第一篇:选修4-1几何证明选讲总复习
相似三角形的判定及其有关性质复习
一.知识梳理
1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段
推论1:经过三角形一边的中点与另一边平行的直线必推论2:经过梯形一腰的中点,且与底边平行的直线
三角形中位线定理:三角形的中位线平行于,并且等于2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段.
推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段结论1:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边
结论2:三角形的一个内角平分线分对边所成的两条线断于这个角的两边.
结论3:若一条直线截三角形的两边(或其延长线)所得对应线段成比例,则此直线与三角形的第三边3. 相似三角形的判定定理:
(1)(SAS)(2)(SSS)(3)(AA)
相似三角形的性质定理:相似三角形的对应线段的比等于,面积比等于.
4. 直角三角形的射影定理:直角三角形斜边上的高是两条直角边在斜边上摄影的,两条直角边分别是它们在斜边上射影与斜边的. 二.模拟练习
1.如图1,l1//l2//l3,AM=3,BM=5,CM=4.5,EF=16,则,.
2.如图2,AB是斜靠在墙壁上的长梯,梯脚B距墙80cm,梯上点D距墙70cm,BD长55cm,则梯子的长为cm.l1C
K l2F
l
3图1 图
2B
3.如图3,ΔABC中,∠1=∠B,则Δ∽Δ.此时若AD=3,BD=2,则AC=.
4.如图4,CD是RtΔABC的斜边上的高.
(1)若AD=9,CD=6,则BD=;
(2)若AB=25,BC=15,则BD=.D
B
图3 C
图4 5.如图5,ΔABC中,点D为BC中点,点E在CA上,且CE=
12EA,AD,BE交于点F,则
AF:FD=.
6.一个等腰梯形的周长是80cm,如果它的中位线长与腰长相等,它的高是12cm,则这个梯形的面 积为cm2.
7.两个三角形相似,它们的周长分别是12和18,周长较小的三角形的最短边长为3,则另一个三角形的最短边长为.
8.如图6,已知∠1=∠2,请补充条件:(写一个即可),使得ΔABC∽ΔADE.
E
D
B
图5 D C A 图6
B 9.若一个梯形的中位线长为15,一条对角线把中位线分成两条线段.这两条线段的比是3:2,则梯形的上、下底长分别是__________.
10.如图7,BD、CE
是VABC的中线,P、Q分别是BD、CE的中点,则PQ:BC11、如图,等边△DEF内接于△ABC,且DE//BC,已知AHBC于点H,BC=4,AH=3,求△DEF的边长.
F H12、如图8,在ΔABC中,作直线DN平行于中线AM,设这条直线交边AB与点D,交边CA的延长
14、(2009年海南、宁夏高考)如图,已知ABC的两条角平分线AD
线于点E,交边BC于点N. 求证:AD∶AB=AE∶AC. 和CE相交于H,B600,F在AC上,且AEAF.
(I)
证明:B,D,H,E四点共圆:(II)
证明:CE平分DEF。
.
B
N M C图813、如图9,E,F分别是正方形ABCD的边AB和AD上的点,且EBAF AB
AD
3.求证:∠AEF=∠FBD.
D
M
B
C
图9
直线与圆的位置关系复习
一.知识梳理
1.圆周角定理:圆上一条弧所对的圆周角等于圆心角定理:圆心角的度数等于
推论1;同圆或等圆中,相等的圆周角所对的弧推论2:半圆(或直径)所对的圆周角是90的圆周角所对的弦是弦切角定理:弦切角等于它所夹的弧所对的2. 圆内接四边形的性质与判定定理:
圆的内接四边形的对角;圆内接四边形的外角等于它的内角的如果一个四边形的对角互补,那么这个四边形的四个顶点
如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点3.切线的性质定理:圆的切线垂直于经过切点的推论:经过圆心且垂直于切线的直线必经过;经过切点且垂直于切线的直线必经过
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的4.相交弦定理:圆内两条相交弦,割线定理:从圆外一点引圆的两条割线,切割线定理:从圆外一点引圆的切线和割线,切线长是的比例中项.切线长定理:从圆外一点引圆的两条切线,它们的切线长;圆心和这点的连线平分的夹角. 二.模拟练习
1、如图1,点P是⊙O的直径BA延长线上一点,PC与⊙O相切于点C,CD⊥AB,垂足为D,连结AC、BC、OC,那么下列结论中正确结论的个数有个
①PC
2=PA·PB;②PC·OC=OP·CD;③OA2
=OD·OP;④OA(CP-CD)=AP·CD.
2、AB是⊙O的直径,弦CD⊥AB,垂足为P,若AP∶PB=1∶4,CD=8,则直径AB的长是O DP
图
13、如图2,AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于点C,PC=3,PB=1,则⊙O的半径为.
4、如图3,圆O上的一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的直径为.
A
O
P
B
图
25、下列命题中错误的是
(1)过一个圆的直径两端点的两条切线互相平行
(2)直线AB
与⊙O相切于点A,过O作
AB的垂线,垂足必是A
(3)若同一个圆的两条切线互相平行,则连结切点所得的线段是该圆的直径(4)圆的切线垂直于半径
6、如图4,已知AB是⊙O的弦,AC切⊙O于点A,∠BAC=60°,则∠ADB的度数为
7、如图5,PA与圆切于点A,割线PBC交圆于点B、C,若PA=6,PCA=,PAB=.
·O
D
B P
图4 C 图5
8、如图7,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交O于点D,若PE=PA,ABC60,PD=1,BD=8,则线段BC=.
9.半径为5的⊙O内有一点A,OA=2,过点A的弦CD被A分成两部分,则AC·
10.如图8,已知⊙O的半径OB=5cm,弦AB=6cm,D是的中点,则弦BD的长度是
O
P图7
11.(2009年广东高考)如上图,点A,B,C是圆O上的点,且AB4,ACB30o,则圆O的面积等于__________________.
12、如图9,AB是⊙O的直径,C是⊙O外一点,且AC=AB,BC交⊙O于点D.已知BC=4,AD=6,AC交⊙O于点E,求四边形ABDE的周长.
13、如图10,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.(1)求证:FB=FC;
(2)若AB是△ABC的外接圆的直径,∠EAC =120°,BC=6,求AD的长.
14、如图11,⊙1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2交于点D经过点B的直线EF与⊙O1交于点E,与⊙O2交于点F. 求证:CE∥DF.
O··O
F
图
1115、(2009年辽宁高考)已知 ABC中,AB=AC,D是 ABC外接圆劣弧A
C上的点(不与点A,C重合),延长BD至E.
(1)求证:AD的延长线平分CDE;
(2)若BAC=30,ABC中BC边上的高为,求ABC外接圆的面积.
几何证明选讲复习题
(1)ΔABF∽ΔAEF(2)ΔABF∽ΔCEF(3)ΔCEF∽ΔDAE(4)ΔADE∽ΔAEF
8.如图8,在RtΔABC中,∠C=90°,D是BC中点,DE⊥AB,垂足为E,∠B=30,AE=7.则1. 如图1,已知:AC⊥AB,BD⊥AB,AO=78cm,BO=42cm,CD=159cm,则CO=cm,DO=DE的长为.cm.
9.如图9,AB=BC=CD,∠E=40°,则∠
2.已知,如图2,AA′∥EE′,AB=BC=CD=DE,A′B′=B′C′=C′D′=D′E′,若AA′=28mm,10.如图10,已知⊙O的切线PC与直径BA的延长线相交于点P,C是切点,过A的切线交PC
EE′=36mm,则BB′=,CC′=,DD′=.
于D,如果CD∶PD=1∶2,DA=2,那么⊙O的半径OC=.
3.如图3,EF∥BC,FD∥AB,AE=1.8cm,BE=1.2cm,CD=1.4cm.则BD=.
11.如图11,ΔABC内接于⊙O,AD切⊙O于A,∠BAD=60°,则∠.A
4.已知,如图4,在平行四边形ABCD
中,DB是对角线,E是AB 上一点,连结CE且延长和DA的延长线交于F,则图中相似三角形 的对数是.
BC5.如图5,在A
F
图
1图
2A′′C′′E′
B
图9
E 图
4B
中,AD是角BAC的平分线,AB=5cm,AC=4cm,BC=7cm,则BDcm.
C
图1
3F
C
图10
B 图11
D └B D
图3
D C
12.如图12,已知AD=AB,∠ADB=350,则∠BOC等于
图6
6.如图6,ED∥FG∥BC,且DE,FG把ΔABC的面积分为相等的三部分,若BC=15,则FG的长为.
7.如图7,已知矩形ABCD中,∠AEF=90°,则下列结论一定正确的是
13.如图13,ABCD是⊙O的内接四边形,AC平分∠BAD并与BD交于E点,CF切⊙O于C交AD延长线于F,图中四个三角形:①ΔACF;②ΔABC;③ΔABD;④ΔBEC,其中与ΔCDF一定相似的是.
14.⊙O中,弦AB平分弦CD于点E,若CD=16,AE∶BE=3∶1,则
15.AB是⊙O的直径,OA=2.5,C是圆上一点,CD⊥AB,垂足为D,且CD=2,则AC=.
16.如图14,PAB是⊙O的割线,AB=4,AP=5,⊙O的半径为6,则
BC中,17.如图15,在AAD⊥BC于D,DE⊥AB于E,DF⊥AC于F.求证:AEABAFAC.
O
P
F B
图7
C
D 图8
B
图14
A
18.如图16,在梯形ABCD中,AD∥BC,E,F分别是AB,CD的中点. 求证:GH=12
(BC-AD).
F
图16
C
19.已知:如图17,ABC中,ABAC,BAC90,D、E、F分别在AB、AC、BC上,AE
AC,BD
AB,且CF
BC.求证:(1)EFBC;(2)ADEEBC.
20.设圆O1与圆O2的半径分别为3和2,O1O24,A,B为两圆的交点,试求两圆的公共弦AB的长度.
21.如图18,已知AP是⊙O的切线,P为切点,AC是 ⊙O的割线,与⊙O交于B,C两点,圆心O在PAC的内部,点M是BC的中点.(1)证明A,P,O,M四点共圆;(2)求OAMAPM的大小.
22.如图19,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点 D,E为CH中点,连接AE并延长交BD于点F,直 线CF交直线AB于点G,(1)求证:点F是BD中点;(2)求证:CG是⊙O的切线;(3)若FB=FE=2,求⊙O的半径.
第二篇:选修4-1几何证明选讲练习题
几何证明选讲专项练习
1.(2008梅州一模文)如图所示,在四边形ABCD中,EF//BC,FG//AD,则
EFBC+FG
AD
= 2.(2008广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于 点F,若△AEF的面积为6cm
2,则△ABC的面积为 B cm2.
3.(2007广州一模文、理)如图所示,圆O上
一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.
4.(2007深圳二模文)如图所示,从圆O
作圆O的割线PAB、PCD,AB是圆O若PA=4,PC=5,CD=
3,则∠CBD=__
5.(2008广东文、理)已知PA是圆OPA=2.AC是圆O的直径,PC与圆O交于点则圆O的半径R=_______.6.(2007广东文、理)如图所示,圆OAB=6,C圆周上一点,BC=3,过C过A作l的垂线AD,AD分别与直线lD、E,则∠DAC=,线段AE的长为
7.(2008韶关一模理)如图所示,PC切⊙O于 点C,割线PAB经过圆心O,弦CD⊥AB于
点E,PC=4,PB=8,则CD=________.8.(2008深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知AD=,AC=6,圆O的半径为3,则圆心O到AC的距 离为________.9.(2008东莞调研文、理)如图所示,圆O上一点C在直径AB上的射影为D,CD=4,则圆O的半径等于.
10.(2008韶关调研理)如图所示,圆O是
△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.11.(2007韶关二模理)如图,⊙O′和
⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.
12.(2008广州二模文、理)如图所示, 圆的内接
△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N 13.(2007湛江一模文)如图,四边形ABCD内接
于⊙O,BC是直径,MN切⊙O于A,∠MAB=250,则∠D=___.14.(2007湛江一模理)如图,在△ABC中,D 是AC的中点,E是BD的中点,AE交BC
D
于F,则
BFFC=
15.(2008惠州一模理)如图:EB、EC是⊙O的两 条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.16.(2008汕头一模理)如图,AB是圆O直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.17.(2008佛山一模理)如图,AB、CD是圆O的两条弦,且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为. C
18.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若
AD=5,BC=7,则GH=________.19.如图,圆O上一点C在直径AB上的射影为D.C
AD=2,AC= 25,则AB=____ B
20.如图,PA是圆的切线,A为切点,PBC是圆的割线,且PB=1PA
2BC,则PB的值是________.21.如图,⊙O的割线PAB交⊙O于A、B两点,割线 PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____⊙O的半径是_______.22.已知一个圆的弦切角等于50°,那么这个弦切角 所夹的弧所对的圆心角的度数为_______.23.如图,AB是直径,点D在AB的延长线上,BD=OB,若CD切⊙O于C点,则∠CAB的度数
为,∠DCB的度数为,∠ECA的度数为___.24.如图,AB,AC是⊙O的两条切线,切点分别为 B、B、D是优弧BC
上的 点,已知∠BAC=800,那么∠BDC =______.25.如图,AB是⊙ O的弦,AD是⊙ O的切线,C为 AB
上任一点,∠ACB=1080,那么∠BAD =______.26.如图,PA,PB切⊙ O于 A,B两点,AC⊥PB,且与⊙ O相交于 D,若∠DBC=220,则∠APB==________.27.如图,AB是⊙O的直径,点D在AB的延 长线上,BD=OB,CD与⊙O切于C,那么 ∠CAB==________.28.已知:一个圆的弦切角是50°,那么这个弦 切角所夹的弧所对的圆心角的度数为_________.29.已知:如图,CD是⊙O的直径,AE切 ⊙O于点B,DC的延长线交AB于点A,∠A =200,则∠DBE=________.30.如图,△ABC中,∠C=900,⊙O切 AB于D,切BC于E,切AC于F,则∠EDF=________.31.如图,AB是⊙ O的直径,C,D是
⊙ O上的点,∠BAC=200,AD
DC,DE是⊙ O的切线,则∠EDC的度数是____.32.如图,AB是⊙ O的直径,PB,PC 分别切⊙ O于 B,C,若 ∠ACE=380,则∠P=_________.
33.如图,AB是半圆O的直径,C、D是半 圆上的两点,半圆O的切线PC交AB的延 长线于点P,∠PCB=25°,则∠ADC为 A.105°B.115°C.120°D.125°
34.如图,AB是⊙O的直径,EF切⊙O于C,AD⊥EF于D,AD=2,AB=6,则AC的长为 A.2B.3
C.D.4
35.如图,直线 BC切⊙ 0于点 A,则图中的弦切角共有
A.1个B.2个C.3个D.4个
36.如图,AB是⊙ O的直径,AC,BC是
⊙ O的弦,PC是⊙ O的切线,切点为 C,∠BAC=350,那么∠ACP等于
A.350B.550C.650D.1250
37.如图,在⊙ O中,AB是弦,AC是⊙ O 的切线,A是切点,过 B作BD⊥AC于D,BD交⊙ O于 E点,若 AE平分∠BAD,则 ∠BAD=
A.300B.450C.050D.600
38.如图,⊙O与⊙O′交于 A,B,⊙O的弦
AC与⊙O′相切于点 A,⊙O′的弦AD与⊙O 相切于A点,则下列结论中正确的是
A.∠1>∠2B.∠1=∠2C.∠1<∠2D.无法确定
39.如图,E是⊙O内接四边形 ABCD两条对角线的交点,CD延长线与过 A点的⊙ O的切线交于
F点,若∠ABD=440,∠AED=1000,ADAB,则∠AFC的度数为
C
F
A.780B.920C.560D.1450
第三篇:《选修2-1,几何证明选讲》习题
东方英文书院2011——2012学年高二数学测试卷(文科)
——《选修2-1,几何证明选讲》
以下公式或数据供参考
n
ybx;b⒈axynxyii
i
1x
i1n2inx2.
2、参考公式
3、K
2n(adbc)2
(a
b)(c
d)(ac)(bd)n=a+b+c+d
一、选择题(本大题共10小题,每小题5分,共50分)
1.在复平面内,复数i(i1)对应的点在()
A.第一象限
B.第二象限 C
.第三象限 D.第四象限
2.下面4个散点图中,适合用线性回归模型拟合其中两个变量的是()
A.①②B.①③
C.②③
D.③④
3)
A.2
2B.2
2C.22D.2(2
4.已知11,则下列命题:①2;②2;③120;④31.其中真命题的个数2是()
A.1B.2C.3D.
45.否定结论“至多有两个解”的说法中,正确的是()
A.有一个解B.有两个解
C.至少有三个解D.至少有两个解
6.利用独立性检验来考察两个变量X和Y是否有关系时,通过查阅下表来确定断言“X与Y有关系”的可信程度.如果5.024,那么就有把握认为“X与Y有关系”的百分比为()2
A.B.C.D.
7.复平面上矩形ABCD的四个顶点中,A,B,C所对应的复数分别是23i,32i,23i,则D点对应的复数是()
A.23iB.32iC.23iD.3
2i 8.下列推理正确的是()
A.如果不买彩票,那么就不能中奖;因为你买了彩票,所以你一定中奖 B.因为ab,ac,所以abac C.若a,bR,则lgalgb≥D.若aR,ab0,则
abab≤2 baab9.如图,某人拨通了电话,准备手机充值须进行如下操作:
按照这个流程图,操作步骤是()
A.1511B.1515C.152110.若复数z满足z34i4,则z的最小值是()A.
1B.2
C.
3D.4
D.523
二、填空题(每小题5分,共20分)(15选做题,若两题都做,则以第(1)题为准)
11.如右图所示的程序框图中,当输入的a值为0和4时,输出的值相等,则当输入的a值为3时,则输出的值为.
2根据以上数据,得2的值是,可以判断种子经过处理跟生病之间关(填“有”或“无”). 13.用三段论证明f(x)x3sinx(xR)为奇函数的步骤是. 14.若z15,z234i且z1z2是纯虚数,则z1 15.(选作题:,请在下面两题中选作一题)
(1).如图,在ABC中,DE//BC,EF//CD,若BC3,DE2,DF1,则AB的长为___________.
(2)如图,已知⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心,若PA=3,AB=4,PO=5,则⊙O的半径为_____________.第1题图
三、解答题(共80分.解答题应写出推理、演算步骤)16.已知z113i,z268i,若
17.在各项为正的数列an中,数列的前n项和Sn满足Sn
1,求z的值. zz1z
211 an2an
(1)求a1,a2,a3;(2)由(1)猜想数列an的通项公式;(3)求Sn
BNA45,18、如图,点B在⊙O上,M为直径AC上一点,BM的延长线交⊙O于N,若⊙O的半径为,求MN的长为
B
M
ACO
19.(本小题16分)假设一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子的成长记录:
(1)作出这些数据的散点图;(2)求出这些数据的回归方程.
20.已知关于x的方程:x2(6i)x9ai0(aR)有实数根b.(1)求实数a,b的值;
(2)若复数z满足zabi2z0,求z为何值时,z有最小值,并求出z的最小值.
东方英文书院2011——2012学年高二数学测试卷(文科)
——《选修2-1,几何证明选讲》答案
一、选择题
二、填空题:
11. 3120.164无13.14. 43i或43i 15.1
3三、解答题:
16.解:由z113i,得
1113i13i. z113i(13i)(13i)1010
又由z268i,得
1168i34i. z268i(68i)(68i)5050
那么
1113143111211i,ii
zz2z15010501025550
4225050(211i)
i.
55211i(211i)(211i)
得z
19.解:(1)数据的散点图如下:
(2)用y表示身高,x表示年龄,则数据的回归方程为y6.317x71.984.
20.解:(1)b是方程x2(6i)x9ai0(aR)的实根,(b26b9)(ab)i0,b26b90故,ab
解得ab3;
(2)设zxyi(x,yR)由z33i2z,得(x3)2(y3)24(x2y2),即(x1)2(y1)28,Z点的轨迹是以O1(11),为圆心,如图,当Z点为直线OO1与O1的交点时,z有最大值或最小值.
OO1r
当z1
i时,zmin
第四篇:几何证明选讲基础知识复习
几何证明选讲基础知识复习
一、选考内容《几何证明选讲》考试大纲要求:
(1)了解平行线截割定理,会证直角三角形射影定理.(2)会证圆周角定理、圆的切线的判定定理及性质定理.(3)会证相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.(4)了解平行投影的含义,通过圆柱与平面的位置关系,了解
平行投影;会证平面与圆柱面的截线是椭圆(特殊情形是圆).(5)了解下面定理:
定理 在空间中,取直线l为轴,直线l与l相交于点O,其
夹角为l围绕l旋转得到以O为顶点,l为母线的圆锥面,任取
平面π,若它与轴l交角为(π与l平行,记=0),则:
(i)>,平面π与圆锥的交线为椭圆;
(ii)=,平面π与圆锥的交线为抛物线;
(iii)<,平面π与圆锥的交线为双曲线.二、基础知识填空:
1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上
截得的线段_________.推论1: 经过三角形一边的中点与另一边平行的直线必______________。推论2: 经过梯形一腰的中点,且与底边平行的直线________________。
2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例。推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段____________。
3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于_______;
相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_________________; 相似三角形面积的比、外接圆的面积比都等于____________________;
4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;
两直角边分别是它们在斜边上_______与_________的比例中
项。
5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半。圆心角定理:圆心角的度数等于_______________的度数。
推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______。
o推论2:半圆(或直径)所对的圆周角是_______;90的圆周角所对的弦是
________。
弦切角定理:弦切角等于它所夹的弧所对的______________。
6.圆内接四边形的性质定理与判定定理:
圆的内接四边形的对角_______;圆内接四边形的外角等于它的内角的_________。如果一个四边形的对角互补,那么这个四边形的四个顶点__________;
如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________。
7.切线的性质定理:圆的切线垂直于经过切点的__________。
推论:经过圆心且垂直于切线的直线必经过________;经过切点且垂直于切线的直线必经过______。
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的__________。
8.相交弦定理:圆内两条相交弦,________________________________的积相等。
割线定理:从圆外一点引圆的两条割线,________________________________的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是
________________________________的比例中项。
切线长定理:从圆外一点引圆的两条切线,它们的切线长_____;圆心和这点的连线平分_______的夹角。
第五篇:几何证明选讲专题复习
河津中学高三二轮专题复习
几何证明选讲专题复习
1、如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B、C两点,圆心O在∠PAC的内部,点M是BC的中点。⑴证明:A、P、O、M四点共圆。⑵求∠OAM+∠APM的大小。
2、如图,BA是⊙O的直径,AD是⊙O的切线,BF、BD是割线。证明:BE·BF=BC·BD3、△ABC内接于⊙O,AB=AC,直线MN切⊙O 于C,弦BD∥MN,AC、BD交于点E
⑴求证:△ABE≌△ACD⑵AB=6,BC=4,求AE4、如图所示,AB是⊙O 的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O 的切线,切点为H。
求证:⑴C、D、F、E四点共圆;⑵GH2=GE·GF.第 1页
5、如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E..⑴求证: AB2=DE·BC;
⑵若BD=9,AB=6,BC=9,求切线PC的长。
6、已知C点在⊙O直径BE的延长线上,CA切⊙O于A点,∠ACB的平分线分别交AE、AB于点F、D。⑴求∠ADF的度数; ⑵若AB=AC,求AC/BC的值。
7、如图所示,AB为⊙O的直径,BC、CD为⊙O的切线,B、D为切点。⑴求证:AD∥OC;⑵若⊙O的半径为1,求AD·OC的值。
8、在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。
⑴求证:
⑵若AC=3,求AP·AD的值。
9、在平面四边形ABCD中,△ABC≌△BAD.求证:AB∥CD10、已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于A、F(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连结AC。
⑴求证:∠BAC=∠CAG;⑵AC2=AE·AF11、如图,PA切⊙O于点A,割线PBC经过圆心O,OB=PB=1,绕点O逆时针旋转600到OD。
⑴求线段PD的长;
⑵在如图所示的图形中是否有长度为的线段?若有,指出该线段;若没有,说明理由。
12、如图,⊙O的直径AB=6,C为圆周上一点,BC=3,过C做圆的切线l,过A做l的垂线AD,AD分别与直线l,圆O交于点D,E。⑴求∠DAC;⑵求线段AE的长。
13、如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、2BC相交于E点,F为CE上一点,且DE=EF·EC.⑴求证: ∠P=∠EDF;⑵求证:CE·EB=EF·EP.14、如图,AB是圆O的直径,D为圆O上一点,过D做圆O的切线交AB的延长线于点C,若DA=DC,求证:AB=2BC。
15、如图,点A、B、C是圆O上的点,且AB=4,∠ACB=300,则圆O的面积等于_____________。
16、如图,AB、CD是半径为a的圆O的两条弦,它们相交于AB的中点P,0PD=2a/3,∠OAP=30,则CP=______________。
17、如图,⊙O的弦ED,CB的延长线交于点A,若
BD⊥AE,AB=4,BC=2,AD=3,DE=_________;CE=__________.