选修4-1 几何证明选讲第1讲 平行截割定理与相似三角形 2

时间:2019-05-15 07:59:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《选修4-1 几何证明选讲第1讲 平行截割定理与相似三角形 2》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《选修4-1 几何证明选讲第1讲 平行截割定理与相似三角形 2》。

第一篇:选修4-1 几何证明选讲第1讲 平行截割定理与相似三角形 2

大千教育第1讲平行截割定理与相似三角形

【2013年高考会这样考】

考查相似三角形的判定和性质定理的应用及直角三角形的射影定理的应用.

【复习指导】

复习本讲时,只要掌握好教材上的内容,熟练教材上的习题即可达到高考的要求,该部分的复习以基础知识、基本方法为主,掌握好解决问题的基本技能即可

.基础梳理

1.平行截割定理

(1)平行线等分线段定理及其推论 ①定理:如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.

②推论:经过梯形一腰的中点而且平行于底边的直线平分另一腰.

(2)平行截割定理及其推论 ①定理:两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例. ②推论:平行于三角形一边的直线截其他两边(或两边的延长线),截得的三角形与原三角形的对应边成比例.

(3)三角形角平分线的性质 三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比.

(4)梯形的中位线定理 梯形的中位线平行于两底,并且等于两底和的一半.

2.相似三角形

(1)相似三角形的判定

①判定定理

a.两角对应相等的两个三角形相似.

b.两边对应成比例且夹角相等的两个三角形相似.

c

②推论:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.

③直角三角形相似的特殊判定

斜边与一条直角边对应成比例的两个直角三角形相似.

(2)相似三角形的性质 相似三角形的对应线段的比等于相似比,面积比等于相似比的平方.

(3)直角三角形射影定理

直角三角形一条直角边的平方等于该直角边在斜边上射影与斜边的乘积,斜边上的高的平方等于两条直角边在斜边上射影的乘积.

双基自测

1.如图所示,已知a∥b∥c,直线m、n分别与a、b、c交于点A,B,C和A′,3B′,C′,如果AB=BC=1,A′B′=2,则B′C′=________.相似的三角形________.2.如图所示,BD、CE是△ABC的高,BD、CE交于F,写出图中所有与△ACE

3.(2011·西安模拟)如图,在△ABC中,M、N分别是AB、BC的中点,AN、CM交于点O,那么△MON与△AOC面积的比是________.

4.如图所示,已知DE∥BC,BF∶EF=3∶2,则AC∶AE=______,AD∶DB=________.5.(2010·广东)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CDa=2E、F分别为线段AB、AD的中点,则EF=________.考向一平行截割定理的应用

【例1】►(2011·广州测试(二))在梯形ABCD中,AD∥BC,AD=2,BC=5,点E、AE3F分别在AB、CD上,且EF∥AD,若EB4EF的长为________.

【训练1】 如图,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,则AB的长为________.

考向二 相似三角形的判定和性质的应用

【例2】►已知,如图,在△ABC中,AB=AC,BD⊥AC,点D是垂足. 求证:BC2=2CD·AC.5,DE=6,则BF=________.3【训练2】(2011·惠州调研)如图,在△ABC中,DE∥BC,DF∥AC,AE∶AC=3∶

考向三 直角三角形射影定理的应用

【例3】►已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于D(AD>BD),若CD=6,则AD=________.【训练3】 在△ABC中,∠ACB=90°,CD⊥AB于D,AD∶BD=2∶3.则△ACD与△CBD的相似比为________.

高考中几何证明选讲问题(一)

从近两年新课标高考试题可以看出,高考主要以填空题的形式考查平行截割定理和相似三角形判定定理的应用,难度不大.

【示例1】 ►(2011·陕西)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=________.【示例2】►(2011·广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2,E,F分别为AD,BC上的点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为________.

第二篇:几何证明选讲第一讲:相似三角形

几何证明选讲

<<几何证明选讲>>知识框图

第一讲 相似三角形的判定及有关性质

一.考纲要求

掌握相似三角形的判定定理及性质定理;理解直角三角形射影定理。

二.知识梳理

1.平行线等分线段定理

平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。

推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。

2.平分线分线段成比例定理

平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3.相似三角形的判定及性质

(1)预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。

判定定理1:两角对应相等,两三角形相似。AA

判定定理2:两边对应成比例且夹角相等,两三角形相似。SAS

判定定理3:三边对应成比例,两三角形相似。SSS

(2)直角三角形相似的判定:

引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。

定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和直角边对应成比

1例,那么这两个直角三角形相似。

(3)相似三角形的性质:

相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比; 相似三角形周长的比等于相似比;

相似三角形面积的比等于相似比的平方。

相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。4.直角三角形的射影定理 射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。三.诊断练习

1.如图1,ΔABC中,∠1=∠B,则Δ∽Δ.此时若AD=3,BD=2,则AC=. 2.如图2,CD是RtΔABC的斜边上的高.

(1)若AD=9,CD=6,则BD=;(2)若AB=25,BC=15,则BD=.

D

B

C图1 图

23.两个三角形相似,它们的周长分别是12和18,周长较小的三角形的最短边长为3,则另

一个三角形的最短边长为. 4.在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于点F,B 若△AEF的面积为6cm2,则△ABC的面积为cm2. E

5.如图,在△ABC中,D是AC的中点,E是BD的中点,AE交BC

DBF

于F,则=.FCF四.范例导析

1.如图,△ABC中,AB=AC,AD是边BC的中线,P是AD上一点,CF//AB,BP的延长线分别交AC、CF于点E、F,求证:BP2=PE·PF

D

C

2.在ABC中,CDAB于D,DEAC于E,DFBC于F,求证:CEF∽CBA

五.练习巩固

1.(2011安徽)如图4,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为

B

AD,BC上点,且EF=3,EF∥AB,则梯形ABCD与梯形EFCD的面积比为

2.(2011年高考陕西卷理科15)(几何证明选做题)如图BD,AEBC,ACD90,且AB6,AC4,AD12,则BE0

3.如图,在梯形ABCD中,AB∥CD,ABb,CDa,E为AD边上的任意一点,EF

∥AB,且EF交BC于点F,某学生在研究这一问题时,发现如下事实:

DEAEDEAEDE

1时,有EF2时,有EF3时,有EF

ab2a2b3a3b

①当②当③当

; ; .

4AE

DE当k时,参照上述研究结论,请你猜想用k表示EF的一般结论是____.AE

4.已知:

AD垂直于BC交于D,AB-BD=AC-CD求证:三角形ABC为等腰三角形

第三篇:几何证明选讲

几何证明选讲

2007年:

15.(几何证明选讲选做题)如图4所示,圆O的直径AB6,C为圆周上一点,BC3,过C作圆的切线l,过A作l的 垂线AD,垂足为D,则DAC

A

2008年:

15.(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R=

4l

2009年:

15.(几何证明选讲选做题)如下图,点A、B、C是圆O上的点,且AB=4,ACB30,则圆O的面积等于

o

2010年:

14.(几何证明选讲选做题)如上图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=

a,点E,F分别为线段AB,AD的中点,则EF=2

2011年:

15.(几何证明选讲选做题)如图,在梯形ABCD中,AB//CAD,B4,CD2,分别为E,F,上的点,且ADBC,

3EF,EFAB

则梯形ABFE与梯形EFCD的面积比为

A

2012年:

15.(几何证明选讲选做题)如图3,直线PB与圆O相切与点B,D是弦AC上的点,PBADBA,若ADm,ACn,则AB

图3

2013年:

15.(几何证明选讲选做题)如图3,在矩形ABCD

中,ABBC3,BEAC,垂足为E,则ED

图3

第四篇:选修4-1几何证明选讲练习题

几何证明选讲专项练习

1.(2008梅州一模文)如图所示,在四边形ABCD中,EF//BC,FG//AD,则

EFBC+FG

AD

= 2.(2008广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于 点F,若△AEF的面积为6cm

2,则△ABC的面积为 B cm2.

3.(2007广州一模文、理)如图所示,圆O上

一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.

4.(2007深圳二模文)如图所示,从圆O

作圆O的割线PAB、PCD,AB是圆O若PA=4,PC=5,CD=

3,则∠CBD=__

5.(2008广东文、理)已知PA是圆OPA=2.AC是圆O的直径,PC与圆O交于点则圆O的半径R=_______.6.(2007广东文、理)如图所示,圆OAB=6,C圆周上一点,BC=3,过C过A作l的垂线AD,AD分别与直线lD、E,则∠DAC=,线段AE的长为

7.(2008韶关一模理)如图所示,PC切⊙O于 点C,割线PAB经过圆心O,弦CD⊥AB于

点E,PC=4,PB=8,则CD=________.8.(2008深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知AD=,AC=6,圆O的半径为3,则圆心O到AC的距 离为________.9.(2008东莞调研文、理)如图所示,圆O上一点C在直径AB上的射影为D,CD=4,则圆O的半径等于.

10.(2008韶关调研理)如图所示,圆O是

△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.11.(2007韶关二模理)如图,⊙O′和

⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.

12.(2008广州二模文、理)如图所示, 圆的内接

△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N 13.(2007湛江一模文)如图,四边形ABCD内接

于⊙O,BC是直径,MN切⊙O于A,∠MAB=250,则∠D=___.14.(2007湛江一模理)如图,在△ABC中,D 是AC的中点,E是BD的中点,AE交BC

D

于F,则

BFFC=

15.(2008惠州一模理)如图:EB、EC是⊙O的两 条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.16.(2008汕头一模理)如图,AB是圆O直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.17.(2008佛山一模理)如图,AB、CD是圆O的两条弦,且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为. C

18.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若

AD=5,BC=7,则GH=________.19.如图,圆O上一点C在直径AB上的射影为D.C

AD=2,AC= 25,则AB=____ B

20.如图,PA是圆的切线,A为切点,PBC是圆的割线,且PB=1PA

2BC,则PB的值是________.21.如图,⊙O的割线PAB交⊙O于A、B两点,割线 PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____⊙O的半径是_______.22.已知一个圆的弦切角等于50°,那么这个弦切角 所夹的弧所对的圆心角的度数为_______.23.如图,AB是直径,点D在AB的延长线上,BD=OB,若CD切⊙O于C点,则∠CAB的度数

为,∠DCB的度数为,∠ECA的度数为___.24.如图,AB,AC是⊙O的两条切线,切点分别为 B、B、D是优弧BC

上的 点,已知∠BAC=800,那么∠BDC =______.25.如图,AB是⊙ O的弦,AD是⊙ O的切线,C为 AB

上任一点,∠ACB=1080,那么∠BAD =______.26.如图,PA,PB切⊙ O于 A,B两点,AC⊥PB,且与⊙ O相交于 D,若∠DBC=220,则∠APB==________.27.如图,AB是⊙O的直径,点D在AB的延 长线上,BD=OB,CD与⊙O切于C,那么 ∠CAB==________.28.已知:一个圆的弦切角是50°,那么这个弦 切角所夹的弧所对的圆心角的度数为_________.29.已知:如图,CD是⊙O的直径,AE切 ⊙O于点B,DC的延长线交AB于点A,∠A =200,则∠DBE=________.30.如图,△ABC中,∠C=900,⊙O切 AB于D,切BC于E,切AC于F,则∠EDF=________.31.如图,AB是⊙ O的直径,C,D是

⊙ O上的点,∠BAC=200,AD

DC,DE是⊙ O的切线,则∠EDC的度数是____.32.如图,AB是⊙ O的直径,PB,PC 分别切⊙ O于 B,C,若 ∠ACE=380,则∠P=_________.

33.如图,AB是半圆O的直径,C、D是半 圆上的两点,半圆O的切线PC交AB的延 长线于点P,∠PCB=25°,则∠ADC为 A.105°B.115°C.120°D.125°

34.如图,AB是⊙O的直径,EF切⊙O于C,AD⊥EF于D,AD=2,AB=6,则AC的长为 A.2B.3

C.D.4

35.如图,直线 BC切⊙ 0于点 A,则图中的弦切角共有

A.1个B.2个C.3个D.4个

36.如图,AB是⊙ O的直径,AC,BC是

⊙ O的弦,PC是⊙ O的切线,切点为 C,∠BAC=350,那么∠ACP等于

A.350B.550C.650D.1250

37.如图,在⊙ O中,AB是弦,AC是⊙ O 的切线,A是切点,过 B作BD⊥AC于D,BD交⊙ O于 E点,若 AE平分∠BAD,则 ∠BAD=

A.300B.450C.050D.600

38.如图,⊙O与⊙O′交于 A,B,⊙O的弦

AC与⊙O′相切于点 A,⊙O′的弦AD与⊙O 相切于A点,则下列结论中正确的是

A.∠1>∠2B.∠1=∠2C.∠1<∠2D.无法确定

39.如图,E是⊙O内接四边形 ABCD两条对角线的交点,CD延长线与过 A点的⊙ O的切线交于

F点,若∠ABD=440,∠AED=1000,ADAB,则∠AFC的度数为

C

F

A.780B.920C.560D.1450

第五篇:《选修2-1,几何证明选讲》习题

东方英文书院2011——2012学年高二数学测试卷(文科)

——《选修2-1,几何证明选讲》

以下公式或数据供参考

n

ybx;b⒈axynxyii

i

1x

i1n2inx2.

2、参考公式

3、K

2n(adbc)2

(a

b)(c

d)(ac)(bd)n=a+b+c+d

一、选择题(本大题共10小题,每小题5分,共50分)

1.在复平面内,复数i(i1)对应的点在()

A.第一象限

B.第二象限 C

.第三象限 D.第四象限

2.下面4个散点图中,适合用线性回归模型拟合其中两个变量的是()

A.①②B.①③

C.②③

D.③④

3)

A.2

2B.2

2C.22D.2(2

4.已知11,则下列命题:①2;②2;③120;④31.其中真命题的个数2是()

A.1B.2C.3D.

45.否定结论“至多有两个解”的说法中,正确的是()

A.有一个解B.有两个解

C.至少有三个解D.至少有两个解

6.利用独立性检验来考察两个变量X和Y是否有关系时,通过查阅下表来确定断言“X与Y有关系”的可信程度.如果5.024,那么就有把握认为“X与Y有关系”的百分比为()2

A.B.C.D.

7.复平面上矩形ABCD的四个顶点中,A,B,C所对应的复数分别是23i,32i,23i,则D点对应的复数是()

A.23iB.32iC.23iD.3

2i 8.下列推理正确的是()

A.如果不买彩票,那么就不能中奖;因为你买了彩票,所以你一定中奖 B.因为ab,ac,所以abac C.若a,bR,则lgalgb≥D.若aR,ab0,则

abab≤2 baab9.如图,某人拨通了电话,准备手机充值须进行如下操作:

按照这个流程图,操作步骤是()

A.1511B.1515C.152110.若复数z满足z34i4,则z的最小值是()A.

1B.2

C.

3D.4

D.523

二、填空题(每小题5分,共20分)(15选做题,若两题都做,则以第(1)题为准)

11.如右图所示的程序框图中,当输入的a值为0和4时,输出的值相等,则当输入的a值为3时,则输出的值为.

2根据以上数据,得2的值是,可以判断种子经过处理跟生病之间关(填“有”或“无”). 13.用三段论证明f(x)x3sinx(xR)为奇函数的步骤是. 14.若z15,z234i且z1z2是纯虚数,则z1 15.(选作题:,请在下面两题中选作一题)

(1).如图,在ABC中,DE//BC,EF//CD,若BC3,DE2,DF1,则AB的长为___________.

(2)如图,已知⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心,若PA=3,AB=4,PO=5,则⊙O的半径为_____________.第1题图

三、解答题(共80分.解答题应写出推理、演算步骤)16.已知z113i,z268i,若

17.在各项为正的数列an中,数列的前n项和Sn满足Sn

1,求z的值. zz1z

211 an2an

(1)求a1,a2,a3;(2)由(1)猜想数列an的通项公式;(3)求Sn

BNA45,18、如图,点B在⊙O上,M为直径AC上一点,BM的延长线交⊙O于N,若⊙O的半径为,求MN的长为

B

M

ACO

19.(本小题16分)假设一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子的成长记录:

(1)作出这些数据的散点图;(2)求出这些数据的回归方程.

20.已知关于x的方程:x2(6i)x9ai0(aR)有实数根b.(1)求实数a,b的值;

(2)若复数z满足zabi2z0,求z为何值时,z有最小值,并求出z的最小值.

东方英文书院2011——2012学年高二数学测试卷(文科)

——《选修2-1,几何证明选讲》答案

一、选择题

二、填空题:

11. 3120.164无13.14. 43i或43i 15.1

3三、解答题:

16.解:由z113i,得

1113i13i. z113i(13i)(13i)1010

又由z268i,得

1168i34i. z268i(68i)(68i)5050

那么

1113143111211i,ii

zz2z15010501025550

4225050(211i)

i. 

55211i(211i)(211i)

得z

19.解:(1)数据的散点图如下:

(2)用y表示身高,x表示年龄,则数据的回归方程为y6.317x71.984.

20.解:(1)b是方程x2(6i)x9ai0(aR)的实根,(b26b9)(ab)i0,b26b90故,ab

解得ab3;

(2)设zxyi(x,yR)由z33i2z,得(x3)2(y3)24(x2y2),即(x1)2(y1)28,Z点的轨迹是以O1(11),为圆心,如图,当Z点为直线OO1与O1的交点时,z有最大值或最小值.

OO1r

 当z1

i时,zmin

下载选修4-1 几何证明选讲第1讲 平行截割定理与相似三角形 2word格式文档
下载选修4-1 几何证明选讲第1讲 平行截割定理与相似三角形 2.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    选修4-1 几何证明选讲第2讲 圆周角定理与圆的切线

    第【复习指导】 2讲 圆周角定理与圆的切线本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法.基础梳理1.圆周角定理......

    选修4-1几何证明选讲总复习

    相似三角形的判定及其有关性质复习一.知识梳理1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段推论1:经过三角形一边的中点与另一......

    几何证明选讲专题

    几何证明选讲几何证明选讲专题一、基础知识填空:1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段_________.推论1: 经过三角形......

    几何证明选讲练习题

    选修4-1几何证明选讲综合练习题1.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC ,DE交AB于点F,且AB2BP4,(1)求PF的长度.(2)若圆F且与圆O内切,直线PT与圆F......

    几何证明选讲习题

    几何证明选讲已知正方形ABCD,E、F分别为BC、AB边上的点, 且BE=BF,BH⊥CF于H,连结DH. 求证:DH⊥EH.已知AD⊥BC于D,AE:ED=CD:BD,DF⊥BE于F, 求证:AF⊥CF.已知正方形ABCD,E为对角线AC上......

    几何证明选讲专题)

    几何证明选讲专题1.了解平行线截割定理,会证直角三角形射影定理.2.会证圆周角定理、圆的切线的判定定理及性质定理.3.会证相交弦定理、圆内接四边形的性质定理与判定定理、切......

    高中数学几何证明选讲

    几何证明选讲1、(佛山市2014届高三教学质量检测(一))如图,从圆O 外一点A引圆的切线AD和割线ABC,已知AD3,AC3,圆O的半径为5,则圆心O 到AC的距离为. 答案:22、(广州市2014届高三1月调研测......

    几何证明选讲训练

    几何证明选讲专题1.如图所示,在四边形ABCD中,EF//BC,FG//AD,则EFFGBCAD1由平行线分线段成比例可知EFAFFGFCEFFGAFFC,所以,1 BCACADACBCADAC2.在平行四边形ABCD中,点E在边AB上,且AE:E......