线

本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法.基础梳理

1.圆周角定理

(1)

(2)(3)圆周角定理的推论

①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. ②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径.

2.圆的切线

(1)直线与圆的位置关系

(2)①切线的性质定理:圆的切线垂直于经过切点的半径.

②切线的判定定理

过半径外端且与这条半径垂直的直线是圆的切线.

(3)切线长定理

从圆外一点引圆的两条切线长相等.

3.弦切角

(1)

(2)弦切角定理及推论

①定理:弦切角的度数等于所夹弧的度数的一半.

②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.

双基自测

1.如图所示,△ABC中,∠C=90°,AB=10,AC=6,以AC为直径的圆与斜边交于点P,则BP长为________.

解析 连接CP.由推论2知∠CPA=90°,即CP⊥AB,由射影定

理知,AC2=

AP·AB.∴AP=3.6,∴BP=AB-AP=6.4.答案 6.42.如图所示,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的点,已知∠BAC=80°,那么∠BDC=________.解析 连接OB、OC,则OB⊥AB,OC⊥AC,∴∠BOC=180°-∠BAC=100°,1∴∠BDC=2BOC=50°.答案 50°

3.(2011·广州测试(一))如图所示,CD是圆O的切线,切点为C,点

A、B在圆O上,BC=1,∠BCD=30°,则圆O的面积为________.

解析 连接OC,OB,依题意得,∠COB=2∠CAB=2∠BCD=60°,又OB=OC,因此△BOC是等边三角形,OB=OC=BC=1,即圆O的半径为1,所以圆O的面积为π×12=π.答案 π

4.(2011·深圳二次调研)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为________.

解析 连接BD,则有∠ADB=90°.在Rt△ABD中,AB=4,AD=2,所以∠A=60°;在Rt△ABC中,∠A=60°,于是有∠C=30°.答案 30°

5.(2011·汕头调研)如图,MN是圆O的直径,MN的延长线与圆

O上过点P的切线PA相交于点A,若∠M=30°,AP=23,则

圆O的直径为________.

解析 连接OP,因为∠M=30°,所以∠AOP=60°,因为PA切圆O于P,所以OP⊥AP,在Rt△ADO中,OP=

答案

4考向一 圆周角的计算与证明

【例1】►(2011·中山模拟)如图,AB为⊙O的直径,弦AC、BD交于点P,若ABAP3tan 60°=2,故圆O的直径为4.tan ∠AOP=3,CD=1,则sin∠APB=________.[审题视点] 连结AD,BC,结合正弦定理求解.

解析 连接AD,BC.因为AB是圆O的直径,所以∠

ADB=∠ACB=90°.又∠ACD=∠ABD,所以在△ACD中,由正弦定理得:CDAD==sin∠DACsin∠ACD

ABsin∠ABDAD1AB=3,又CD=1,所以sin∠DAC=sin∠DAP=3sin∠ABDsin∠ABD

2以cos∠DAP=32.2又sin∠APB=sin(90°+∠DAP)=cos∠DAP=32.2答案

32解决本题的关键是寻找∠APB与∠DAP的关系以及AD与AB的关系.

【训练1】 如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于________.

解析 连接AO,OB.因为∠ACB=30°,所以∠AOB=60°,△AOB为等边三角形,故圆O的半径r=OA=AB=4,圆O的面积S=πr2=16π.答案 16π

考向二 弦切角定理及推论的应用

【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.

[审题视点] 先证明△EAB∽△ABC,再由AE∥BC及AB=CD等条件转化为线 段之间的比例关系,从而求解.

解析 ∵BE切⊙O于B,∴∠ABE=∠ACB.BEAB又AD∥BC,∴∠EAB=∠ABC,∴△EAB∽△ABC,∴AC=BC.EFBEABEF又AE∥BC,∴AF=AC,∴BC=AF.,又AD∥BC,∴AB=CD,CDEF5EF3015∴AB=CD,∴BCAF86EF=8415答案 4

(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从

而证明三角形全等或相似,可求线段或角的大小.

(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.

【训练2】(2010·新课标全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:

(1)∠ACE=∠BCD;

(2)BC2=BE×CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.BCCD(2)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ECB,故BEBC

即BC2=BE×CD.高考中几何证明选讲问题(二)

从近两年的新课标高考试题可以看出,圆的切线的有关知识是重点考查对象,并且多以填空题的形式出现.

【示例】►(2011·天津卷)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF2,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为________.

第四篇:2015届高考数学总复习几何证明选讲第2课时 圆的进一步认识课时训练 新人教A版选修4-1

选修4-1 几何证明选讲第2课时 圆的进一步认识(理科专用)

1.如图,在半径为7的圆O中,弦AB、CD相交于点P,PA=PB=2,PD

=1,求圆心O到弦CD的距离.

解:连结OD,取CD的中点M.则圆心O到弦CD的距离为OM.4+15由相交弦定理得PA·PB=DP·PC,解得PC=4,所以MD==.2

25233所以OM=OD2-MD2=7-==.242

2.如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若

CEAB=3AD,求的值. EO

AB221解:设圆的半径为R,则AD==R,OD=R-R=R.又OD2=OE·OC,所以OE333

3OD2118CE==R,CE=R-R=R,所以=8.OC999EO

3.如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D.若PA=3,PD∶DB=9∶16,分别求PD、AB的值.

解:由PD∶DB=9∶16,可设PD=9x,DB=16x.因为PA为圆O的切线,所以PA2=PDPB,11所以32=9x(9x+16x),化为x2=,所以x=.25

59所以PD=9x=,PB=25x=5.5

因为AB为圆O的直径,PA为圆O的切线,所以AB⊥PA.所以AB=PB2-PA2=52-32=4.4.如图,圆O的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与OC的延长线交于点P,求PA的值.

解:连结OA,则∠AOC=60°,∠OAP=90°,因为OA=1,所以PA=3.5.自圆O外一点P引切线与圆切于点A,M为PA的中点,过M引割线交圆于B、C两点.求证:∠MCP=∠MPB.证明:∵ PA与圆相切于A,PMMB=.MC

PM

∴ MA2=MB·MC.又M为PA的中点,∴ PM=MA,∴ PM2=MB·MC,∴ ∵ ∠BMP=∠PMC,∴ △BMP∽△PMC,∴ ∠MCP=∠MPB.16.如图,圆O的两条弦AC、BD互相垂直,OE⊥

AB,垂足为E,求证:OE=CD.证明:连结AO并延长交圆O于F,则AF为圆O的直径,连结BF、CF,则∠ABF=

∠ACF=90°.∵ OE⊥AB,又O为AF的中点,∴ E为AB的中点,∴ OE=BF.∵ ∠

︵︵

1ACF=90°,∴ AC⊥CF.又AC⊥BD,∴ BD

∥CF,则DC=BF,∴ DC=BF,∴ OE=CD.7.如图,AB是圆O的直径,C、F为圆O上的点,且CA平分∠BAF,过点C作CD⊥AF交AF的延长线于点D.求证:DC是圆O的切线.

证明:连结OC,所以∠OAC=∠OCA.又CA平分∠BAF,所以∠OAC=∠FAC,所以∠FAC=∠OCA,所以OC∥AD.又CD⊥AF,所以CD⊥OC,所以DC是圆O的切线.

8.如图,圆O1与圆O2交于M、N两点,直线AE与这两个圆及MN依次交于A、B、C、D、E.求证:AB·CD=BC·DE.证明:因为A、M、D、N四点共圆,所以AC·CD=MC·CN.同理,有BC·CE=MC·CN,所以AC·CD=BC·CE,即(AB+BC)·CD=BC·(CD+DE),所以AB·CD=BC·DE.9.如图,AB、CD是圆的两条平行弦,BE∥AC,BE交CD于E、交圆于F,过A点的切线交CD的延长线于点P,PC=ED=1,PA=2.(1)求AC的长;(2)求证:BE=EF.(1)解:∵ PA2=PC·PD,PA=2,PC=1,∴ PD=4.又PC=ED=1,∴ CE=2.∵ ∠PAC=∠CBA,∠PCA=∠CAB,PCAC

∴ △PAC∽△CBA,∴ =,ACAB

∴ AC2=PC·AB=2,∴ AC=2.(2)证明:∵ BE=AC2,CE=2,而CE·ED=BE·EF,2×

1∴ EF=2,∴ EF=BE.10.如图,AB是圆O的直径,D、E为圆上位于AB异侧的两点,连结BD并延长至点C,使BD=DC,连结AC、AE、DE.求证:∠E=∠C.证明:连结AD.∵ AB是圆O的直径,∴ ∠ADB=90°.∴ AD⊥BD.∵ BD=DC,∴ AD是线段BC的中垂线. ∴ AB=AC.∴ ∠B=∠C.又∵ D、E为圆上位于AB异侧的两点,∴ ∠B=∠E.∴ ∠E=∠C.11.如图所示,AB是圆O的直径,G为AB延长线上的一点,GCD是圆O的割线,过点G作AB的垂线交AC的延长线于点E、交AD的延长线于点F,过G作圆O的切线,切点为H.求证:

(1)C、D、F、E四点共圆;(2)GH2=GE·

GF.证明:(1)如图,连结BC.∵ AB是圆O的直径,∴ ∠ACB=90°.∵ AG⊥FG,∴ ∠AGE=90°.又∠EAG=∠BAC,∴ ∠ABC=∠AEG.又∠FDC=∠ABC,∴ ∠FDC=∠AEG.∴ ∠FDC+∠CEF=180°.∴ C、D、F、E四点共圆.

(2)∵ GH为圆O的切线,GCD为割线,∴ GH2=GC·GD.由C、D、F、E四点共圆,得∠GCE=∠AFE,∠GEC=∠GDF,GCGE

∴ △GCE∽△GFD.∴,GFGD

即GC·GD=GE·GF,∴ GH2=GE·

GF.

第五篇:2015届高考数学大一轮复习几何证明选讲精品试题 理(含2014模拟试题)

精品题库试题

理数

1.(2014重庆一中高三下学期第一次月考,14)(原创)如图,在,是的长为。的中点,于,的延长线交

中,的外接圆于,则,[解析] 1.在Rt△ABC中,, 解得;同理可得, 由射影定理可得,得.根据割线定理可得, 得, 所以.2.(2014天津蓟县第二中学高三第一次模拟考试,14)如图, 圆于、两点,且与直径

交于点,切圆于点,则, 交

.1

[解析] 2.根据相交弦定理可得理可得①②联立得PB=15.①.在Rt△DTP中,结合条件可得DT=9.根据切割线定

②.3.(2014天津蓟县邦均中学高三第一次模拟考试,14)如图,点P在圆O直径AB的延长线上,且PB=OB=2, PC切圆O于C点,CD

AB于D点,则CD=.[解析] 3.根据切割线定理可得OC, 在Rt△OCP中, 根据射影定理可得PC= CD=

22, 得, 得PD=3, 又因为

..连接, 所以CD的长为4.(2014重庆杨家坪中学高三下学期第一次月考,14)如图,割线,若,,则、为⊙O的两条

等于____________.[解析] 4.由割线定理得,所以,解得或(舍去),2

由~,所以,所以,解得.5.(2014湖北黄冈高三4月模拟考试,15)(选修4-1:几何证明选讲)已知点直径的演唱线上,直线,则

与圆

相切于,的平分线分别交、在圆于的、两点,若.[解析] 5.因为为圆的切线,由弦切角定理,则,又因为平分,则,所以,根据三角形外角定理,因为是圆的直径,则,所以是等腰直角三角形,所以.6.(2014广东汕头普通高考模拟考试试题,15)如图,点①结论的序号是___________., 延长与圆

交于另一点 , ②, , 分别与圆切于,给出下列三个结论:,③

~, 其中正确 3

[解析] 6.如图,错,所以正确的序号为①②.,,所以③范围.7.(2014广东广州高三调研测试,14)(几何证明选讲选做题)

如图4,则为⊙的直径,弦交于点.若,的长为_______.[解析] 7.由已知可得,,由相交弦定理得:,所以

8.(2014北京东城高三第二学期教学检测,10)如图,割线与直径相交于

点.已知∠

=,与圆相切于,不过圆心, 则圆的的半径等于_______.4

[解析] 8.由题意可得:.从而, 又因为。由切割线定理,所以可得,所以,所以.故直径.再由相交弦定理,从而半径为7.9.(2014重庆铜梁中学高三1月月考试题,16)如图,圆心,弦于点,则

切⊙O于点_________.,割线经过

[解析] 9.依题意,由切割线定理,所以,即,所以圆的半径,由为切线,所以,所以,又弦于点,所以.10.(2014湖北八校高三第二次联考数学(理)试题,15)(选修4-1:几何证明选讲)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD//AC. 过点A 作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB = AC,AE = ______.,BD = 4,则线段CF的长为 5

[解析] 10.根据切割线定理可得,代入数据得EB=5.因为AB=AC,可得∠C=∠ABC,又因为EA是切线,根据同弧对应的圆周角相等可得,∠C=∠EAB,所以可得∠EAB=∠ABC,所以可得EA//BC,又因为BE//AC,所以四边形ACBE为平行四边形,所以AC=EB=5,BC=EA=.因为AC//BD,所以可得弧AB与弧CD相等,所以可得∠FACA=∠ACB,所以△AFC∽△BAC,可得,代入数据得.11.(2014重庆五区高三第一次学生调研抽测,14)如图,的延长线上,与半圆相切于点,若

是半圆,的直径,则

在.[解析] 11.延长,又,所以.12.(2014山西忻州一中、康杰中学、临汾一中、长治二中四校高三第三次联考,22)选修 6

4-1:几何证明选讲

如图,过圆外一点作一条直线与圆交于两点,且,作直线与圆相切于点,连结

于点,已知圆的半径为2,(1)求的长;

(2)求证:.[解析] 12.(1)延长交圆于点,连结,则,又,所以,又可知,所以

根据切割线定理得,即.7

⑾证明:过作于,则,从而有,又由题意知

所以,因此,即

13.(2014山西太原高三模拟考试

(一),22)选修4一1:几何证明选讲

如图,已知PA与⊙O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB、AC于点D、E.(Ⅰ)证明:∠ADE=∠AED;

(Ⅱ)若AC=AP,求的值.[解析] 13.8

14.(2014河北石家庄高中毕业班复习教学质量检测

(二),22)选修4—1:几何证明选讲:如图,已知于、为圆的一条直径,以端点作垂直于

为圆心的圆交直线

于点.、两点,交圆两点,过点的直线,交直线(Ⅰ)求证:、、、四点共圆;

(Ⅱ)若,, 求外接圆的半径.[解析] 14.(Ⅰ)因为为圆一条直径,所以,又,故、、、四点在以为直径的圆上,所以,、、、四点共圆.(4分)

(Ⅱ)因为与圆相切于点,由切割线定理得 , 即,9

所以

又, 则, 得,连接, 由(1)可知为的外接圆直径,, 故的外接圆半径为.(10分)

15.(2014河北唐山高三第一次模拟考试,22)选修4―1: 几何证明选讲

如图,点.是圆的切线,是切点,于,过点的割线交圆于、两(Ⅰ)证明:,,四点共圆;

(Ⅱ)设,求的大小.[解析] 15.(Ⅰ)连结,则.由射影定理得,由切割线定理得,故,即,又,所以~,所以.10

因此,,四点共圆.(6分)

(Ⅱ)连结.因为,结合(Ⅰ)得

.(10分)

16.(2014贵州贵阳高三适应性监测考试, 22)【选修4-1:几何证明选讲】

如图,.是圆的直径,弦、的延长线相交于点,垂直的延长线于点(Ⅰ)求证:;

(Ⅱ)求证:.[解析] 16.(Ⅰ)连结,因为为圆的直径,所以,又,11

则四点共圆,所以.(5分)(Ⅱ)由(Ⅰ)知,连结,又∽,所以

即,所以.(10分)

17.(2014黑龙江哈尔滨第三中学第一次高考模拟考试,22)选修4-1:几何证明选讲

如图,是的⊙直径,与⊙相切于,为线段上一点,连接、分别交⊙于、两点,连接交于点.(Ⅰ)求证:、、、四点共圆.(Ⅱ)若为的三等分点且靠近,,求线段的长.[解析] 17.(Ⅰ)连结,则,12

所以,所以,所以四点共圆.(5分)

(Ⅱ)因为,则,又为的三等分点,,又因为,所以,.(10分)

18.(2014吉林实验中学高三年级第一次模拟,22)选修4—1几何证明选讲: 如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。

(I)求证:DE是⊙O的切线;

(II)若的值.[解析] 18.22.(I)证明:连结OD,可得∠ODA=∠OAD=∠DAC …………………2分 ∴OD//AE 又AE⊥DE

…………………………………3分 ∴OE⊥OD,又OD为半径

∴DE是的⊙O切线 ………………………5分

(II)解:过D作DH⊥AB于H,13

则有∠DOH=∠CAB

…………6分

设OD=5x,则AB=10x,OH=2x,由△AED≌△AHD可得AE=AH=7x ……………8分

又由△AEF∽△DOF 可得

……………………………………………………10分

19.(2014河南豫东豫北十所名校高中毕业班阶段性测试

(四)数学(理)试题, 22)选修4-1: 几何证明选讲.

如图,AB是于点G. 的一条切线,切点为B,ADE、CFD都是的割线, AC =AB,CE交(I)证明:(Ⅱ)证明:FG//AC.;

[解析] 19.20.(2014吉林省长春市高中毕业班第二次调研测试,22)选修4—1:几何证明选讲.

如图,是圆的直径,是延长线上的一点,是圆 的割线,过点作的垂线,交直线于点,交直线

于点,过点作圆的切线,切点为.(1)求证:四点共圆;(2)若, 求的长.[解析] 20.(1)证明:连结,∵是圆的直径,15

∴,在和中,又∵ ∴

∴四点共圆。

(2)∵四点共圆,∴

∵是圆的切线,∴ ∴

又因为 ∴

∴.答案和解析

理数

[答案] 1.[解析] 1.在Rt△ABC中,, 解得;同理可得, 由 16

射影定理可得,得.根据割线定理可得, 得[答案] 2.15 , 所以.[解析] 2.根据相交弦定理可得理可得①②联立得PB=15.①.在Rt△DTP中,结合条件可得DT=9.根据切割线定

②.[答案] 3.[解析] 3.根据切割线定理可得OC, 在Rt△OCP中, 根据射影定理可得PC= CD=[答案] 4.6

22, 得, 得PD=3, 又因为

..连接, 所以CD的长为[解析] 4.由割线定理得,所以,解得或(舍去),由~,所以,所以,解得.[答案] 5.[解析] 5.因为为圆的切线,由弦切角定理,则,又因为平分,则,17

所以,根据三角形外角定理,因为是圆的直径,则,所以是等腰直角三角形,所以[答案] 6.①②

.[解析] 6.如图,错,所以正确的序号为①②.,,所以③范围.[答案] 7.1 [解析] 7.由已知可得,,由相交弦定理得:[答案] 8.7,所以

[解析] 8.由题意可得:.从而, 又因为。由切割线定理,所以可得,所以,所以.故直径.再由相交弦定理,从而半径为7.[答案] 9.[解析] 9.依题意,由切割线定理,所以,即,18

所以圆的半径,由为切线,所以,所以,又弦于点,所以.[答案] 10.[解析] 10.根据切割线定理可得,代入数据得EB=5.因为AB=AC,可得∠C=∠ABC,又因为EA是切线,根据同弧对应的圆周角相等可得,∠C=∠EAB,所以可得∠EAB=∠ABC,所以可得EA//BC,又因为BE//AC,所以四边形ACBE为平行四边形,所以AC=EB=5,BC=EA=.因为AC//BD,所以可得弧AB与弧CD相等,所以可得∠FACA=∠ACB,所以△AFC∽△BAC,可得,代入数据得.[答案] 11.[解析] 11.延长,又,所以.[答案] 12.查看解析

[解析] 12.(1)延长交圆于点,连结,则,19

又,所以,又可知,所以

根据切割线定理得,即.⑾证明:过作于,则,从而有,又由题意知

所以,因此,即

[答案] 13.查看解析

[解析] 13.[答案] 14.查看解析

[解析] 14.(Ⅰ)因为为圆一条直径,所以,又,故、、、四点在以为直径的圆上,所以,、、、四点共圆.(4分)

(Ⅱ)因为与圆相切于点,由切割线定理得 , 即,所以

又, 则, 得,连接, 由(1)可知为的外接圆直径,, 故的外接圆半径为.(10分)

[答案] 15.查看解析

[解析] 15.(Ⅰ)连结,则.由射影定理得,由切割线定理得,故,即,又,所以~,所以.因此,,四点共圆.(6分)

(Ⅱ)连结.因为,结合(Ⅰ)得

.(10分)[答案] 16.查看解析

[解析] 16.(Ⅰ)连结,因为为圆的直径,所以,又,则四点共圆,所以.(5分)(Ⅱ)由(Ⅰ)知,连结,22

又∽,所以

即,所以

.(10分)

[答案] 17.查看解析

[解析] 17.(Ⅰ)连结,则,,所以,所以,所以四点共圆.(5分)

(Ⅱ)因为,则,又为的三等分点,,又因为,所以,.(10分)

[答案] 18.查看解析

[解析] 18.22.(I)证明:连结OD,可得∠ODA=∠OAD=∠DAC …………………2分∴OD//AE 又AE⊥DE

…………………………………3分 ∴OE⊥OD,又OD为半径

∴DE是的⊙O切线 ………………………5分

(II)解:过D作DH⊥AB于H,23

则有∠DOH=∠CAB

…………6分

设OD=5x,则AB=10x,OH=2x,由△AED≌△AHD可得AE=AH=7x ……………8分

又由△AEF∽△DOF 可得

……………………………………………………10分

[答案] 19.查看解析 [解析] 19.24

[答案] 20.查看解析

[解析] 20.(1)证明:连结,∵是圆的直径,∴,在和中,又∵ ∴

∴四点共圆。

(2)∵四点共圆,∴

∵是圆的切线,∴ ∴又因为 ∴

∴.25

下载【创新方案】2013年高考数学一轮复习 几何证明选讲 第2讲 圆周角定理与圆的切线教案 理 新人教版选修4-1word格式文档
下载【创新方案】2013年高考数学一轮复习 几何证明选讲 第2讲 圆周角定理与圆的切线教案 理 新人教版选修4-1.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐