高二数学几何证明选讲考点分析

时间:2019-05-12 05:27:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高二数学几何证明选讲考点分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高二数学几何证明选讲考点分析》。

第一篇:高二数学几何证明选讲考点分析

锈钢工作台dbfq

一、几何证明选讲考点分析

①相似三角形的定义与性质;

②平行线截割定理;

③直角三角形射影定理;

④圆周角与圆心角定理;

⑤圆的切线的判定定理及性质定理;

⑥弦切角的性质;

⑦相交弦定理;

⑧圆内接四边形的性质定理和判定定理;

⑨切割线定理;

但各地试卷对几何证明选读内容的试题要么以圆为载体,要么隐含圆的相关知识,总之,试题均涉及圆的有关平面几何知识。特别地,圆周角定理和圆心角定理的考查频率极高。

2008年:

2009年:

2010年:习题2.4(1)及2.5例

52011年:2.2例

2三、命题方法实例剖析

几何证明选讲高考试题大多以课本中的例题、习题等为源题变化而来而来。这些题目中一些是利用课本 结论,赋予具体的数值而得到,可视为课本源题重现;一些题目是把题目中的条件或结论稍加得到,试题结构并没有改变,可视为课本源题简单变形;还有一些试题的主体结构和课本题目基本一致,但仅从题目外形很难将两者联系起来,可视为课本 源题深层次变形。

⒈课本源题重现:

(2010年广东省高考理科第14题)如图,AB、CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD=

______________.2a,∠OAP=30°,则CP=

3无锡物流公司dbfq

源题:如图所示,点P为圆O的弦AB上的任意点,连结PO.PC⊥OP,PC交圆于C.求证:PA∙PB=PC2(P40,习题2.5第3题)

此两题外形基本一致,两题的结构完全相同,该试题在其源题的结论基础上赋予了具体的数值而得到,是一种结论特殊化的过程。

⒉课本源题简单变形

(2010年陕西省高考(文)第15B题)如图,已知RT△ABC的两条直角边AC、BC的长分别为3cm、4cm,以AC为直径的圆与AB交于点D,则BD=_________________

源题:如图所示,圆O上一点C在直径AB上的射影为D.AD=2,DB=8,求CD、AC和BC的长(P21,1.4例1)

从命题的角度看,两题的外形稍有不同:在源题中,圆是以直角三角形的斜边为直径,在该试题中,圆是以直角三角形的直角边为直径。其相同之处,两题原理一致,本质直角三角形射影定理,只是射影定理的条件的推导方式不同。该试题是在其源泉题的基础上,把试题的条件圆心,本质内容不变,采用了变换条件的办法。该试题可视为课本源题的简单变形。

⒊课本源题深层次变形

(2010年广东省高考(文)第14题)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=

则EF=________________

无锡物流公司dbfq a,点E、F分别为线段AB、AD的中点,2源题:如图,OA是圆O的半径,以OA为直径的圆C与圆O的弦AB相交于D,求证:D是AB的中点(P26,习题2.1第1题)

分析命题方法,两题貌似毫无关联,实际上问题结构有共同之处。在源题中,连结OD、BE,很容易看出四边形OBDE为直角梯形,再取OE、BE中点分别为F、G,连结OB,显然GF=OBOE=。至此,可见梯形可以不要求OE=2

2BE,这个对试题的结论不会产生影响。梯形ODBE内部结构是该试题结构的加强,该试题是从源题的问题结构中提出,并将其特殊化而得到的。

四、对教学的启示:

⒈试题对几何证明选讲内容的考查虽然考点多,但从各省市的试题来看,主要还是集中在对圆的相关内容的考查,而圆中又主要以与切线有关的性质、圆幂定理、四点共圆这几个内容的考查为主,可以说考查难度并不大,所以教学时我们不需要有太多的顾虑;

⒉虽然本书内容主要是由原初三内容改编过来,而在初中,相关内容也已经删去,似乎教师教与学生学都有一定难度,但是由于学生经过两年的高中学习,逻辑性、严密性都有了较大的提高,只要教学得法,学生对这部分的学习应该并不会感到困难,这样,他们考试时对此部分的试题应该有把握正确解答;

⒊教学中应该紧扣课本中的例习题进行教学,要重视各个定理的教学,使学生弄清楚来龙去脉,理解其中渗透的重要的数学思想方法,因为高考试题中所采取的一些方法多来自课本中定理的证明方法及例习题的证明方法;

⒋教学中要重视对课本例习题的拓展,要结合课本中的例题引导学生进行探究,特别是对题目条件、结论进行改编,将其特殊化或一般化,形成新的猜想,获得一些新的结论,在探究中提升学生对问题本质的理解,只有通过这样的训练,学生在解答高考试题时才能游刃有余;

⒌教师应该阅读《几何原本》等书籍,对教材中给出的一些定理、例习题的历史地位及重要作用要有一定的认识,使自己的教学能够站在一定的高度之上,只有这样,才能对高考的命题有更进一步的认识,才能在教学中对高考有更充分的准备。

兰州五十七中 汤敬鹏

无锡物流公司dbfq

第二篇:高二数学几何证明选讲教案

几何证明选讲

(共计10课时)授课类型:新授课

一【教学内容】

1.复习相似三角形的定义与性质,了解平行截割定理,证明直角三角形射影定理。2.证明圆周角定理、圆的切线的判定定理及性质定理。

3.证明相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理。

二【教学重点、难点】

1. 理解相似三角形的定义与性质定理. 2.掌握以下定理的证明:(1)直角三角形射影定理;(2)圆周角定理;(3)圆的切线判定定理与性质定理;(4)相交弦定理;(5)圆内接四边形的性质定理与判定定理(6)切割线定理

三【教学过程】

第一讲 相似三角形的判定及有关性质

以“平行线分线段成比例定理”为起点,给出相似三角形定义后,逐步讨论相似三角形的判定定理、性质定理等等,其中,基本数学思想是比例及其性质的应用; 第1课时.基础知识:

平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段_________.推论1: 经过三角形一边的中点与另一边平行的直线必______________。推论2: 经过梯形一腰的中点,且与底边平行的直线________________。例题选讲:

例1 已知:线段AB

求作:线段AB的三等分点 作法:

1、作射线AC2、在射线AC上顺次截取AD=DE=EF

3、连结BF4、过点D、E分别作BF的平行线分别交AB于点L、K

点L、K为所求的三等分点

作业练习:课本P5习题1.1第2课时.基础知识:

平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例。推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段____________。例题选讲:

例1 如图D在AB上,DE∥BC,DF∥AC,AE=4,EC=2,BC=8.求BF和CF的长.例

2、如图,已知DE//BC,EF//CD,求AD是AB和AF的比例中项。

例3平行于三角形一边且和其他两边相交的直线截三角形,所截得的三角形的三边与原三角形的三边对应成比例。

作业练习:课本P9-10习题1.2第3、4课时.[复习提问]

1.什么叫相似三角形?什么叫相似比?

定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似三角形对应边的比K,叫做相似比(或相似系数). [讲解新课]

我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有

三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?

基础知识:

预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原

三角形相似.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.

.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于_______;

相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_________________; 相似三角形面积的比、外接圆的面积比都等于____________________;

例6如图,锐角△ABC,BC=24cm,BC边上的高AD=12cm.要把它加工成正方形,如图,求

简单说成:两角对应相等,两三角形相似.

判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.

简单说成:两边对应成比例且夹角相等,两三角形相似.

判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

可以简单说成:三边对应成比例,两三角形相似。例题选讲:

例2圆内接△ ABC的角平分线CD延长线交圆于一点E。求证: EBDB

EC

CB

这个正方形的边长。Q

D M C

例4已知: D、E、F分别是△ABC三边的中点, 求证: ΔDEF∽ △ABC

基础知识:

定理(1)有一个锐角对应相等的两个直角三角形相似

(2)如果两个直角三角形两条直角边对应成比例那么这两个三角形相似

作业练习:课本P19-20习题1.3第5课时..直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项; 两直角边分别是它们在斜边上_______与_________的比例中项。作业练习:课本P22习题1.4第二讲 直线与圆的位置关系(共5课时)

以“圆周角定理”和“圆的切线概念”为起点,采用从特殊到一般的思想方法,得出圆内接四边形的性质和判定定理的猜想及其证明,圆的切线的性质和判定的有关定理 基础知识:

1.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半。圆心角定理:圆心角的度数等于_______________的度数。

推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______。

o

推论2:半圆(或直径)所对的圆周角是_______;90的圆周角所对的弦是________。弦切角定理:弦切角等于它所夹的弧所对的______________。2.圆内接四边形的性质定理与判定定理:

圆的内接四边形的对角_______;圆内接四边形的外角等于它的内角的_________

。如果一个四边形的对角互补,那么这个四边形的四个顶点__________;

如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________。

3.切线的性质定理:圆的切线垂直于经过切点的__________。

推论:经过圆心且垂直于切线的直线必经过________;经过切点且垂直于切线的直线必经过______。

切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的__________。

4.相交弦定理:圆内两条相交弦,________________________________的积相等。

割线定理:从圆外一点引圆的两条割线,________________________________的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是________________________________的比例中项。切线长定理:从圆外一点引圆的两条切线,它们的切线长_____;圆心和这点的连线平分_______的夹角。、例题选讲:

例1已知:如图,AD是△ABC的高,AE是ABC的外接圆直径。求证:AB.AC=AE.AD

作业练习:课本P26习题2.1例1:如图⊙O1与⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2 交于

点D。经过点B的直线EF与⊙O1 交于点E,与⊙O2 交于点F。

求证:CE∥DF

例2:如图,CF是△ABC的AB边上的高

PFBC,FQAC

E

例2如图,AB与CD相交于一点P。求证:AD的度数与BC的度数和的一半等于∠APD的度数.B

F

求证:A,B,P,Q四点共圆.A

作业练习:课本P30习题2.2例1已知: 如图,AB是⊙O的直径,⊙O过BC的中点D,DE⊥AC,求证:DE是⊙O的切

线。

E

例2已知: 如图,AB是⊙O的直径,C为⊙O上一点,AD和过C点的切线垂直,垂足为D。

求证:AC平分

作业练习:课本P32习题2.3例 1已知:如图,AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD⊥CE,垂足为D。试说明AC平分∠BAD。

EC

D

作业练习:课本P34习题2.4例 1已知:如图圆内两条相交弦AB,CD相交于圆内一点P,PA=PB=4,PC

PD求CD的长。

A

D

例 2如图E是圆内两条相交弦AB,CD

AD的延长线与F,FG切圆于G。求证:(1)ΔDEF

∽ △EFA;(2)EF=FG

B

F例 4如图AB是⊙O的直径,过A,B引两条弦AD和BE,相交点C.B

求证:ACADBC

BEAB

作业练习:课本P40习题2.5四.【小结】

几何证明选讲有助于培养学生的逻辑推理能力,在几何证明的过程中,不仅是逻辑演绎的程序,它还包含着大量的观察、探索、发现的创造性过程。本专题从复习相似图形的性质入手,证明一些反映圆与直线关系的重要定理,提高学生运用综合几何方法解决问题的能力。

五、【布置作业】

1如图所示,圆O上一点C在直径AB上的射影为D,CD4,BD8,则圆O的半径等于.1题图

2.如图,从圆O外一点P作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠。

43.如图所示,圆O上一点C在直径AB上的射影为D,CD4,BD8,则圆O的半径等于.3题图

4.如图,从圆O外一点P作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠

第三篇:几何证明选讲专题

几何证明选讲

几何证明选讲专题

一、基础知识填空:

1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段_________.推论1: 经过三角形一边的中点与另一边平行的直线必______________.推论2: 经过梯形一腰的中点,且与底边平行的直线________________.2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段___________.3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______;相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_______________; 相似三角形面积的比、外接圆的面积比都等于____________________;

4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;两直角边分别是它们在斜边上_______与_________的比例中项.5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半.圆心角定理:圆心角的度数等于_______________的度数.推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______.o推论2:半圆(或直径)所对的圆周角是____;90的圆周角所对的弦是________.弦切角定理:弦切角等于它所夹的弧所对的______________.6.圆内接四边形的性质定理与判定定理:

圆的内接四边形的对角______;圆内接四边形的外角等于它的内角的_____.如果一个四边形的对角互补,那么这个四边形的四个顶点______;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________.7.切线的性质定理:圆的切线垂直于经过切点的__________.推论:经过圆心且垂直于切线的直线必经过_______;经过切点且垂直于切线的直线必经过______.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.8.相交弦定理:圆内两条相交弦,_____________________的积相等.割线定理:从圆外一点引圆的两条割线,_____________的两条线段长的积相等.切割线定理:从圆外一点引圆的切线和割线,切线长是__________的比例中项.切线长定理:从圆外一点引圆的两条切线,它们的切线长____;

圆心和这点的连线平分_____的夹角.二、经典试题:

1.(梅州一模文)如图所示,在四边形ABCD中,EFFG+=. EF//BC,FG//AD,则D BCAD

C

2.(广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于

点F,若△AEF的面积为6cm2,则△ABC的面积为

B cm2.

3.(广州一模文、理)如图所示,圆O上

一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.

4.(深圳二模文)如图所示,从圆O外一点P 作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__ 第1页

5.(广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(广东文、理)如图所示,圆O的直径

AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点 D、E,则∠DAC=,线段AE的长为

三、基础训练: 1.(韶关一模理)

如图所示,PC切⊙O于

点C,割线

PAB经过圆心O,弦CD⊥AB于 点E,PC=4,PB=8,则CD=________.2.(深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知AD=

AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(东莞调研文、理)如图所示,圆O上一

点C

在直径AB上的射影为D,CD=4,则圆O的半径等于.

4.(韶关调研理)如图所示,圆O是

△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.5.(韶关二模理)如图,⊙O′和

⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.

6.(广州二模文、理)如图所示, 圆的内接

△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N7.(湛江一模文)如图,四边形ABCD内接

于⊙O,BC是直径,MN切⊙O于A,∠MAB=25则∠D=___.8.(湛江一模理)如图,在△ABC中,D 是AC的中点,E是BD的中点,AE交BC

BF=于F,则

FC

第2页

9.(惠州一模理)如图:EB、EC是⊙O的两

条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.10.(汕头一模理)如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(佛山一模理)如图,AB、CD是圆O的两条弦,C

且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为.

12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若 AD=5,BC=7,则GH=________.13.如图,圆O上一点C在直径AB上的射影为D.C

AD=2,AC= 25,则AB=____

14.如图,PA是圆的切线,A为切点,PBC是圆的 割线,且PB=

B

1PABC,则的值是________.2PB

15.如图,⊙O的割线PAB交⊙O于A、B两点,割线

PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____O的半径是_______.3答 案

二、经典试题:

1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基础训练:

243

.5.3..3.5.4.4,522116..7.115o.8..9.99O.10.4.25

11..12.1.13.10,4.14..15.4, 8.1.第3页

第四篇:几何证明选讲

几何证明选讲

2007年:

15.(几何证明选讲选做题)如图4所示,圆O的直径AB6,C为圆周上一点,BC3,过C作圆的切线l,过A作l的 垂线AD,垂足为D,则DAC

A

2008年:

15.(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R=

4l

2009年:

15.(几何证明选讲选做题)如下图,点A、B、C是圆O上的点,且AB=4,ACB30,则圆O的面积等于

o

2010年:

14.(几何证明选讲选做题)如上图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=

a,点E,F分别为线段AB,AD的中点,则EF=2

2011年:

15.(几何证明选讲选做题)如图,在梯形ABCD中,AB//CAD,B4,CD2,分别为E,F,上的点,且ADBC,

3EF,EFAB

则梯形ABFE与梯形EFCD的面积比为

A

2012年:

15.(几何证明选讲选做题)如图3,直线PB与圆O相切与点B,D是弦AC上的点,PBADBA,若ADm,ACn,则AB

图3

2013年:

15.(几何证明选讲选做题)如图3,在矩形ABCD

中,ABBC3,BEAC,垂足为E,则ED

图3

第五篇:几何证明选讲专题)

几何证明选讲专题1.了解平行线截割定理,会证直角三角形射影定理.2.会证圆周角定理、圆的切线的判定定理及性质定理.3.会证相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.一、基础知识填空:

1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段 推论1: 经过三角形一边的中点与另一边平行的直线必______________.推论2: 经过梯形一腰的中点,且与底边平行的直线________________.2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段___________.3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______;相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_________________; 相似三角形面积的比、外接圆的面积比都等于____________________;

4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;两直角边分别是它们在斜边上_______与_________的比例中项.5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半.圆心角定理:圆心角的度数等于_______________的度数.推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______.推论2:半圆(或直径)所对的圆周角是____;90o的圆周角所对的弦是________.弦切角定理:弦切角等于它所夹的弧所对的______________.6.圆内接四边形的性质定理与判定定理:

圆的内接四边形的对角______;圆内接四边形的外角等于它的内角的_____.如果一个四边形的对角互补,那么这个四边形的四个顶点______;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________.7.切线的性质定理:圆的切线垂直于经过切点的__________.推论:经过圆心且垂直于切线的直线必经过_______;经过切点且垂直于切线的直线必经过______.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.8.相交弦定理:圆内两条相交弦,_____________________的积相等.割线定理:从圆外一点引圆的两条割线,_____________的两条线段长的积相等.切割线定理:从圆外一点引圆的切线和割线,切线长是__________的比例中项.切线长定理:从圆外一点引圆的两条切线,它们的切线长____;圆心和这点的连线平分_____的夹角.二、经典试题:

1.(梅州一模文)如图所示,在四边形ABCD中,EF//BC,FG//AD,则

EFBC+FG

AD

= D

2.(广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于

点F,若△AEF的面积为6cm2,则△ABC的面积为

2. B

第1页

3.(广州一模文、理)如图所示,圆O上

一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.

4.(深圳二模文)如图所示,从圆O外一点P 作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__

5.(广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(广东文、理)

如图所示,圆O的直径

AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线

AD,AD分别与直线l、圆交于点 D、E,则∠DAC=,线段AE的长为

三、基础训练:

1.(韶关一模理)如图所示,PC切⊙O于

点C,割线PAB经过圆心O,弦CD⊥AB于

点E,PC=4,PB=8,则CD=________.2.(深圳调研文)如图所示,从圆O外一点A

引圆的切线AD和割线ABC,已知AD=,AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(东莞调研文、理)如图所示,圆O上一

点C在直径AB上的射影为D,CD=4,则圆O的半径等于.

4.(韶关调研理)如图所示,圆O是

△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.

5.(韶关二模理)如图,⊙O′和

⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.

6.(广州二模文、理)如图所示, 圆的内接

△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段

N 7.(湛江一模文)如图,四边形ABCD内接

于⊙O,BC是直径,MN切⊙O于A,∠MAB=250,则∠D=___.8.(湛江一模理)如图,在△ABC中,D 是AC的中点,E是BD的中点,AE交BC

D

于F,则

BFFC=.9.(惠州一模理)如图:EB、EC是⊙O的两 条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.C

10.(汕头一模理)如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(佛山一模理)如图,AB、CD是圆O的两条弦,且AB是线段CD的中垂线,已知AB=6,CD=2,则线段AC的长度为. C

12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若

AD=5,BC=7,则GH=________.BC

13.如图,圆O上一点C在直径AB上的射影为D.AD=2,AC= 2,则AB=______,CD=_____.14.如图,PA是圆的切线,A为切点,PBC是圆的第2页

割线,且PB=12BC,则PA

PB的值是________.15.如图,⊙O的割线PAB交⊙O于A、B两点,割线

PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____⊙O

3的半径是_______.答 案

二、经典试题:

1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基础训练:

1.245.3.5.4.4,2.5.3.6.21

5.7.115o.8.12.9.99O.10.4.11.30.12.1.13.10,4.14.3.15.4, 8.1.如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作 圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC =()A.15B.30C.45D.60

2.在RtABC中,CD、CE分别是斜边AB上的高和中线,是该图中共有x个三角形与ABC相似,则x()A.0B.1C.2 D.33.一个圆的两弦相交,一条弦被分为12cm和18cm两段,另一弦被分为3:8,则另一弦的长为()A.11cmB.33cmC.66cmD.99cm

4.如图,在ABC和DBE中,ABDBBCBEACDE53,若ABC与

DBE的周长之差为10cm,则ABC的周长为()A.20cmB.254cmC.50

cm D.25cm

E 第4题图 5.O的割线PAB交O于A,B两点,割线PCD经过圆心,已知

PA6,PO12,AB2

2,则O的半径为()

A.4B

.6C.612.如图,用与底面成30角的平面截圆柱得一椭圆截线, D.8

6.如图,AB是半圆O的直径,点C在半圆上,CDAB于点D, 且AD3DB,设COD,则tan2

=()

A.13

B.1C.4D.3

7.在ABC中,D,E分别为AB,AC上的点,且DE//BC,ADE的面积是2cm2,梯形

DBCE的面积为6

cm,则DE:BC的值为()

A.B.1:2C.1:3D.1:

48.半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,一共可作()个.A.2B.3C.4D.5 9.如图甲,四边形ABCD是等腰梯形,AB//CD.由4个这样的 等腰梯形可以拼出图乙所示的平行四边形, 则四边形ABCD中A度数为()

第9题图

A.30B.45C.60D.75

10.如图,为测量金属材料的硬度,用一定压力

把一个高强度钢珠压向该种材料的表面,在材料表面 留下一个凹坑,现测得凹坑直径为10mm,若所 用钢珠的直径为26 mm,则凹坑深度为()

A.1mmB.2 mmC.3mmD.4 mm

第10题图

11.如图,设P,Q为ABC内的两点,且AP2AB1

5AC,AQ=

23AB+1

AC,则

ABP的面积与ABQ的面积之比为()

1A.5B.45C.11

4D.3

第11题图

第3页

则该椭圆的离心率为()A.1

B

2.3C.2

D.非上述结论 第12题图

13.一平面截球面产生的截面形状是_______;它截圆柱面所产生的截面形状是

________

14.如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且与BC相切于点B,与AC

O 

D

交于点D,连结BD,若BC=51,则AC=B

C

第 15.如图,14 题图

AB为O的直径,弦AC、BD交于点P,若AB3,CD1,则sinAPD=16.如图为一物体的轴截面图,则图中R的值是

第15题图

第16题图

17.如图:EB,EC是O的两条切线,B,C是切点,A,D是

O上两点,如果E46,

DCF32,试求A的度数.18.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O

上一点,AEAC,DE交AB于点F,且AB2BP4,求PF的长度.E

A FB O

C

D

P

第18题图

第17题图 19.已知:如右图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.

求证:(1)△ABC≌△DCB(2)DE·DC=AE·BD.

20.如图,△ABC中,AB=AC,AD是中线,P为AD上一点,CF∥AB,BP延长线交AC、CF于E、F,求证: PB2=PE•PF.

E

C

第19题图

第20题图

21.如图,A是以BC为直径的O上一点,ADBC于点D,过点B作圆O的切线,与CA的延长线相交于点E,G 是AD的中点,连结CG并延长与BE相交于 点F,延长AF与CB的延长线相交于点P.C

(1)求证:BFEF;(2)求证:PA是O(3)若FGBF,且O的半径长为求BD第21题图

第4页

22.如图1,点C将线段AB分成两.

部分,如果ACABBC

AC,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割

线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为SS11,S2,如果SS2

S,那么称直线l为该图形的黄1

金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?

(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?

(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图4,点E是ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是ABCD的黄金分割线.请你画一条ABCD的黄金分割线,使它不经过ABCD各边黄金分割点.第22题图

下载高二数学几何证明选讲考点分析word格式文档
下载高二数学几何证明选讲考点分析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高考几何证明选讲分析

    几何证明选讲1.(2010·陕西高考理科·T15)如图,已知RtABC的两条直角边AC,BC 的长分别为3cm,4cm,以AC为直径的圆与AB交于点D, 则BDDA【命题立意】本题考查几何证明选做题的解法,属......

    高三数学~几何证明选讲

    德智答疑 http://dayi.dezhi.com/shuxue 高三数学~~几何证明选讲1、外接圆的切线证明 [ 高三数学] 题型:探究题问题症结:找不到突破口,请老师帮我理一下思路考查知识点: 圆的切......

    2012高考数学几何证明选讲

    几何证明选讲模块点晴一、知识精要值叫做相似比(或相似系数)。由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比......

    高二文科数学选修4-1《几何证明选讲》

    欢迎光临《中学数学信息网》zxsx127@163.com高二文科数学选修4-1《几何证明选讲》班级_姓名座号1. 如图,在四边形ABCD中,EF//BC,FG//AD,则EFFG. BCAD2. 如图,EF∥BC,FD∥AB,AE=1.8c......

    高二数学选修4-1几何证明选讲练习

    高二数学选修4-1《几何证明选讲》综合复习题一、选择题:1.如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC =A.15B.30C.45D.6......

    几何证明选讲习题

    几何证明选讲已知正方形ABCD,E、F分别为BC、AB边上的点, 且BE=BF,BH⊥CF于H,连结DH. 求证:DH⊥EH.已知AD⊥BC于D,AE:ED=CD:BD,DF⊥BE于F, 求证:AF⊥CF.已知正方形ABCD,E为对角线AC上......

    几何证明选讲练习题

    选修4-1几何证明选讲综合练习题1.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC ,DE交AB于点F,且AB2BP4,(1)求PF的长度.(2)若圆F且与圆O内切,直线PT与圆F......

    高中数学几何证明选讲

    几何证明选讲1、(佛山市2014届高三教学质量检测(一))如图,从圆O 外一点A引圆的切线AD和割线ABC,已知AD3,AC3,圆O的半径为5,则圆心O 到AC的距离为. 答案:22、(广州市2014届高三1月调研测......