第一篇:数学选修4-1几何证明选讲解答题
选修4-1:几何证明选讲
一、填空题
1.(2011·陕西)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则BE=________.2.(2011·湖南)如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为________.
二、解答题
3.如图所示,四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D.求证:AC·BE=CE·AD.4.(2011·江苏)如图,圆O1与圆O2内切于点A,其半径分别为
r1与r2(r1>r2).圆O1的弦AB交圆O2于点C(O1不在AB上).求证:AB∶AC
为定值.
5.如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD,点E,F分别为线段AB,AD的中点,求EF的长. a
26.如图所示,点P是圆O直径AB延长线上的一点,PC切圆O于点C,直线PQ平分∠APC,分别交AC、BC于点M、N.求证:(1)CM=CN;(2)MN2=2AM·BN
.7.如图,四边形ABCD内接于⊙O,AB=AD.过A点的切线交CB的延长线于E点.求证:AB2=BE·CD.8.如图,PA切⊙O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转60°到OD,求PD的长.
9.如图,已知△ABC的两条角平分线AD和
CE
相交于点
H,∠ABC=60°,F在AC上,且AE=AF.求证:(1)B、D、H、E四点共圆;
(2)CE平分∠DEF.10.如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.(1)求证:FB=FC;
(2)求证:FB2=FA·FD;
(3)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6 cm,求AD的长.
答案
231.2 2.3
CE3.证明 因为四边形ABCD是平行四边形,所以AF∥BC,所以BE
=.又因为AE∥CD,所以△AFE∽△DFC,EFEA
EAEFCFEFCE所以==.CDCFCDEABE
又因为∠ECA=∠D,∠CAF=∠DAC,ACCF所以△AFC∽△ACD,所以,ADDC
ACCE所以,ADBE
所以AC·BE=CE·AD.4.证明 如图,连结AO1并延长,分别交两圆于点E
和点D.连结BD,CE.因为圆O1与圆O2内切于点A,所以点O2在AD上,故
AD,AE分别为圆O1,圆O2的直径.
π从而∠ABD=∠ACE.2
所以BD∥CE,ABAD2r1r1于是==.ACAE2r2r2
所以AB∶AC为定值.
5.解 连结DE,由于E是AB的中点,故BE=.又CD=,AB∥DC,22CB⊥AB,∴四边形EBCD是矩形.
在Rt△AED中,AD=a,F是AD的中点,故EF2
6.证明(1)∵PC切圆O于点C,∴∠PCB=∠PAC,又∵∠CPM=∠APM,∴∠CNM=∠CPM+∠PCB=∠APM+∠PAM=∠CMN,∴CM=CN.(2)∵∠CPN=∠APM,∠PCN=∠PAM,aaaPCCN∴△PCN∽△PAM=,①
PAAM
同理△PNB∽△PMCPBBN.② PCCM
又∵PC2=PA·PB,③
由①②③可知CM·CN=AM·BN,∵CM=CN,∴CM2=AM·BN.∵AB是圆O的直径,∴∠ACB=90°.∴MN2=2CM2,即MN2=2AM·BN.7.证明 连结AC.∵EA切⊙O于A,∴∠EAB=∠ACB,∵AB=AD,∴∠ACD=∠ACB,AB=AD.∴∠EAB=∠ACD.又四边形ABCD内接于⊙O,所以∠ABE=∠D.∴△ABE∽△CDA.ABBE,即AB·DA=BE·CD.CDDA
∴AB2=BE·CD.8.解 方法一 连结AB,∵PA切⊙O于点A,B为PO中点,∴AB=OB=OA,∴∠AOB=60°,∴∠POD=120°.在△POD中,由余弦定理得PD2=PO2+DO2-2PO·DO·cos∠POD=4+1-14×(-=7.∴PD7.2
方法二 过D作DE⊥PC,垂足为E,∴∠POD=120°,13∴∠DOE=60°,可得OE,DE=,22
在Rt△PED中,25322PDPE+DE=7.44
9.证明(1)在△ABC中,∵∠ABC=60°,∴∠BAC+∠BCA=120°.∵AD,CE分别是△ABC的角平分线,∴∠HAC+∠HCA=60°,∴∠AHC=120°.∴∠EHD=∠AHC=120°.∴∠EBD+∠EHD=180°.∴B,D,H,E四点共圆.
(2)连结BH,则BH为∠ABC的平分线,∴∠EBH=∠HBD=30°.由(1)知B,D,H,E四点共圆,∴∠CED=∠HBD=30°,∠HDE=∠EBH=30°.∴∠HED=∠HDE=30°.∵AE=AF,AD平分∠BAC,∴EF⊥AD.∴∠CEF=30°.∴CE平分∠DEF.10.(1)证明 因为AD平分∠EAC,所以∠EAD=∠DAC.因为四边形AFBC内接于圆,所以∠DAC=∠FBC.因为∠EAD=∠FAB=∠FCB,所以∠FBC=∠FCB,所以FB=FC.(2)证明 因为∠FAB=∠FCB=∠FBC,∠AFB=∠BFD,FBFA所以△FBA∽△FDB.所以= FDFB
所以FB2=FA·FD.(3)解 因为AB是圆的直径,所以∠ACB=90°.又∠EAC=120°,所以∠ABC=30°,1∠DAC=EAC=60°.因为BC=6,2
所以AC=BCtan∠ABC=23,AC所以AD==43(cm). cos∠DAC
第二篇:2007-2012新课标数学几何证明选讲解答题汇总
1、如图,已知AP是O的切线,P为切点,AC是
O的割线,与O交于B,C两点,圆心O在PAC的内部,点M是BC的中点.,P,O,M四点共圆;(Ⅰ)证明A
(Ⅱ)求OAMAPM的大小.(2007新课标)A【解析】(Ⅰ)证明:连结OP,OM.
因为AP与O相切于点P,所以OPAP. 因为M是O的弦BC的中点,所以OMBC. 于是OPAOMA180°.,P,O,M四点共圆.由圆心O在PAC的内部,可知四边形APOM的对角互补,所以A,P,O,M四点共圆,所以OAMOPM.(Ⅱ)解:由(Ⅰ)得A
由(Ⅰ)得OPAP.
由圆心O在PAC的内部,可知OPMAPM90°.
所以OAMAPM90°.
A2、如图,过圆O外
切点为A,过A点作直线AP垂直直线OM,垂足为P. 一点M作它的一条切线,OPOA;(Ⅰ)证明:OM
(Ⅱ)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM90.(2008课标卷)
23、如图,已知△ABC的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.(2009课标卷)
(1)证明B,D,H,E四点共圆;
(2)证明CE平分∠
DEF.分析:此题考查平面几何知识,如四点共圆的充要条件,角平分线的性质等.证明:(1)在△ABC中,因为∠B=60°,所以∠BAC+∠BCA=120°.因为AD,CE是角平分线,所以∠HAC+∠HCA=60°.故∠AHC=120°.于是∠EHD=∠AHC=120°,因为∠EBD+∠EHD=180°,所以B,D,H,E四点共圆.(2)连结BH,则BH为∠ABC的平分线,得∠HBD=30°.由(1)知B,D,H,E四点共圆,所以∠CED=∠HBD=30°.又∠AHE=∠EBD=60°,由已知可得EF⊥AD,可得∠CEF=30°.所以CE平分∠DEF.4、如图,已经圆上的弧,过C点的圆切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD;
2(Ⅱ)BC=BF×CD。(2010课标卷)
解:
,(I)因为ACBC所以BCDABC.又因为EC与圆相切于点C,故ACEABC,所以ACEBCD.(II)因为ECBCDB,EBCBCD, 所以BDC∽ECB,故即BCBECD.2BCCD,BEBC5、如图,D,E分别为ABC的边AB,AC上的点,且
不与ABC的顶点重合。已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x214xmn0的两个根。
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若A90,且m4,n6,求C,B,D,E所在圆的半径。()(201
1新课标)
解析:(I)连接DE,根据题意在△ADE和△ACB中,ADABmnAEAC即ADAE.又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACBACAB
所以C,B,D,E四点共圆。
(Ⅱ)m=4, n=6时,方程x-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂
线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90,故GH∥AB, HF∥AC.HF=AG=5,DF=
故C,B,D,E四点所在圆的半径为
526、如图,D,E分别为ABC边AB,AC的中点,直线DE交 021(12-2)=5.2ABC的外接圆于F,G两点,若CF//AB,证明:
(1)CDBC;
(2)BCDGBD(2012课标卷)
【解析】(1)CF//AB,DF//BCCF//BD//ADCDBF
CF//ABAFBCBCCD
(2)BC//GFBGFCBD
BC//GFGDEBGDDBCBDCBCDGBD7、
第三篇:高二文科数学选修4-1《几何证明选讲》
欢迎光临《中学数学信息网》zxsx127@163.com
高二文科数学选修4-1《几何证明选讲》
班级_姓名座号
1.如图,在四边形ABCD中,EF//BC,FG//AD,则
EFFG.BCAD
2.如图,EF∥BC,FD∥AB,AE=1.8cm, BE=1.2cm, CD=1.4cm.则
.B的点,3.如图,AB是半圆O的直径,C是半圆O上异于A,CDAB,垂足为D,已知AD
2,CB则CD.F 图
204.如图,点A、B、C是圆O上的点,且AB=4,ACB30o,则圆O的面积等于.《中学数学信息网》系列资料www.xiexiebang.com版权所有@《中学数学信息网》
欢迎光临《中学数学信息网》zxsx127@163.com
5.如图,△ABC中,∠C=900,⊙O切AB于D,切BC于E,切AC于F,则 ∠.6.如图,已知圆上的弧ACBD,过C点的圆的切线与BA的 延长线交于 E点,若ACE350,则BCD.7.如图, 已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若ABC30, AC2,则AD的长为.8.如图,圆内的两条弦AB、CD相交于圆内一点P,已知
PAPB3,PCPD,则CD.o
BA
D
欢迎光临《中学数学信息网》zxsx127@163.com
9.如图,已知AB是⊙O的一条弦,点P为AB上一点,PCOP,PC交⊙O于C,若AP4,PB2,则PC的长是()
PO
A
B
A.3B
.C.2D
10.如图,圆O的弦ED,CB的延长线交于点A。若BD⊥AE,AB=4,BC=2,AD=3,则DE=;CE=.11.如图,割线PBC经过圆心O,PBOB1,PB绕点O逆时 针旋120°到OD,连PD交圆O于点E,则PE.12.如图,四边形ABCD是圆O的内接四边形,延长 AB和DC相交于点P。
BC
若PB=1,PD=3,则的值为.AD
欢迎光临《中学数学信息网》zxsx127@163.com
13.如图,过O外一点P作一条直线与O交于A,B两点,已知半径为4,PA=2,点P到O的切线长PT =4,则 点O到弦AB的距离为.14.如图,已知RtABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则
15.如图,PT是圆O的切线,PAB是圆O的割线,若PT2,PA1,P60o,则圆O的半径r.BD
__________.DA
16.如图, AC和AB分别是圆O的切线,B、C 为切点,且 OC = 3,AB = 4,延长OA到D点,则△ABD的面积 是.17.如图,⊙O的割线PAB交⊙O于A、B两点,割线 PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则O的半径是.参考答案
B
欢迎光临《中学数学信息网》zxsx127@163.com
1.2.3.4.16p5.4506.350
7.8.9.10.11.16
15.112.13.14.16.48
17.9
第四篇:高二数学选修4-1几何证明选讲练习
高二数学选修4-1《几何证明选讲》综合复习题
一、选择题:
1.如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作
圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC =()
A.15B.30C.45D.60
第1题图 2.在RtABC中,CD、CE分别是斜边AB上的高和中线,是该图中共有x个三角
形与ABC相似,则x()
A.0B.1C.2 D.33.一个圆的两弦相交,一条弦被分为12cm和18cm两段,另一弦被分为3:8,则另一弦的长为()
4.O的割线PAB交O于A,B两点,割线PCD经过圆心,已知
22PA6,PO12,AB,则
O的半径为()3
A.4B
.6C.6
D.8
5.如图,AB是半圆O的直径,点C在半圆上,CDAB于点D,且AD3DB,设COD,则tan2
2=()
第5题图 11 A.B.C.4D.3 3
4二、填空题:
6.如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且
与BC相切于点B,与AC交于点D,连结BD,若BC=51,则AC=
7.如图,AB为O的直径,弦AC、BD交于点P,若AB3,CD1,则sinAPD=
.O
D B C 第 6 题图
第7题图
三、解答题:
8.如图:EB,EC是O的两条切线,B,C是切点,A,D是 O上两点,如果E46,DCF32,试求A的度数.9.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P, E为⊙O上一点,AEAC,DE交AB于点F,且AB2BP4, 求PF的长度.EA
C FB OD P
第9题图
第五篇:选修4-1几何证明选讲练习题
几何证明选讲专项练习
1.(2008梅州一模文)如图所示,在四边形ABCD中,EF//BC,FG//AD,则
EFBC+FG
AD
= 2.(2008广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于 点F,若△AEF的面积为6cm
2,则△ABC的面积为 B cm2.
3.(2007广州一模文、理)如图所示,圆O上
一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.
4.(2007深圳二模文)如图所示,从圆O
作圆O的割线PAB、PCD,AB是圆O若PA=4,PC=5,CD=
3,则∠CBD=__
5.(2008广东文、理)已知PA是圆OPA=2.AC是圆O的直径,PC与圆O交于点则圆O的半径R=_______.6.(2007广东文、理)如图所示,圆OAB=6,C圆周上一点,BC=3,过C过A作l的垂线AD,AD分别与直线lD、E,则∠DAC=,线段AE的长为
7.(2008韶关一模理)如图所示,PC切⊙O于 点C,割线PAB经过圆心O,弦CD⊥AB于
点E,PC=4,PB=8,则CD=________.8.(2008深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知AD=,AC=6,圆O的半径为3,则圆心O到AC的距 离为________.9.(2008东莞调研文、理)如图所示,圆O上一点C在直径AB上的射影为D,CD=4,则圆O的半径等于.
10.(2008韶关调研理)如图所示,圆O是
△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.11.(2007韶关二模理)如图,⊙O′和
⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.
12.(2008广州二模文、理)如图所示, 圆的内接
△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N 13.(2007湛江一模文)如图,四边形ABCD内接
于⊙O,BC是直径,MN切⊙O于A,∠MAB=250,则∠D=___.14.(2007湛江一模理)如图,在△ABC中,D 是AC的中点,E是BD的中点,AE交BC
D
于F,则
BFFC=
15.(2008惠州一模理)如图:EB、EC是⊙O的两 条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.16.(2008汕头一模理)如图,AB是圆O直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.17.(2008佛山一模理)如图,AB、CD是圆O的两条弦,且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为. C
18.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若
AD=5,BC=7,则GH=________.19.如图,圆O上一点C在直径AB上的射影为D.C
AD=2,AC= 25,则AB=____ B
20.如图,PA是圆的切线,A为切点,PBC是圆的割线,且PB=1PA
2BC,则PB的值是________.21.如图,⊙O的割线PAB交⊙O于A、B两点,割线 PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____⊙O的半径是_______.22.已知一个圆的弦切角等于50°,那么这个弦切角 所夹的弧所对的圆心角的度数为_______.23.如图,AB是直径,点D在AB的延长线上,BD=OB,若CD切⊙O于C点,则∠CAB的度数
为,∠DCB的度数为,∠ECA的度数为___.24.如图,AB,AC是⊙O的两条切线,切点分别为 B、B、D是优弧BC
上的 点,已知∠BAC=800,那么∠BDC =______.25.如图,AB是⊙ O的弦,AD是⊙ O的切线,C为 AB
上任一点,∠ACB=1080,那么∠BAD =______.26.如图,PA,PB切⊙ O于 A,B两点,AC⊥PB,且与⊙ O相交于 D,若∠DBC=220,则∠APB==________.27.如图,AB是⊙O的直径,点D在AB的延 长线上,BD=OB,CD与⊙O切于C,那么 ∠CAB==________.28.已知:一个圆的弦切角是50°,那么这个弦 切角所夹的弧所对的圆心角的度数为_________.29.已知:如图,CD是⊙O的直径,AE切 ⊙O于点B,DC的延长线交AB于点A,∠A =200,则∠DBE=________.30.如图,△ABC中,∠C=900,⊙O切 AB于D,切BC于E,切AC于F,则∠EDF=________.31.如图,AB是⊙ O的直径,C,D是
⊙ O上的点,∠BAC=200,AD
DC,DE是⊙ O的切线,则∠EDC的度数是____.32.如图,AB是⊙ O的直径,PB,PC 分别切⊙ O于 B,C,若 ∠ACE=380,则∠P=_________.
33.如图,AB是半圆O的直径,C、D是半 圆上的两点,半圆O的切线PC交AB的延 长线于点P,∠PCB=25°,则∠ADC为 A.105°B.115°C.120°D.125°
34.如图,AB是⊙O的直径,EF切⊙O于C,AD⊥EF于D,AD=2,AB=6,则AC的长为 A.2B.3
C.D.4
35.如图,直线 BC切⊙ 0于点 A,则图中的弦切角共有
A.1个B.2个C.3个D.4个
36.如图,AB是⊙ O的直径,AC,BC是
⊙ O的弦,PC是⊙ O的切线,切点为 C,∠BAC=350,那么∠ACP等于
A.350B.550C.650D.1250
37.如图,在⊙ O中,AB是弦,AC是⊙ O 的切线,A是切点,过 B作BD⊥AC于D,BD交⊙ O于 E点,若 AE平分∠BAD,则 ∠BAD=
A.300B.450C.050D.600
38.如图,⊙O与⊙O′交于 A,B,⊙O的弦
AC与⊙O′相切于点 A,⊙O′的弦AD与⊙O 相切于A点,则下列结论中正确的是
A.∠1>∠2B.∠1=∠2C.∠1<∠2D.无法确定
39.如图,E是⊙O内接四边形 ABCD两条对角线的交点,CD延长线与过 A点的⊙ O的切线交于
F点,若∠ABD=440,∠AED=1000,ADAB,则∠AFC的度数为
C
F
A.780B.920C.560D.1450