第一篇:平面向量在数学教学中的作用1
平面向量在数学教学中的作用
高中数学教材中对平面向量作了较系统的介绍,而且把它作为学习数学的基础来要求。其实,在国外,数学教育改革在中学数学课本中也引入平面向量知识,用向量的方法去解决几何、三角等问题,做了许多有益目的,那么在中学数学里引进平面向量到底有作有呢?
中学教材在内容上呈现注重,注意展示知识的过程,使学生在获取知识和运用知识的过程中,发展思维能力,思维品质,所学知识的理解。数学教学改革的方向新的方法降低教学的难度,教学质量。教材中的平面向量就能达到目的,它用了数学上的通性解法,而且在高等数学、物理学、工程学中都可应用。平面向量章,就来源而言,向量的概念来自对物理学中的力、速度、加速度类失量的。向量大小和方向,使的学生对数及其运算较为熟悉,而在学了向量后,思维得以开阔,看到可像数那样运算并且运算性质的还有别的。
这无疑可使学生增长知识,对数及其运算的认识更进了一步,更重要的是向量的几何及代数的双重身份,使得它是中学数学的交汇点,多项内容的媒介。向量的引入对解决许多问题有着应用价值,它是为专业课、技能课服务的数学工具,是为学习三角、复数、几何等打基础的。
1、向量在三角中的应用
用圆来推导三角函数的几何意义时,表示三角函数平面向量。向量的知识可以导出诱导公式。用向量解决问题时常常是从三角形入手的,这使它在三角里解决三角形的问题起了作用,最重要的证据教材中所用的余弦定理的证明:只要在向量三角形得出的关系式的两边平方就可用向量的运算性质得出要证的结论,它比用综合法的证明要简方便得多。
例1.试证:cos()coscossinsin.
证明:设向量(cos,sin),(cos,sin),∴coscossinsin.
设向量AB与CD的夹角为,则coscos().
由coscoscossinsin,即得cos()coscossinsin.
2、向量在代数中的应用
复数的几何意义,在复平面上可以用向量来表示复数。复数的加减法,就可以看成是向量的加减,复数的乘除法可以用向量的旋转和数乘向量,学了向量,事实上已学习了复数的实质性内容。变选学内容也就不难理解了。向量所用的数形对应也可用来证明代数中的恒等式、不等式问题,只要有数模型,可以较灵活地给出证题方法。
例2.已知ab2ba21,求证:ab1. 2
2证明:设向量(a,a2),CD(b2,b),且设向量AB与CD的夹角为,∴||||cos1. 又∵||||1,∴cos1,即0. ∴ABCD,∴ab2,即ab1. 22
说明:本题中可把已知条件看作两向量的数量积的坐标表示,由此构造出向量(a,a2),(b2,b)是解决本题的关键,本题也可以利用恒等变形或三角代换等证法,但都不及引入向量,然后运用向量的数量积证明简便.
例3.求函数f(x)5x6x的最大值及相应的x的值.
解:设向量a5,1,bx,6x,
则f(x)a·b|a|·|b|16,当且仅当b=ka(k0)时取等号,∴
∴x5时,fx有最大值为6. x6x,13、向量在几何中的应用
在解决几何中的度量、角度、平行、垂直等问题时用向量解决也很方便。又平面向量可以推广到空间用来解决立体几何问题。例如在空间直线和平面这部分内容中,解决平行、相交、包含计算夹角、距离等问题用传统的方法往往较为
繁琐,但只要引入向量,向量的线性运算及向量的积以后,一切都归结为数字式符号运算。运算都有法则可循,比传统的方法要容易得多。
例4如图,三棱锥PABC中,底面ABC
为边长为
正三角形,平面PBC
为平面ABC,PBPC2,DAP上一点,AD2DP,O为底面三角形的中心。
(Ⅰ)求证:DO∥平面PBC;
求证:BDAC;
(Ⅲ)设M为PC的中点,求二面角MBDO的余弦值。
解(Ⅰ)略(Ⅱ)略
(Ⅲ)由(Ⅰ)(Ⅱ)知,EA,EB,EP两两互相垂直,且E为BC中点,分别以EA,EB,EP所在直线为x,y,z轴,建立如图空间直角坐标系,则21A(3,0,0),BP(0,0,1),D(1,0,),C(0,M(0,)……9分
3212∴BM(0,),DB(),223
2nDBxz03设平面BDM的法向量为n(x,y,z),则,nBMy1z022
令y
1,则n(.……………………10分
由(Ⅱ)知AC平面DBO,∴ACDBO为平面的法向量,又AC(30),nAC∴cosn,AC,31|n||AC|由图可知,二面角MBD
O的余弦值为 ……………12分 314、向量在平面解析几何中的应用
向量是有向线段,本身是有向直线上的一段,且向量的坐标可以用起点、终点的坐标来表示,使向量与平面解析几何联系起来。平面直角坐标系内两点间的距离公式,平面内的向量的长度公式;分一条线段成定比的分点坐标,可以用两
个向量的坐标直接求得;用直线的方向向量表示直线方向比直线的斜率更好,且斜率是方向向量在 a = 0时的特殊情形。向量的平移也可用来化简二次曲线,即移动图形的变换来化简二次曲线的目的,这与解析几何中移轴变换是同样的。
B两点,B例5.过抛物线y22px(p0)的焦点F的直线与抛物线相交于A、自A、D,求证:CFD90. 向准线作垂线,垂足分别为C、
p,0),同时设A、B两点的纵坐标分别为y1,y2,则y1y2p2. 2
pp∵C(,y1),D(,y2),∴FC(p,y1),FD(p,y2)22证明:显然F(∴· FDp2y1y2p2p20.∴.∴FCFD,即CFD90.
说明:用向量垂直的充要条件处理解析几何中的垂直问题,可以化繁为简,使知识前后联系,融汇贯通,从而提高解题质量. 总之,平面向量渗透到中学数学的许多,向量法代替传统教学方法已成为现代数学发展的趋势。向量法是值得学生花费精力去学习的新的方法,学好向量知识有助于理解和与之关联的学科。在职中数学教学中向量章的教学,为更好地学习其它知识做了必要的准备工作,因此就显得尤为重要。但传统教学思想对向量抵触,许多教者在向量法教学中削弱了学生的空间想象能力,且学生初学向量时较为难懂,这就要求,找出最佳的教和学的方法,向量的作用,使向量成为真正地现代数学的基础。
第二篇:平面向量在高中数学教学中的作用
平面向量在高中数学教学中的作用
平面向量是高中数学引入的一个新概念.利用平面向量的定义、定理、性质及有关公式,可以简化解题过程,便于学生的理解和掌握.向量运算主要作用可以提高学生针对数学运算的理解层次,本身这个运算学生总最初接触运算都是数与数之间的运算,而加入向量运算之后,向量运算涉及到数学元素更高,比如说实数、字母、甚至向量,甚至还可以把几何图形加入运算当中,这本身对数学层次更大的一个提高。而且向量运算对数学的思想也体现的比较多,就是在解析几何当中,或者是在平面几何当中,向量应用确实很方便,一个运算既有代数意义又有几何意义,但是到了立体几何的话,我觉得向量运算仅仅就变成算术了,算术对立体几何本意还是没有有一点想像,就是它到底人学生重点掌握什么,掌握运算还是掌握思维和想像。
一、向量在代数中的应用
根据复数的几何意义,在复平面上可以用向量来表示复数。这样复数的加减法,就可以看成是向量的加减,复数的乘除法可以用向量的旋转和数乘向量得到,学了向量,复数事实上已没有太多的实质性内容。因而变选学内容也就不难理解了。另外向量所建立的数形对应也可用来证明代数中的一些恒等式、不等式问题,只要建立一定的数模型,可以较灵活地给出证题方法。
二、向量在三角中的应用
当我们利用单位圆来研究三角函数的几何意义时,表示三角函数就是平面向量。利用向量的有关知识可以导出部分诱导公式。由于用向量解决问题时常常是从三角形入手的,这使它在三角里解决有关三角形的问题发挥了重要作用,一个最有力的证据就是教材中所提供的余弦定理的证明:只要在根据向量三角形得出的关系式的两边平方就可利用向量的运算性质得出要证的结论,它比用综合法提供的证明要简便得多。
三、向量在平面解析几何中的应用
由于向量作为一种有向线段,本身就是有向直线上的一段,且向量的坐标可以用起点、终点的坐标来表示,使向量与平面解析几何特别是其中有关直线的部分保持着一种天然的联系。平面直角坐标系内两点间的距离公式,也就是平面内相应的向量的长度公式;分一条线段成定比的分点坐标,可根据相应的两个向量的坐标直接求得;用直线的方向向量(a , b)表示直线方向比直线的斜率更具有一般性,且斜率实际是方向量在 a = 0时的特殊情形。另外向量的平移也可用来化简二次曲线,即通过移动图形的变换来达到化简二次曲线的目的,实际上与解析几何中移轴变换达到同样的效果。
四、向量在几何中的应用
在解决几何中的有关度量、角度、平行、垂直等到问题时用向量解决也很方便。特别是平面向量可以推广到空间用来解决 立体几何问题。例如在空间直线和平面这部分内容光焕发中,解决平行、相交、包含以及计算夹角、距离等问题用传统的方法往往较为繁琐,但只要引入向量,利用向量的线性运算及向量的数量积和向量积以后,一切都归结为数字式符号运算。这些运算都有法则可循,比传统的方法要容易得多
总之,平面向量已经渗透到中学数学的许多方面,向量法代替传统教学方法已成为现代数学发展的必然趋势。向量法是一种值得学生花费时间、精力去掌握的一种新生方法,学好向量知识有助于理解和掌握与之有关联的学科。因此在职中数学教学中加强向量这一章的教学,为更好地学习其它知识做好必要的准备工作就显得尤为重要。但传统教学思想对向量抵触较大,许多教者认为向量法削弱了学生的空间想象能力,且学生初学向量时接受较为困难,这就要求我们不断探索,找出最佳的教和学的方法,发挥向量的作用,使向量真正地面为现代数学的基础。
第三篇:2014高考数学复习:平面向量
高考数学内部交流资料【1--4】
2014高考数学复习:平面向量
一选择题(每题5分,共50分)
1.向量﹒化简后等于()
A.AMB.0C.0D.AC
2.下面给出的关系式中,正确的个数是()
10·=0○2 ·=·○
3○4○25ab a
A.0B.1C.2D.3 3.对于非零向量a.b,下列命题中正确的是()
A.ab0 a0或b0B//在上的投
影为。C.D.acbcab
4.已知=5,2,=4,3,=x,y.若-2+3=.则等于()A.1,B.28
3138134134,C.,D., 333333
1AB()25已知2,4,2,6,A.(0,5)B.(0,1)C.(2,5)D.(2,1)6e1.e2是平面内的一组基底,则下列四组向量中,不能作为一组基底的是()
A.e1 和e1e2B.e1—2e2和e22e1 C.e1—2e2和4e22e1 D.e1e2和e1—e2 7已知ABC中ABAC>0,则ABC的形状是()
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定 8已知1,0,1,1,且k恰好与垂直,则实数k的值是()
A.1B.—1C.1或—1D.以上都不对
9.已知=,2,3,5,且与的夹角是钝角,则的范围是()
A.10101010B.C.D. 3333
10.已知,是夹角为60的两个单位向量,则2,3的夹角是()A.30B.60C.120D.150
二.填空题(每题5分,共25分)
11.若a6,8,则与a平行的单位向量是12.若向量,12且与的夹角为13.
1
2,0,则与的夹角为
=3
14.设e1.e2为两个不共线的向量,若e1e2与2e13e2与共线,则15已知平面内三点A.B.C34
5,则的值等于三.解答题(共75分)
16(12分)已知向量a3e12e2,b4e1e2其中e11,0,e20,1求:(1),(2)与夹角的余弦值。
17(12分).已知向量3,4,2,x,2,y且//,求:(1)x,y的值;(2的值
18.(12分)已知向量sinx,1,cosx,1(1)当a//b时,求cosxsinxcosx的值;(2)求f(x)=的最小正周期及最值。
19.(12分)已知2,24,36(其中,是任意两个不共线
向量),证明:A.B.C三点共线。
20.(13分)已知ABC中,A5,1,B1,7,C1,2.求(1)BC边上的中线AM的长;(2)cosABC的值
21.(14
32,的夹角为60,c3a5b,dma3b;(1)当m为何值时,c与d垂直?(2)当m为何值时,c与d共线?
第四篇:数学平面向量课后题
数学的必修四便会学习到平面向量,这和物理必修一的内容也有一定的相关性,所以,我们更应该学好这一知识点。分享了数学平面向量的课后题及答案,一起来看看吧!
一、选择题
1.已知向量OA→=(3,-4),OB→=(6,-3),OC→=(2m,m+1).若AB→∥OC→,则实数m的值为()
A.-3 B.-17
C.-35 D.3
5解析 AB→=OB→-OA→=(3,1),因为AB→∥OC→,所以3(m+1)-2m=0,解得m=-3.答案 A
2.已知|a|=|b|=2,(a+2b)(a-b)=-2,则a与b的夹角为()
A.π6 B.π
3C.π2 D.2π3
解析 由(a+2b)(a-b)=|a|2+ ab-2|b|2=-2,得ab=2,即|a||b|cos〈a,b〉=2,cos〈a,b〉=12.故〈a,b〉=π3.答案 B
3.平面向量a=(1,2),b=(4,2),c=ma+b(m∈R),且c与a的夹角等于c与b的夹角,则m=()
A.-2 B.-
1C.1 D.
2解析 ∵a=(1,2),b=(4,2),∴c=m(1,2)+(4,2)=(m+4,2m+2).又∵c与a的夹角等于c与b的夹角,∴cos〈c,a〉=cos〈c,b〉.∴ca|c||a|=cb|c||b|.即5m+85|c|=8m+2025|c|,解得m=2.答案 D
4.)若向量a,b满足:|a|=1,(a+b)⊥a,(2a+b)⊥b,则|b|=()
A.2 B.2
C.1 D.22
解析 ∵(a+b)⊥a,|a|=1,∴(a+b)a=0,∴|a|2+ab=0,∴ab=-1.又∵(2a+b)⊥b,∴(2a+b)b= 0.∴2ab+|b|2=0.∴|b|2=2.∴|b|=2,选B.答案 B
5.设△ABC的三个内角为A,B,C,向量m=(3sinA,sinB),n=(cosB,3cosA),若mn=1+cos(A+B),则C=()
A.π6 B.π3
C.2π3 D.5π6
解析 依题意得 3sinAcosB+3cosAsinB=1+cos(A+B),3sin(A+B)=1+cos(A+B),3sinC+cosC=1,2sinC+π6=1,sinC+π6=12.又π6 6.在平面上,AB1→⊥AB2→,|OB1→|=|OB2→|=1,AP→=AB1→+AB2→.若|OP→|<12,则|OA→|的取值范围是() A.0,52 B.52,72 C.52,2 D.72,2 解析 由题意得点B1,B2在以O为圆心,半径为1的圆上,点P在以O为圆心半径为12的圆内,又AB1→⊥AB2→,AP→=AB1→+AB2→,所以点A在以B1B2为直径的圆上,当P与O点重合时,|OA→|最大为2,当P在半径为12的圆周上,|OA→|最小为72.∵P在圆内,∴|OA→|∈72,2.答案 D 二、填空题 7.已知向量a,b满足|a|=1,b=(2,1),且λ a+b=0(λ∈R),则|λ|=________.解析 |b|=22+12=5,由λa+b=0,得b=-λa,故|b|=|-λa|=|λ||a|,所以|λ|=|b||a|=51=5.答案 58.在△ABC中,BO为边AC上的中线,BG→=2GO→,若CD→∥AG→,且AD→=15AB→+λAC→(λ∈R),则λ的值为________. 解析 因为CD→∥AG→,所以存在实数k,使得CD→=kAG→.CD→=AD→-AC→=15AB→+(λ-1)AC→,又由BO是△ABC的边AC上的中线,BG→=2GO→,得点G为△ABC的重心,所以AG→=13(AB→+AC→),所以15AB→+(λ-1)AC→=k3(AB→+AC→),由平面向量基本定理可得15=k3,λ-1=k3,解得λ=65.答案 65 9.在△ABC所在的平面上有一点P满足PA→+PB→+PC→=AB→,则△PBC与△ABC的面积之比是________. 解析 因为PA→+PB→+PC→=AB→,所以PA→+PB→+PC→+BA→=0,即PC→=2AP→,所以点P是CA边上靠近A点的一个三等分点,故S△PBCS△ABC=PCAC=23.答案 2 3三、解答题 10.已知向量AB→=(3,1),AC→=(-1,a),a∈R (1)若D为BC中点,AD→=(m,2),求a,m的值; (2)若△ABC是直角三角形,求a的值. 解(1)因为AB→=(3,1),AC→=(-1,a),所以AD→=12(AB→+AC→)=1,1+a2.又AD→=(m,2),所以m=1,1+a=2×2,解得a=3,m=1.(2)因为△ABC是直角三角形,所以A=90°或B=90°或C=90°.当A=90°时,由AB→⊥AC→,得3×(-1)+1a=0,所以a=3; 当B=90°时,因为BC→=AC→-AB→=(-4,a-1),所以由AB→⊥BC→,得3×(-4)+1(a-1)=0,所以a=13; 当C=90° 时,由BC→⊥AC→,得-1×(-4)+a(a-1)=0,即a2-a+4=0,因为a∈R,所以无解. 综上所述,a=3或a=13.11.在△ABC中,已知2AB→AC→=3|AB→||AC→|=3BC→2,求角A、B、C的大小. 解 设BC=a,AC=b,AB=c.由2AB→AC→=3|AB→||AC→|,得2bccosA=3bc,所以cosA=32.又A∈(0,π),因此A=π6.由3|AB→||AC→|=3BC→2,得cb=3a2.于是sinCsinB=3sin2A=34.所以sinCsin5π6-C=34.sinC12cosC+32sinC=34,因此2sinCcosC+23sin2C=3,sin2C-3cos2C=0,即2sin2C-π3=0.由A=π6知0 1.已知正三角形ABC的边长为1,点P是AB边上的动点,点Q是AC边上的动点,且AP→=λAB→,AQ→=(1-λ)AC→,λ∈R,则BQ→CP→的最大值为() A.32 B.-32 C.38 D.-38 解析,BQ→CP→=(BA→+AQ→)(CA→+AP→)=[BA→+(1-λ)AC→](CA→+λAB→)=AB→AC→-λAB→ 2-(1-λ)AC→2+λ(1-λ)AB→AC→=(λ-λ2+1)×cos60°-λ+λ-1=-12λ-122-38,0≤λ≤1,所以当λ=12时,BQ→CP→的最大值为-38,选D.答案 D 2.已知两个不相等的非零向量a,b,两组向量x1,x2,x3,x4,x5和y1,y2,y3,y4,y5均由2个a和3个b排列而成.记S=x1y1+x2y2+x3y3+x4y4+x5y5,Smin表示S所有可能取值中的最小值. 则下列命题正确的是________(写出所有正确命题的编号). ①S有5个不同的值; ②若a⊥b,则Smin与|a|无关; ③若a∥b,则Smin与|b|无关; ④若|b|>4|a|,则Smin>0; ⑤若|b|=2|a|,Smin=8|a|2,则a与b的夹角为π4.解析 对于①,若a,b有0组对应乘积,则S1=2a2+3b2,若a,b有2组对应乘积,则S2=a2+2b2+2ab,若a,b有4组对应乘积,则S3=b2+4ab,所以S最多有3个不同的值,①错误;因为a,b是不等向量,所以S1-S3=2a2+2b2-4ab=2(a-b)2>0,S1-S2=a2 +b2-2ab=(a-b)2>0,S2-S3=(a-b)2>0,所以S30,④正确;对于⑤,|b|=2|a|,Smin=4|a|2+8|a|2cosθ=8|a|2,所以cosθ=12,又θ∈[0,π],所以θ=π3,⑤错误.因此正确命题是②④.答案 ②④ 3.已知向量m=3sinx4,1,n=cosx4,cos2x4.(1)若mn=1,求cos2π3-x的值; (2)记f(x)=mn,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围. 解(1)mn=3sinx4cosx4+cos2x4 =32sin x2+12cosx2+12=sinx2+π6+12.又∵mn=1,∴sinx2+π6=12.cosx+π3=1-2sin2x2+π6=12,cos2π3-x=- cosx+π3=-12.(2)∵(2a-c)cosB=bcosC,由正弦定理得(2sinA-sinC)cosB=sinBcosC,∴2sinAcosB-sinCcosB=sinBcosC.∴2sinAcosB=sin(B+C). ∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0.∴cosB=12.又∵0 《平面向量》单元教学设计 武都区两水中学 王斌 向量是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系。 向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。 一、单元教学目标 本章主要包括平面向量的实际背景及基本概念、平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容。通过本章学习,应引导学生: 1.通过力和力的分析等实例,知道向量的实际背景,会运用平面向量和向量相等的含义,会向量的几何表示。 2.通过实例,会算向量加、减法的运算,并会求其几何意义。 3.通过实例,熟练运用向量数乘的运算,并解释其几何意义,以及两个向量共线的含义。 4.能说出向量的线性运算性质及其几何意义。5.知道平面向量的基本定理及其意义。6.掌握平面向量的正交分解及其坐标表示。7.会用坐标表示平面向量的加、减与数乘运算。8.解释用坐标表示的平面向量共线的条件。 9.通过物理中“功”等实例,说明平面向量数量积的含义及其物理意义。10.体会平面向量的数量积与向量投影的关系。 11.识记数量积的坐标表达式,会进行平面向量数量积的运算。 12.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。13.经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。 二、学习者特征分析 向量是近代数学中重要的和基本的概念之一,它是沟通代数几何与三角的一种工具。向量对学生来说是比较新的内容,学生对它的学习可以说是充满了探求的欲望,应当说能够使大部分学生在此章节的学习中体会到学习的成功乐趣。学生在学习本单元内容之前,已熟知了实数的运算体系,具备了物理知识.这都为学习向量准备好各方面条件.三、单元教材分析 本章共安排了5个小节及2个选学内容,大约需要12个课时,具体分配如下 2.1平面向量的实际背景及基本概念 2课时 2.2 向量的线性运算 2课时 2.3平面向量的基本定理及坐标表示 2课时 2.4平面向量的数量积 2课时 2.5平面向量应用举例 2课时 小结 2课时 本章知识结构如下: 1.第一节包括向量的物理背景与概念、向量的几何表示、相等向量与共线向量。教科书首先从位移、力等物理量出发,抽象出既有大小、又有方向的量——向量,并说明向量与数量的区别。然后介绍了向量的几何表示、有向线向量的长度(模)、零向量、单位向量、平行向量、相等向量、共线向量等基本概念。 2.第二节有向量加法运算及其几何意义、向量减法运算及其几何意义、向量数乘运算及其几何意义等内容。 教科书先讲了向量的加法、加法的几何意义、加法运算律;再用相反向量与向量的加法定义向量的减法,把向量的减法与加法统一起来,并给出向量减法的几何意义;然后通过向量的加法引入了实数与向量的积的定义,给出了实数与向量的积的运算律;最后介绍了两个向量共线的条件和向量线性运算的运算法则。 3.第三节包括平面向量基本定理、平面向量的正交分解及坐标表示、平面向量的坐标运算、平面向量共线的坐标表示。 平面向量基本定理是平面向量正交分解及坐标表示的基础。教科书首先通过一个具体的例子给出平面向量基本定理,同时介绍了基底、夹角、两个向量垂直的概念;然后在平面向量基本定理的基础上,给出了平面向量的正交分解及坐标表示,向量加、减、数乘的坐标运算和向量坐标的概念,最后给出平面向量共线的坐标表示。坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁。 4.第四节包括平面向量数量积的物理背景及其含义、平面向量数量积的坐标表示、模、夹角。 教科书从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示。向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题。 5.第五节包括平面几何中的向量方法、向量在物理中的应用举例。由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用。本节通过几个具体的例子说明了它的应用。 6.为了拓展学生的知识面,使学生了解向量及向量符号的由来,向量的运算(运算律)与几何图形形式的关系,本章安排了两个“阅读与思考”:向量几向量符号的由来,向量的运算(运算律)与图形性质。 四、教学中要注意的几个问题 1.突出向量的物理背景与几何背景 教科书特别注意从丰富的物理背景和几何背景中引入向量概念。在引言中通过日常生活中确定“位置”中的位移概念,说明学习向量知识的意义;在2.1节,通过物理学中的重力、浮力、弹力、速度、加速度等作为实际背景素材,说明它们都是既有大小又有方向的量,由此引出向量的概念;引出向量概念后,教科书又利用有向线段给出了向量的几何背景,并定义了向量的模、单位向量等概念。这样的安排,可以使学生认识到向量在刻画现实问题、物理问题以及数学问题中的作用,使学生建立起理解和运用向量概念的背景支持。 教科书借助几何直观,并通过与数的运算的类比引入向量运算,以加强向量的几何背景。 2.强调向量作为解决现实问题和数学问题的工具作用。 为了强调向量作为刻画力、速度、位移等现实中常见现象的有力的数学工具作用,本章特别注意联系实际。特别是在概念引入中加强与实际的联系。另外,向量也是解决数学问题的好工具,例如,和(差)角的三角函数公式、线段的定比分点公式、平面两点间距离公式、平移公式及正弦定理、余弦定理等都可以用向量为工具进行推导;向量作为沟通代数、几何与三角函数的桥梁,是一个很好的数形结合工具,教科书通过“平面几何中的向量方法”进行了介绍,并在第三章用向量方法来推导两角差的余弦公式。这些处理也都是为了体现向量作为基本的、重要的数学工具的地位。 3.强调向量法的基本思想,明确向量运算及运算律的核心地位。 向量具有明确的几何背景,向量的运算及运算律具有明显的几何意义,因此涉及长度、夹角的几何问题可以通过向量及其运算得到解决。另外,向量及其运算(运算律)与几何图形的性质紧密相联,向量的运算(包括运算律)可以用图形直观表示,图形的一些性质也可以用向量的运算(运算律)来表示。这样,建立了向量运算(包括运算律)与几何图形之间的关系后,可以使图形的研究推进到有效能算的水平,向量运算(运算律)把向量与几何、代数有机地联系在一起。 几何中的向量方法与解析几何的思想具有一致性,不同的只是用“向量和向量运算”来代替解析几何中的“数和数的运算”。这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果。如果把解析几何的方法简单地表述为 [形到数]——[数的运算]——[数到形],则向量方法可简单地表述为 [形到向量]——[向量的运算]——[向量和数到形]。 教科书特别强调了向量法的上述基本思想,并根据上述基本思想明确提出了用向量法解决几何问题的“三步曲”。为了使学生体会向量运算及运算律的重要性,教科书注意引导学生在解决具体问题时及时进行归纳,同时还明确使用了“因为有了运算,向量的力量无限;如果没有运算,向量只是示意方向的路标”的提示语。 4.通过与数及其运算的类比,向量法与坐标法的类比,建立相关知识的联系,突出思想性。 向量及其运算与数及其运算既有区别又有联系,在研究的思想方法上可以进行类比。这种类比可以打开学生讨论向量问题的思路,同时还能使向量的学习找到合适的思维固着点。为此,教科书在向量概念的引入,向量的线性运算,向量的数量积运算等内容的展开上,都注意与数及其运算(加、减、乘)进行类比。 5.引导学生用数学模型的观点看待向量内容 在向量概念的教学中,要利用学生的生活经验、其他学科的相关知识,创设丰富的情景,例如物理中的力、速度、加速度,力的合成与分解,物体受力做功等,通过这些实例是学生了解向量的物理背景、几何背景,引导学生认识向量作为描述现实问题的数学模型的作用。同时还要通过解决一些实际问题或几何问题,使学生学会用向量这一数学模型处理问题的基本方法。 6.加强向量与相关知识的联系性,使学生明确研究向量的基本思路 向量既是代数的对象,又是几何的对象。作为代数对象,向量可以运算,而且正是因为有了运算,向量的威力才得到充分的发挥;作为几何对象,向量可以刻画几何元素(点、线、面),利用向量的方向可以与三角函数发生联系,通过向量运算还可以描述几何元素之 4 间的关系(例如直线的垂直、平行等),另外,利用向量的长度可以刻画长度、面积、体积等几何度量问题。教学中,教师应当充分关注到向量的这些特点,引导学生在代数、几何和三角函数的联系中学习本章知识。 五、教学评价 对本单元的教学我主要通过以下几种方式进行: 1、通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定性的评价。 2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。 3、通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。 4、通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。第五篇:《平面向量》单元教学设计范文