第一篇:高二文科数学选修4-1《几何证明选讲》
欢迎光临《中学数学信息网》zxsx127@163.com
高二文科数学选修4-1《几何证明选讲》
班级_姓名座号
1.如图,在四边形ABCD中,EF//BC,FG//AD,则
EFFG.BCAD
2.如图,EF∥BC,FD∥AB,AE=1.8cm, BE=1.2cm, CD=1.4cm.则
.B的点,3.如图,AB是半圆O的直径,C是半圆O上异于A,CDAB,垂足为D,已知AD
2,CB则CD.F 图
204.如图,点A、B、C是圆O上的点,且AB=4,ACB30o,则圆O的面积等于.《中学数学信息网》系列资料www.xiexiebang.com版权所有@《中学数学信息网》
欢迎光临《中学数学信息网》zxsx127@163.com
5.如图,△ABC中,∠C=900,⊙O切AB于D,切BC于E,切AC于F,则 ∠.6.如图,已知圆上的弧ACBD,过C点的圆的切线与BA的 延长线交于 E点,若ACE350,则BCD.7.如图, 已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若ABC30, AC2,则AD的长为.8.如图,圆内的两条弦AB、CD相交于圆内一点P,已知
PAPB3,PCPD,则CD.o
BA
D
欢迎光临《中学数学信息网》zxsx127@163.com
9.如图,已知AB是⊙O的一条弦,点P为AB上一点,PCOP,PC交⊙O于C,若AP4,PB2,则PC的长是()
PO
A
B
A.3B
.C.2D
10.如图,圆O的弦ED,CB的延长线交于点A。若BD⊥AE,AB=4,BC=2,AD=3,则DE=;CE=.11.如图,割线PBC经过圆心O,PBOB1,PB绕点O逆时 针旋120°到OD,连PD交圆O于点E,则PE.12.如图,四边形ABCD是圆O的内接四边形,延长 AB和DC相交于点P。
BC
若PB=1,PD=3,则的值为.AD
欢迎光临《中学数学信息网》zxsx127@163.com
13.如图,过O外一点P作一条直线与O交于A,B两点,已知半径为4,PA=2,点P到O的切线长PT =4,则 点O到弦AB的距离为.14.如图,已知RtABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则
15.如图,PT是圆O的切线,PAB是圆O的割线,若PT2,PA1,P60o,则圆O的半径r.BD
__________.DA
16.如图, AC和AB分别是圆O的切线,B、C 为切点,且 OC = 3,AB = 4,延长OA到D点,则△ABD的面积 是.17.如图,⊙O的割线PAB交⊙O于A、B两点,割线 PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则O的半径是.参考答案
B
欢迎光临《中学数学信息网》zxsx127@163.com
1.2.3.4.16p5.4506.350
7.8.9.10.11.16
15.112.13.14.16.48
17.9
第二篇:高二文科几何证明选讲(选修4-1)练习案选修4-1)
高二文科数学几何证明选讲编写:乔秉正审核:张养祥
高二文科几何证明选讲(选修4-1)练习案
12012年高考数学 几何证明选讲
一、填空题选择题.(2012年高考(天津文))如图,已知AB和AC是圆的两条弦,6.(201
2年高考(陕西理))如图,在圆O中,过点B作圆的切线与AC的延长线相交于D.过点C作BD的平行线与圆交于点E,与AB相交于点
D
直径AB与弦CD垂直,垂足为E,EFDB, 垂足为F,若AB6,AE1, 则DFDB__________.错误!未指定书签。7.(2012年高考(湖南理))如图
F,AF3,FB1,EF
____________.3,则线段CD的长为2
错误!未指定书签。2.(2012年高考(陕西文))如图,在圆O中,直
径AB与弦CD垂直,垂足为E,EFDB,垂足为F,若
AB6,AE1,则DFDB___ ______..(2012年高考(广东文))(几何证明选讲)如图3所示,直线PB
2,过点P的直线
与圆O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于_______.错误!未指定书签。8.(2012年高考(湖北理))(选修4-1:几何证明选讲)
如图,点D在O的弦AB上移动,AB4,连接OD,过点D 作OD的垂线交O于点C,则CD的最大值为__________.9.(2012年高考(广东理))(几何证明选讲)如图3,圆O的半径为1,A、B、C是圆周上的三点,满足ABC30,过点A作圆O的切线与OC的延长线交于点P,则PA__________.二、解答题
错误!未指定书签。10(2012年高考(辽宁文))选修41:几何证明选讲
与圆O相切于点B,D是弦AC上的点,PBADBA.若
ADm,ACn,则AB_______.错误!未指定书签。4.(2012年高考(江西理))在直角三角形ABC
中,点D是斜边AB的中点,点P为线段CD的中点,则
如图,⊙O和⊙O相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连接DB并延长
()
交⊙O于点E.证明(Ⅰ)ACBDADAB;
/
|PA|2|PB|
2= 2
|PC|
A.2
B.
4C.5 D.10
错误!未指定书签。5.(2012年高考(北京理))如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆
与BC交于点E,则()A.CE·CB=AD·DB B.CE·CB=AD·AB
C.AD·AB=
(Ⅱ)ACAE.CD
2B
错误!未指定书签。11.(2012年高考(课标文))选修4-1:几何选讲
错误!未指定书签。13.(2012年高考(辽宁理))选修41:几何证明选讲
如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外接圆与F,G两点,若CF∥AB,证明:
(Ⅰ)CD=BC;
(Ⅱ)△BCD∽△GBD.212.(2012年高考(新课标理))选修4-1:几何证明选讲
如图,⊙O和⊙O/相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连接DB并延长交⊙O于点E.证明[(Ⅰ)ACBDADAB;(Ⅱ)ACAE.错误!未指定书签。.(2012年高考(江苏))[选修4-1:几何证明选讲]如图,AB是圆O的直径,D,E
如图,D,E分别为ABC边AB,AC的中点,直线DE交ABC的外接圆于F,G两点,若
CF//AB,证明:
(1)CDBC;
(2)BCDGBD
为圆上位于AB异侧的两点,连结BD并延长至点C,使BDDC,连结AC,AE,DE.求证:E
C.G
F
高二文科几何证明选讲(选修4-1)练习案2
一、填空题(每小题6分,共30分)
1.(2011·陕西)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则BE=
________.4.(2011·佛山卷)如图,过圆外一点P作⊙O的割线PBA与切线PE,E为切点,连接AE、BE,∠APE的平分线分别与AE、BE相交于点C、D,若∠AEB=30°,则∠PCE=
________.2.(2011·湖南)如图,A、E是半圆周上的两个三等分点,直线BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为________.
5.如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=E,F分
2别为线段AB,AD的中点,则EF=________.3.(2011·深圳卷)如图,A,B是两圆的交点,AC是小圆的直径,D和E分别是
a
CA和CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,则DE=
________.二、解答题(每小题10分,共70分)
6.如图,已知△ABC的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF
.7.如图所示,⊙O为△ABC的外接圆,且AB=AC,过点A的直线交⊙O于D,交
BC的延长线于F,DE是BD的延长线,连接CD
.(1)求证:B,D,H,E四点共圆;(2)求证:CE平分∠DEF
.(1)求证:∠EDF=∠CDF;(2)求证:AB2=AF·AD.8.(2011·辽宁)如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED
.(1)C,D,F,E四点共圆;(2)GH2=GE·GF.(1)证明:CD∥AB;
(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
9.已知,如图,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交直线AC于点E,交AD于点F,过G作⊙O的切线,切点为H.求证:
10.(2011·课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.
(1)证明:C,B,D,E四点共圆;
(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
11.(2011·哈师大附中、东北师大附中、辽宁省实验中学第一次联考)已知四边形
(1)求证:FB=FC;(2)求证:FB2=FA·FD;
(3)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6 cm,求AD的长.
12.(2011·河南省教学质量调研)如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB、FC.PQRS是圆内接四边形,∠PSR=90°,过点Q作PR、PS的垂线,垂足分别为点H、K
.(1)求证:Q、H、K、P四点共圆;(2)求证:QT=TS.
第三篇:高二数学选修4-1几何证明选讲练习
高二数学选修4-1《几何证明选讲》综合复习题
一、选择题:
1.如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作
圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC =()
A.15B.30C.45D.60
第1题图 2.在RtABC中,CD、CE分别是斜边AB上的高和中线,是该图中共有x个三角
形与ABC相似,则x()
A.0B.1C.2 D.33.一个圆的两弦相交,一条弦被分为12cm和18cm两段,另一弦被分为3:8,则另一弦的长为()
4.O的割线PAB交O于A,B两点,割线PCD经过圆心,已知
22PA6,PO12,AB,则
O的半径为()3
A.4B
.6C.6
D.8
5.如图,AB是半圆O的直径,点C在半圆上,CDAB于点D,且AD3DB,设COD,则tan2
2=()
第5题图 11 A.B.C.4D.3 3
4二、填空题:
6.如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且
与BC相切于点B,与AC交于点D,连结BD,若BC=51,则AC=
7.如图,AB为O的直径,弦AC、BD交于点P,若AB3,CD1,则sinAPD=
.O
D B C 第 6 题图
第7题图
三、解答题:
8.如图:EB,EC是O的两条切线,B,C是切点,A,D是 O上两点,如果E46,DCF32,试求A的度数.9.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P, E为⊙O上一点,AEAC,DE交AB于点F,且AB2BP4, 求PF的长度.EA
C FB OD P
第9题图
第四篇:高二数学文科考练试题几何证明选讲
高二数学文科考练试题(卷)几何证明选讲
班级 姓名成绩
一、选择题
1.O的割线PAB交O于A,B两点,割线PCD经过圆心,已知
22PA6,PO12,AB,则O的半径为()
3A.4B
.6C
.6D.8
2.如图2,AB是半圆O的直径,点C在半圆上,CDAB于点D, 且AD3DB,设COD,则tan
211A.B.342=()图
2C
.4D.3
3.在ABC中,D,E分别为AB,AC上的点,且DE//BC,ADE的面积是2cm2,梯形DBCE的面积为6cm2,则DE:BC的值为()
A
.B.1:2C.1:3D.1:
4二、填空题
4.如图4,圆O的直径AB8,C为圆周上一点,BC4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为.
A
图4图5图6
5.如图5,从圆O外一点P引圆O的切线PA和割线PBC,已知PA
PC4,圆心O到BC则圆O的半径为6.如图6,已知圆O的半径为3,从圆O外一点A引切线AD和割线ABC,圆
心O到AC的距离为22,AB3,则切线AD的为.
7.如图7所示,过⊙O外一点A作一条直线与⊙O交于C,D两点,AB切⊙O于B,弦MN过CD的中点P.已知AC=4,AB=6,则MP·NP=.
B
图7
B O D C
图8图9 8.如图8,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且与BC相切于点B,与AC交于点D,连结BD,若BC=51,则AC=.9.如图9,AB为O的直径,弦AC、BD交于点P,若AB3,CD1,则sinAPD10.如图10为一物体的轴截面图,则图中R的值是
图10
.高二数学文科考练试题(卷)几何证明选讲
参考答案
1.【解析】设O半径为r,由割线定理有6(622)(12r)(12r),解得r8.3故选D.2.【解析】设半径为r,则AD31r,BDr,由CD2AD
BD得CD,221,选A.233
3.【解析】ADEABC,利用面积比等于相似比的平方可得答案B.从而,故tan2
4.45.26.7.25 4
28.【解析】由已知得BDADBC,BCCDAC(ACBC)AC,解得AC2.AD,又CDPBAP, AP
PDCD1,所以sinAPD从而cosAPD.PABA33
3022210.【解析】由图可得R()(180135R),解得R25.29.【解析】连结AD,则sinAPD
第五篇:高二数学几何证明选讲教案
几何证明选讲
(共计10课时)授课类型:新授课
一【教学内容】
1.复习相似三角形的定义与性质,了解平行截割定理,证明直角三角形射影定理。2.证明圆周角定理、圆的切线的判定定理及性质定理。
3.证明相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理。
二【教学重点、难点】
1. 理解相似三角形的定义与性质定理. 2.掌握以下定理的证明:(1)直角三角形射影定理;(2)圆周角定理;(3)圆的切线判定定理与性质定理;(4)相交弦定理;(5)圆内接四边形的性质定理与判定定理(6)切割线定理
三【教学过程】
第一讲 相似三角形的判定及有关性质
以“平行线分线段成比例定理”为起点,给出相似三角形定义后,逐步讨论相似三角形的判定定理、性质定理等等,其中,基本数学思想是比例及其性质的应用; 第1课时.基础知识:
平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段_________.推论1: 经过三角形一边的中点与另一边平行的直线必______________。推论2: 经过梯形一腰的中点,且与底边平行的直线________________。例题选讲:
例1 已知:线段AB
求作:线段AB的三等分点 作法:
1、作射线AC2、在射线AC上顺次截取AD=DE=EF
3、连结BF4、过点D、E分别作BF的平行线分别交AB于点L、K
点L、K为所求的三等分点
作业练习:课本P5习题1.1第2课时.基础知识:
平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例。推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段____________。例题选讲:
例1 如图D在AB上,DE∥BC,DF∥AC,AE=4,EC=2,BC=8.求BF和CF的长.例
2、如图,已知DE//BC,EF//CD,求AD是AB和AF的比例中项。
例3平行于三角形一边且和其他两边相交的直线截三角形,所截得的三角形的三边与原三角形的三边对应成比例。
作业练习:课本P9-10习题1.2第3、4课时.[复习提问]
1.什么叫相似三角形?什么叫相似比?
定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似三角形对应边的比K,叫做相似比(或相似系数). [讲解新课]
我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有
三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?
基础知识:
预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原
三角形相似.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于_______;
相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_________________; 相似三角形面积的比、外接圆的面积比都等于____________________;
例6如图,锐角△ABC,BC=24cm,BC边上的高AD=12cm.要把它加工成正方形,如图,求
简单说成:两角对应相等,两三角形相似.
判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
简单说成:两边对应成比例且夹角相等,两三角形相似.
判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
可以简单说成:三边对应成比例,两三角形相似。例题选讲:
例2圆内接△ ABC的角平分线CD延长线交圆于一点E。求证: EBDB
EC
CB
这个正方形的边长。Q
D M C
例4已知: D、E、F分别是△ABC三边的中点, 求证: ΔDEF∽ △ABC
基础知识:
定理(1)有一个锐角对应相等的两个直角三角形相似
(2)如果两个直角三角形两条直角边对应成比例那么这两个三角形相似
作业练习:课本P19-20习题1.3第5课时..直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项; 两直角边分别是它们在斜边上_______与_________的比例中项。作业练习:课本P22习题1.4第二讲 直线与圆的位置关系(共5课时)
以“圆周角定理”和“圆的切线概念”为起点,采用从特殊到一般的思想方法,得出圆内接四边形的性质和判定定理的猜想及其证明,圆的切线的性质和判定的有关定理 基础知识:
1.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半。圆心角定理:圆心角的度数等于_______________的度数。
推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______。
o
推论2:半圆(或直径)所对的圆周角是_______;90的圆周角所对的弦是________。弦切角定理:弦切角等于它所夹的弧所对的______________。2.圆内接四边形的性质定理与判定定理:
圆的内接四边形的对角_______;圆内接四边形的外角等于它的内角的_________
。如果一个四边形的对角互补,那么这个四边形的四个顶点__________;
如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________。
3.切线的性质定理:圆的切线垂直于经过切点的__________。
推论:经过圆心且垂直于切线的直线必经过________;经过切点且垂直于切线的直线必经过______。
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的__________。
4.相交弦定理:圆内两条相交弦,________________________________的积相等。
割线定理:从圆外一点引圆的两条割线,________________________________的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是________________________________的比例中项。切线长定理:从圆外一点引圆的两条切线,它们的切线长_____;圆心和这点的连线平分_______的夹角。、例题选讲:
例1已知:如图,AD是△ABC的高,AE是ABC的外接圆直径。求证:AB.AC=AE.AD
作业练习:课本P26习题2.1例1:如图⊙O1与⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2 交于
点D。经过点B的直线EF与⊙O1 交于点E,与⊙O2 交于点F。
求证:CE∥DF
例2:如图,CF是△ABC的AB边上的高
PFBC,FQAC
E
例2如图,AB与CD相交于一点P。求证:AD的度数与BC的度数和的一半等于∠APD的度数.B
F
求证:A,B,P,Q四点共圆.A
作业练习:课本P30习题2.2例1已知: 如图,AB是⊙O的直径,⊙O过BC的中点D,DE⊥AC,求证:DE是⊙O的切
线。
E
例2已知: 如图,AB是⊙O的直径,C为⊙O上一点,AD和过C点的切线垂直,垂足为D。
求证:AC平分
作业练习:课本P32习题2.3例 1已知:如图,AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD⊥CE,垂足为D。试说明AC平分∠BAD。
EC
D
作业练习:课本P34习题2.4例 1已知:如图圆内两条相交弦AB,CD相交于圆内一点P,PA=PB=4,PC
PD求CD的长。
A
D
例 2如图E是圆内两条相交弦AB,CD
AD的延长线与F,FG切圆于G。求证:(1)ΔDEF
∽ △EFA;(2)EF=FG
B
F例 4如图AB是⊙O的直径,过A,B引两条弦AD和BE,相交点C.B
求证:ACADBC
BEAB
作业练习:课本P40习题2.5四.【小结】
几何证明选讲有助于培养学生的逻辑推理能力,在几何证明的过程中,不仅是逻辑演绎的程序,它还包含着大量的观察、探索、发现的创造性过程。本专题从复习相似图形的性质入手,证明一些反映圆与直线关系的重要定理,提高学生运用综合几何方法解决问题的能力。
五、【布置作业】
1如图所示,圆O上一点C在直径AB上的射影为D,CD4,BD8,则圆O的半径等于.1题图
2.如图,从圆O外一点P作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠。
43.如图所示,圆O上一点C在直径AB上的射影为D,CD4,BD8,则圆O的半径等于.3题图
4.如图,从圆O外一点P作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠