2012高考总复习《走向清华北大》精品2

时间:2019-05-13 07:38:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2012高考总复习《走向清华北大》精品2》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2012高考总复习《走向清华北大》精品2》。

第一篇:2012高考总复习《走向清华北大》精品2

第二讲命题及其关系、充分条件与必要条件

班级________姓名________考号________日期________得分________

一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)

1.“红豆生南国,春来发几枝.愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这4句诗中,哪句可作为命题()

A.红豆生南国B.春来发几枝

C.愿君多采撷D.此物最相思

解析:因为命题是能判断真假的语句,它必须是陈述句,所以首先我们要凭借语文知识判断这4句诗哪句是陈述句,然后再看能否判定其真假.“红豆生南国”是陈述,意思是“红豆生长在中国南方”,这在唐代是事实,故本语句是命题;

“春来发几枝”中的“几”是概数,无法判断其真假,故不是命题;

“愿君多采撷”是祈使句,所以不是命题;

“此物最相思”是感叹句,故不是命题.答案:A

2.“|x-1|<2成立”是“x(x-3)<0成立”的()

A.充分而不必要条件B.必要而不充分条件

C.充分必要条件

解析:由|x-1|<2得-1

评析:如果p q,q⇒p,则p是q的必要不充分条件.3.“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的()

A.充分而不必要条件D.既不充分也不必要条件

B.必要而不充分条件

C.充要条件

D.既不充分也不必要条件

解析:当a=1时,直线x+y=0和直线x-ay=0互相垂直;当直线x+y=0和直线x-ay=0互相垂直时,有a=1.故选C.答案:C

评析:如果p⇒q,q⇒p,则p是q的充要条件.4.x<4的必要不充分条件是()

A.-2≤x≤2B.-2

C.0

解析:x<4即为-2

5.(精选考题·天津)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()

A.若f(x)是偶函数,则f(-x)是偶函数

B.若f(x)不是奇函数,则f(-x)不是奇函数

C.若f(-x)是奇函数,则f(x)是奇函数

D.若f(-x)不是奇函数,则f(x)不是奇函数

解析:否命题是既否定题设又否定结论.因此否命题应为“若函数f(x)不是奇函数,则f(-x)不是奇函数.”

答案:B

6.设p:x<-精选考题或x>精选考题;q:x<-2011或x>精选考题,则¬p是¬q的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

解析:∵p:x<-精选考题或x>精选考题;

q:x<-2011或x>精选考题,∴¬p:-精选考题≤x≤精选考题,¬q:-2011≤x≤精选考题.22

2∵∀x∈[-精选考题,精选考题],都有x∈[-2011,精选考题],∴¬p⇒¬q,而∃x0∈[-2011,精选考题],且x0  [-精选考题,精选考题],如x0=-精选考题.5,∴¬p是¬q的充分不必要条件.故选A.答案:A

二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)

7.(2011·江苏金陵中学三模)若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是____________________________.解析:x∉[2,5]且x∉{x|x<1或x>4}是真命题.由x2或x5,得1≤x<2,故x∈[1,2).1≤x≤4,答案:[1,2)

8.设p、r都是q的充分条件,s是q的充要条件,t是s的必要条件,t是r的充分条件,那么p是t的________条件,r是t的________条件.(用充分、必要、充要填空)

解析:由题意可画出图形:

由图形可看出p是t的充分条件,r是t的充要条件.答案:充分充要

9.令P(x):ax+3x+2>0,若对任意x∈R,P(x)是真命题,则实数a的取值范围是__________.解析:对任意x∈R,P(x)是真命题,就是不等式ax+3x+2>0对一切x∈R恒成立.(1)若a=0,不等式仅为3x+2>0不能恒成立.(2)若22a09,解得a>.898a0.8(3)若a<0,不等式显然不能恒成立.综上所述,实数a>

答案:a>9 8

10.已知p:log(|x|-3)>0,q:x-x+21>0,则p是q的________条件.6

解析:由log(|x|-3)>0可得0<|x|-3<1,解得30可得x<或x>, 63

1所以q:x<或x>.3由x-x+2

故p是q的充分不必要条件.答案:充分不必要

三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)

11.主人邀请张三、李四、王五三个人吃饭聊天,时间到了,只有张三、李四准时赴约,王五打电话说:“临时有急事,不能来了.”主人听了随口说了句:“你看看,该来的没有来.”张三听了,脸色一沉,起来一声不吭地走了,主人愣了片刻,又道了句:“哎哟,不该走的又走了.”李四听了大怒,拂袖而去.请你用逻辑学原理解释二人的离去原因.解:张三走的原因是:“该来的没有来”的逆否命题是“来了不该来的”,张三觉得自己是不该来的.李四走的原因:“不该走的又走了”的逆否命题是“该走的没有走”,李四觉得自己是应该走的.评析:利用原命题与逆否命题同真同假解题非常方便,要注意用心体会!

12.已知p:的取值范围.解:由x122≤2,q:x-2x+1-m≤0(m>0).若¬p是¬q的充分不必要条件,求实数m3x1≤2,得-2≤x≤10.3

“¬p”:A={x|x>10或x<-2}.由x-2x+1-m≤0,得1-m≤x≤1+m(m>0).∴“¬q”:B={x|x>1+m或x<1-m,m>0}.∵¬p是¬q的充分而不必要条件,∴AB.22

m0,结合数轴有1m≤10,解得0

评析:将充要条件问题用集合的关系来进行转化是解此类题目的关键.13.(精选考题·潍坊质检)设p:实数x满足x-4ax+3a<0,其中a>0,命题q:实数x满足2xx6≤0,2x2x80.22

(1)若a=1,且p∧q为真,求实数x的取值范围;

(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.解:先解不等式,把命题p,q具体化,第(1)问利用真值表求x;第(2)问由互为逆否命题等价确定p、q之间的关系,确定关于a的不等式,问题可解.(1)由x-4ax+3a<0得(x-3a)(x-a)<0,又a>0,所以a

当q为真时,实数x的取值范围是23},则03,所以实数a的取值范围是1

第二篇:2012高考总复习《走向清华北大》精品32

第三十二讲 一元二次不等式及其解法

班级________ 姓名________ 考号________ 日期________ 得分________

一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)

1.在R上定义运算⊙:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围为

()

A.(0,2)B.(-2,1)

D.(-1,2)C.(-∞,-2)∪(1,+∞)

解析:x⊙(x-2)=x(x-2)+2x+x-2<0⇒x2+x-2<0⇒-2

x+52.不等式2的解集是()(x-1)11-3,B.-3 A.22

111∪(1,3]D.-1∪(1,3] C.22

122x≤3,x+5≥2(x-1)x+5解析:≥2⇒⇒(x-1)x-1≠0x≠1.1-1∪(1,3].故选D.∴x∈2

答案:D

x>02,3.设函数f(x)=若f(-4)=f(0),xbxc,x≤0,2

f(-2)=0,则关于x的不等式f(x)≤1的解集为()

A.(-∞,-3]∪[-1,+∞)

B.[-3,-1]

C.[-3,-1]∪(0,+∞)

D.[-3,+∞)

b解析:由f(-4)=f(0),得函数f(x)=x2+bx+c(x≤0)的对称轴x=-2=-,所以b=4.f(-2

2)=0得c=4.x>0时-2≤1,不等式f(x)≤1等价于 2x≤0时x+4x+4≤1,

解得x>0或-3≤x≤-1.故选C.答案:C

44.不等式≤x-1的解集是()x-1

A.(-∞,-1]∪[3,+∞)

B.[-1,1)∪[3,+∞)

C.[-1,3]

D.(-∞,-3)∪(1,+∞)

x2-2x-3解析:原不等式化为0,由数轴标根法解得-1≤x<1或x≥3.x-1

答案:B

10,成立,则a的取值范围是()5.若不等式x2+ax+1≥0对于一切x∈2

A.a≥0

B.a≥-2 D.a≥-3 5C.a≥-2

1aa10,解析:设f(x)=x2+ax+1,则对称轴为x若-≥,即a≤-1时,则f(x)在2222

15上是减函数,应有f≥0⇒-≤a≤-1 22

1a0,上是增函数,应有f(0)=1>0恒成立,故a≥0 0,即a≥0时,则f(x)在22

aa2a2a1a2若0≤即-1≤a≤0,则应有f-2=+1=1-0恒成立,故-1≤a≤0.2242

45综上,有-a.2

答案:C

评析:考查一元二次不等式与函数相结合,利用函数的性质解不等式问题.

6.已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是()

A.-1

B.b>2 D.不能确定 C.b<-1或b>2

a解析:由f(1-x)=f(1+x),知f(x)的对称轴为x=1,故a=2.2

又f(x)开口向下,所以当x∈[-1,1]时,f(x)为增函数,f(x)min=f(-1)=-1-2+b2-b+1=b2-b-2,f(x)>0恒成立,即f(x)min=b2-b-2>0恒成立,解得b<-1或b>2.答案:C

二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)

7.若关于x的不等式ax2-6x+a2<0的解集是(1,m),则m=________.解析:根据不等式与方程之间的关系知1为方程ax2-6x+a2=0的根,即a2+a-6=0,解得a=2或a=-3,当a=2时,不等式ax2-6x+a2<0的解集是(1,2),符合要求;当a=-3时,不等式ax2-6x+a2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m=2.答案:2

8.(2009·青岛市模拟)已知不等式ax2+bx+a<0(ab>0)的解集是空集,则a2+b2-2b的取值范围是________.

解析:∵不等式ax2+bx+a<0(ab>0)的解集是空集,∴a>0,b>0,且Δ=b2-4a2≤0,∴b2≤4a2.4b22544b-2≥-.∴a+b-2b≥b-2b=4455522

4∞.∴a2+b2-2b的取值范围是5

4- 答案:5

9.(精选考题·西城模拟)已知二次函数f(x)的二次项系数为a,且不等式f(x)>0的解集为(1,2),若f(x)的最大值小于1,则a的取值范围是________.

解析:由题意知a<0,可设f(x)=a(x-1)(x-2)=ax2-3ax+2a,又a<0,∴f(x)max=8a2-(-3a)2-a2-a=<1,∴-4

答案:(-4,0)

x-110.(2009·石家庄质检一)若不等式m<0的解集为{x|x<3或x>4},则m的值为x+m

________.

x-1(1+m)x+m2-1解析:由+m<0,得,即当1+m<0时有(x+m-1)(x+m)>0,其x+mx+m

大根为1-m,小根为-m.1-m=4所以,推得m=-3,故填:-3.-m=3

答案:-3

三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)

11.已知函数f(x)=ax2+x-a,a∈R.17(1)若函数f(x)有最大值a的值; 8

(2)解不等式f(x)>1(a∈R).

11+4ax+2-解:(1)a≥0时不合题意,f(x)=a 2a4a

1+4a217当a<0时,f(x)有最大值,且-= 4a8

1解得a=-2或a=-.8

(2)f(x)>1,即ax2+x-a>1,(x-1)(ax+a+1)>0,①当a=0时,解集为{x|x>1};

1x+1+>0,②当a>0时,(x-1)a

1解集为{x|x>1或x<-1}; a

1③当a=-(x-1)2<0,解集为∅; 2

11x+1+<0,④当-a<0时,(x-1)a2

1解集为{x|1

11x+1+<0,⑤当a<-时,(x-1)a2

1解集为{x|-1-x<1}. a

ax-112.解关于x的不等式:x-a

1解:当a=0时,不等式化为->0,解得x<0; x

1xaax-a若a≠0,则原不等式可化为11当0; aa

x-1当a=1,解得x∈R且x≠1; x-1

11当a>1时,ax<或x>a; aa

1x-a若a<0,则不等式可化为x-a

11当a<-1时,a

当a=-1时,不等式可化为x+1<0,其解集为∅; x+1

11当-1,解得

1综上,当a<-1时,不等式解集为x|a

当a=-1时,不等式解集为∅;

当-1

a

当a=0时,不等式解集为{x|x<0};

当0

a;

当a=1时,不等式解集为{x|x∈R且x≠1}; 当a>1时,不等式解集为x|x<1

a或x>a.13.关于x的不等式组2

x-x-2>0,2x2+(2k+5)x+5k<0,取值范围.

解:原不等式组等价于x>2或x<-1,x+52(x+k)<0.x>2或x<-1,由题意知-k>5

25-2x<-k.又知解集内仅有一整数-2,所以-2<-k≤3,即-3≤k<2.的整数解的集合为{-2},求实数k的

第三篇:2012高考总复习《走向清华北大》精品31

第三十一讲 不等关系与不等式

班级________ 姓名________ 考号________ 日期________ 得分________

一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)

1.若a>b>0,则下列不等式中一定成立的是()

A.a+11b>baB.a11bb-a

bb

a+1

a+1D.2a+b

a+2bab

解析:由已知a>b>0及不等式的基本性质易得a+1b>b+1aA.答案:A

2.下列命题中,真命题有()

①若a>b>011

ab;

②若a>b,则c-2a

③若a>b,e>f,则f-ac

④若a>b,则11abA.1个B.2个C.3个D.4个

解析:①②为真命题,故选B.答案:B

3.(2011·潍坊市模拟)已知0

A.loga(xy)<0B.0

C.12

解析:由0logaa2=2,故选D.答案:D

4.已知a>b,则下列不等式一定成立的是()

A.lga>lgb

11C.abB.a2>b2 D.2a>2b

解析:只有指数函数y=2x在R上为增函数,所以D正确,而A、C显然不是对于一切实数都成立的,B的等价条件是|a|>|b|,显然也错误,故选D.答案:D

5.(2011·德州市模拟)若1

A.(-1,3)

C.(-3,3)B.(-3,6)D.(1,4)

解析:∵-4

cd6.(2009·菏泽市模拟)已知三个不等式:①ab>0;②bc-ad>0;③>0(其中a、b、c、ab

d均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是()

A.0

C.2B.1 D.3

1解析:若①②bc-ad)>0,ab

cd∴,故③成立; ab

cd若①③成立,则abab>0,∴bc-ad>0,故②成立;

若②③成立,即bc-ad>0,bc-ad>0,ab

∴ab>0,故①成立.

故正确命题的个数为3,应选D.答案:D

二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)

117.以下四个不等式:①a<0

件是________.

11解析:在①中:a<0,b>0,则; ab

11在②中:b; ba

11在④中:0; ba

11在③中:当b=-2,a=1 ab

答案:①②④

8.设函数f(x)=ax+b(0≤x≤1),则a+2b>0是f(x)>0在[0,1]上恒成立的________条件.(充分但不必要,必要但不充分,充要,既不充分也不必要)

f(0)>0b>0,解析:⇒ f(1)>0a+b>0.∴a+2b>0.而仅有a+2b>0,无法推出f(0)>0和f(1)>0同时成立.

答案:必要但不充分

9.若-1<a<b<1,-2<c<3则(a-b)·c的取值范围是________.

解析:∵-1<a<b<1,∴-2<a-b<0

∴2>-(a-b)>0

当-2<c<0时,2>-c>0,∴4>(-c)[-(a-b)]>0,即4>c·(a-b)>0;

当c=0时,(a-b)·c=0

当0<c<3时,0<c·[-(a-b)]<6

∴-6<(a-b)·c<0

综上得:当-2<c<3时,-6<(a-b)·c<4.答案:-6<(a-b)·c<4

10.(精选考题·青岛质检题)给出以下四个命题:

①a>b⇒an>bn(n∈N*);

②a>|b|⇒an>bn(n∈N*);

11③a; ab

11④a

解析:①中取a=-1,b=-2,n=2,不成立;②a>|b|,得a>0,∴an>bn成立;③aa,故<,④不成立. aba-ba

答案:②③

三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)

11.设m∈R,x∈R,比较x2-x+1与-2m2-2mx的大小.

解:解法一:(x2-x+1)-(-2m2-2mx)=x2+(2m-1)x+(2m2+1).

关于x的二次三项式x2+(2m-1)x+(2m2+1)的判别式为Δ=(2m-1)2-4(2m2+1)=-4m2-4m-3.二次三项式-4m2-4m-3的判别式为Δ′=(-4)2-4×(-4)×(-3)=-32<0,∴Δ<0恒成立.

∴(x2-x+1)-(-2m2-2mx)>0,即x2-x+1>-2m2-2mx.解法二:∵(x2-x+1)-(-2m2-2mx)

=x2+(2m-1)x+(2m2+1)

=x2+(2m-1)x+2m-122m-12+2m2+1-22

2m-123=x++m2+m+ 42

123122m-122=x++m+m+2+42 2

12112m-12=x++m2+2≥2>0,2

∴x2-x+1>-2m2-2mx.12.已知a、b、c∈{正实数},且a2+b2=c2,当n∈N且n>2时,比较cn与an+bn的大小.

分析:考虑比较的是幂的形式,作差不可行,作商处理.

解:∵a、b、c∈{正实数},∴an,bn,cn>0

an+bnanbn而=c+c ca2b2∵a2+b2=c2,∴c+c=1

ab∴0<<1,0<<1 cc

ana2bnb2∵n∈N,n>2,∴c

an+bnanbna2+b2

∴=c+c<1 cc∴an+bn

评析:作商法比较大小,作商——变形——判断商与1的关系.

13.有三个实数m、a、b(a≠b),如果在a2(m-b)+m2b中,把a和b互换,所得的代数式的值比原式的值小,那么关系式a<m<b是否可能成立?请说明你的理由.

解:不妨设P=a2(m-b)+m2b,Q=b2(m-a)+m2a.由题意知Q<P,即Q-P<0.∴b2(m-a)+m2a-a2(m-b)-m2b<0,(a-b)m2+(b2-a2)m+ab(a-b)<0.∴(a-b)(m-a)(m-b)<0.(*)

若a<m<b成立,则a<b,这时不等式(*)的解为m>b或m<a,矛盾. 故a<m<b不可能成立.

第四篇:2012高考总复习《走向清华北大》精品14

第十四讲 导数的概念及其运算

班级________ 姓名________ 考号________ 日期

________ 得分________

一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)

1.下列结论不正确的是()

A.若y=3,则y′=0

B.若y=11y′=-xx1C.若yx,则y 2x

D.若y=3x,则y′=3

111-31解析:∵y′=′=(x-)′=-x2,22xx∴选B.答案:B

评析:简单函数的求导,关键是将函数关系式合理地转化为可以直接应用公式的基本函数的模式.

2.已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则切点横坐标为1的切线方程是()

A.x+y+1=0B.x+y-1=0

C.3x-y-1=0D.3x-y+1=0

解析:由题意得,x>0时,-x<0,f(-x)=(-x)2+(-x)=x2-x.又因为f(x)为奇函数,所以f(x)=-f(-x)=-x2+x.又函数f(x)过(1,0),k=f′(1)=-1.所以所求的切线方程为y-0=-1×(x-1),即x+y-1=0.答案:B

3.已知直线y=kx+1与曲线y=x3+ax+b切于点(1,3),则b的值为()

A.3B.-3

C.5D.-5

解析:∵点(1,3)在直线y=kx+1上,∴k=2.∴2=f′(1)=3×12+a⇒a=-1.∴f(x)=x3-x+b.∵点(1,3)在曲线上,∴b=3.故选A.答案:A

评析:本题考查导数的几何意义和曲线方程求法的综合应用.

4.(精选考题·江西)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=()

A.-1B.-2

C.2D.0

解析:∵f′(x)=4ax3+2bx,∴f′(-x)=-4ax3-2bx=-f′(x),∴f′(-1)=-f′(1)=-2.答案:B

5.(精选考题·全国Ⅱ)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则

()

A.a=1,b=1B.a=-1,b=1

C.a=1,b=-1D.a=-1,b=-1

解析:求导得y′=2x+a,因此曲线y=x2+ax+b在点(0,b)处的切线l的方程是x-y

0+a=1+1=0,所以切线l的斜率k=1=y′|x=0,且点(0,b)在切线l上,于是有,0-b+1=0

a=1解得.b=1

答案:A

46.(精选考题·辽宁)已知点P在曲线y=α为曲线在点P处的切线的倾斜角,e+1

则α的取值范围是()

πππ0,B.,A.442π3π3πD.,π C.244

4ex4ex4t解析:y′=-.设t=ex∈(0,+∞),则y′=-=-=-(e+1)e+2e+1t+2t+1

3π41,π.∵t+≥2,∴y′∈[-1,0),α∈41tt++2t答案:D

二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)

7.曲线y=x2-2x+a与直线y=3x+1相切时,常数a的值是________.

5解析:y′=2x-2,令y′=3得x

217代入y=3x+1得y= 2

51729,代入y=x2-2x+a得a=.将224

29答案:4

8.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2xf′(2),则f′(5)=________.解析:对f(x)=3x2+2xf′(2)求导数,得f′(x)=6x+2f′(2).

令x=2,得f′(2)=-12.再令x=5,得f′(5)=6×5+2f′(2)=6.答案:6

9.若曲线f(x)=ax3+lnx存在垂直于y轴的切线,则实数a的取值范围是________.

1解析:f′(x)=3ax2 x

因为存在垂直于y轴的切线,则f′(x)=0在x>0时有解,1即3ax20有解,x

1即3a=- x1∵-<0,x∴当3a<0,即a<0时,方程有解,所以a的取值范围为(-∞,0).

答案:(-∞,0)

10.(精选考题·江苏)函数y=x2(x>0)的图象在点(ak,a2k)处的切线与x轴的交点的横坐标为ak+1,其中k∈N*.若a1=16,则a1+a3+a5的值是________.

2解析:∵y′=2x,∴过点(ak,ak)处的切线方程为y-a2k=2ak(x-ak),又该切线与x轴

11的交点为(ak+1,0),所以ak+1=ak,即数列{ak}是等比数列,首项a1=16,其公比q=,∴a322

=4,a5=1,∴a1+a3+a5=21.答案:21

三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)

11.已知曲线y=x3+x-2在点P0处的切线l1平行于直线4x-y-1=0,且点P0在第三象限.

(1)求P0的坐标;

(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.

解:(1)由y=x3+x-2,得y′=3x2+1,由已知得3x2+1=4,解之得x=±1.当x=1时,y=0;当x=-1时,y=-4.又∵点P0在第三象限,∴切点P0的坐标为(-1,-4).

(2)∵直线l⊥l1,l1的斜率为4,1∴直线l的斜率为-4

∵l过切点P0,点P0的坐标为(-1,-4),1∴直线l的方程为y+4=-(x+1),即x+4y+17=0.4

12.已知函数f(x)=x3+x-16,(1)求曲线y=f(x)在点(2,-6)处的切线的方程;

(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;

1(3)如果曲线y=f(x)的某一切线与直线y+3垂直,求切点坐标与切线的方程. 4

分析:首先要判断已知点是否在曲线上,再根据切线的斜率即导数值列方程解决问题. 解:(1)∵f(2)=23+2-16=-6,∴点(2,-6)在曲线上.

∵f′(x)=(x3+x-16)′=3x2+1,∴在点(2,-6)处的切线的斜率为

k=f′(2)=3×22+1=13.∴切线的方程为y=13(x-2)+(-6).

即y=13x-32.(2)解法一:设切点为(x0,y0),则直线l的斜率为f′(x0)=3x20+1,∴直线l的方程为:

3y=(3x20+1)(x-x0)+x0+x0-16.又∵直线l过点(0,0),2∴0=(3x0+1)(-x0)+x30+x0-16,整理得x30=-8,∴x0=-2,y0=(-2)3+(-2)-16=-26,∴k=3(-2)2+1=13,∴直线l的方程为y=13x,切点坐标为(-2,-26).

解法二:设直线l的方程为y=kx,切点为(x0,y0),y0-0x30+x0-16则k=.x0x0-0

又∵k=f′(x0)=3x20+1,3x+x-16∴=3x20+1,解得x0=-2,x0

∴y0=(-2)3+(-2)-16=-26,k=3(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).

x(3)∵切线与直线y=-3垂直,4

∴斜率k=4,∴设切点为(x0,y0),则f′(x0)=3x20+1=4,x0=1x0=-1∴x0=±1,∴或.y=-14y=-1800

即切点坐标为(1,-14)或(-1,-18).

切线方程为y=4(x-1)-14或y=4(x+1)-18.即y=4x-18或y=4x-14.评析:解题过程中,很容易把所给的点当作曲线上的点,错误原因是没有把点代入方程进行检验.

113.设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.x+b

(1)求f(x)的解析式;

(2)证明:函数y=f(x)的图象是一个中心对称图形,并求其对称中心;

(3)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围的三角形的面积为定值,并求出此定值.

解:(1)f′(x)=a-1(x+b)

于是1a-(2+b)=0,12a=3,2+b a=1,解得b=-1 a4或8b=-39

1∵a,b∈Z,∴f(x)=x+.x-1

1(2)证明:已知函数y1=x,y2=都是奇函数,x

1∴函数g(x)=x+也是奇函数,其图象是以原点为中心的中心对称图形.而f(x)=x+x

11(x-1)1,x-1(x-1)

可知f(x)的图象是由g(x)的图象沿x轴正方向向右平移1个单位,再沿y轴正方向向上平移1个单位得到的.故函数f(x)的图象是以点(1,1)为中心的中心对称图形.

1(3)证明:在曲线上任取一点x0,x0x-1,0

1由f′(x0)=1-(x0-1)1x20-x0+1y-1-(x-1)(x-x0). x0-10

令x=1,得y=x+1 x0-1

x0+1.∴切线与直线x=1交点为1,x0-1

令y=x,得x=2x0-1,∴切线与直线y=x交点为(2x0-1,2x0-1).

直线x=1与y=x交点为(1,1).

从而所围的三角形的面积为

1x0+112-1|2x-1-1|=x-1·|2x-2|=2.·2200x0-10

∴所围的三角形的面积为定值2.

第五篇:2012高考总复习《走向清华北大》精品36

第三十六讲 直接证明与间接证明

班级________ 姓名________ 考号________ 日期________ 得分________

一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)

1.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了()

A.分析法

B.综合法

C.综合法、分析法综合使用

D.间接证明法

解析:因为证明过程是“从左往右”,即由条件⇒结论.

故选B.答案:B

xn·(x2n+3)2.已知x1>0,x1≠1且xn+1=n=1,2,„),试证:“数列{xn}对任意的正整3xn+1

数n,都满足xn>xn+1,”当此题用反证法否定结论时应为()

A.对任意的正整数n,有xn=xn+1

B.存在正整数n,使xn≤xn+1

C.存在正整数n,使xn≥xn-1,且xn≥xn+1

D.存在正整数n,使(xn-xn-1)(xn-xn+1)≥0

解析:根据全称命题的否定,是特称命题,即“数列{xn}对任意的正整数n,都满足xn>xn+1”的否定为“存在正整数n,使xn≤xn+1”,故选B.答案:B

3.要证:a2+b2-1-a2b2≤0,只要证明()

A.2ab-1-a2b2≤0

a4+b4B.a+b-1-≤0 222

(a+b)2-1-a2b2≤0 2

D.(a2-1)(b2-1)≥0

解析:因为a2+b2-1-a2b2≤0⇔(a2-1)(b2-1)≥0,故选D.答案:D

4.已知a、b是非零实数,且a>b,则下列不等式中成立的是()

ba

C.|a+b|>|a-b|B.a2>b2 11abab

b-ab解析:⇔⇔a(a-b)>0.aa

∵a>b,∴a-b>0.而a可能大于0,也可能小于0,因此a(a-b)>0不一定成立,即A不一定成立;

a2>b2⇔(a-b)(a+b)>0,∵a-b>0,只有当a+b>0时,a2>b2才成立,故B不一定成立;

|a+b|>|a-b|⇔(a+b)2>(a-b)2⇔ab>0,而ab<0也有可能,故C不一定成立;

11a-b⇔>0⇔(a-b)·a2b2>0.ababab∵a,b非零,a>b,∴上式一定成立,因此只有D正确.故选D.答案:D

1xa+b,B=fab),5.(2009·杭州市模拟)已知函数f(x)=,a,b∈(0,+∞),A=f222abC=fa+b,则A、B、C的大小关系为()

A.A≤B≤C

C.B≤C≤AB.A≤C≤B D.C≤B≤A

a+b1x2ab解析:因为当a,b∈(0,+∞)时,ab≥f(x)=2,在R上为减2a+b

函数,所以A≤B≤C,故选A.答案:A

16.设0

A.a

C.cB.b D.不能确定

解析:易得1+x>2x2x.∵(1+x)(1-x)=1-x2<1,又00.1∴1+x<.1-x

答案:C

二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)

7.否定“任何三角形的外角都至少有两个钝角”其正确的反设应是________. 解析:本题为全称命题,其否定为特称命题.

答案:存在一个三角形,它的外角至多有一个钝角

8.已知a,b是不相等的正数,xab,ya+b,则x,y的大小关系是________. 2(a+b)(a+b)2

2解析:y=a+b)=a+b==x.2222

答案:x

199.已知a,b,μ∈(0,+∞)且1,则使得a+b≥μ恒成立的μ的取值范围是________. ab

19b9ab9a=+10≥16(=解析:因为a+b=(a+b)即b=3a时取等号),ababab

a+b≥μ恒成立⇔μ≤(a+b)min,所以μ≤16.又μ∈(0,+∞),故0<μ≤16.答案:(0,16]

10.(原创题)如果a+b>b+a,则a、b应满足的条件是________. 解析:∵aa+bb>ab+a⇔(a-b)2(a+b)>0⇔a≥0,b≥0且a≠b.答案:a≥0,b≥0且a≠b

三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)

11.已知a,b,c是不等正数,且abc=1.111a+b+c++.abc

证明:∵a,b,c是不等正数,且abc=1,111111+1bccaab111=ab222abc∴a+b+c=1bc1+ca12.已知:a>0,b>0,a+b=1.求证: 1a+21b+2.2

b+≤2.2

(ab≤4,22证明:要证 a+211只要证:a+b++22

∵由已知知a+b=1,故只要证:(a+)(b+≤1,22

11只要证:(a+)(b+≤1,22

1只要证:ab 4

1∵a>0,b>0,1=a+b≥ab,∴ab≤,4

故原不等式成立.

13.(精选考题·浦东模拟)△ABC的三个内角A,B,C成等差数列,a,b,c分别为三

内角A,B,C的对边.求证:113=a+bb+ca+b+c

a+b+ca+b+c113ca解:要证明=,只需证明3,只需证明a+bb+ca+b+ca+bb+ca+bb+c

=1,只需证明c(b+c)+a(a+b)=(a+b)·(b+c),只需证明c2+a2=ac+b2.∵△ABC的三个内角A,B,C成等差数列,∴B=60°,则余弦定理,有b2=c2+a2-2accos60°,即b2=c2+a2-ac,∴c2+a2=ac+b2成立.故原命题成立,得证.

下载2012高考总复习《走向清华北大》精品2word格式文档
下载2012高考总复习《走向清华北大》精品2.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2012高考总复习《走向清华北大》精品21

    第二十一讲 三角函数的性质 班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号......

    2012高考总复习《走向清华北大》精品17

    第十七讲 同角三角函数的基本关系式及诱导公式 班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的......

    2012高考总复习《走向清华北大》精品30

    第三十讲 数列求和 班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.) 1.数......

    2012高考总复习《走向清华北大》精品25

    第二十五讲平面向量的数量积 班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括......

    2012高考总复习《走向清华北大》精品24

    第二十四讲平面向量的基本定理及坐标表示 班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号......

    2012高考总复习《走向清华北大》精品19(共5篇)

    第十九讲 三角恒等变换 班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)......

    12位清华北大学子谈高考复习

    12位清华北大学子谈高考复习春节过后,新一轮的高考复习更加紧张了。剩下短短三个月时间,如何正确备战高考,也成了大部分参加2007年高考的考生及其家长们最关心的话题。 趁着春......

    2013走向高考,贾凤山,高中总复习,政治,3-4-8

    一、选择题 1.对下侧漫画《加强文化市场管理》的解读正确的是 ①文化市场越繁荣越需要国家加强管理和引导 ②我们要提高辨别不同性质文化的眼力 ③我们要增强抵御落后文化......