阿波罗尼定理之逆定理的一个证明(合集5篇)

时间:2019-05-13 08:38:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《阿波罗尼定理之逆定理的一个证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《阿波罗尼定理之逆定理的一个证明》。

第一篇:阿波罗尼定理之逆定理的一个证明

阿波罗尼定理之逆定理的一个证明

宁夏回族自治区固原市五原中学马占山(756000)

阿波罗尼定理之逆定理 如果一个凸四边形的四边的平方和等于对角线的平方和,那么这个四边形是平行四边形.

笔者在数学中国几何天地网站论坛中得知该定理历史悠久,2004年李明波先生给出了证明. 本文给出这个定理的证明.为证定理,在此首先给出一个几何命题.命题在ABC中,点D是边BC的中点,则 ABAC2(AD

证明:过点D作DFBC于点F.在RtABE,RtADE,RtACE中

由勾股定理可得:AD2AE2DE2AB2BE2DE2AB2(BDDE)2DE2 2221BC2).4AB2BD22BDDE(1)

同样有:AD2AE2DE2AC2CE2DE2AC2(CDDE)2DE2 AC2CD22CDDE(2)

(1)+(2)得

2AD2AB2AC2(BD2CD2)AB2AC22(AD2

下面证明给出定理的证明.1BC2)4

已知:四边形ABCD中AC,BD是对角线,且满足AB2BC2CD2DA2AC2BD2 求证: 四边形ABCD是平行四边形.证明:

第二篇:勾股定理的逆定理的证明

用“勾股定理”证明“勾股定理的逆定理”——反证法

湛江市爱周中学伍彩梅

八年级数学学习的勾股定理,是几何学中几个最重要的定理之一,它揭示了一个直角三角形三边之间的数量关系,内容是:“如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么abc”。

勾股定理的逆定理给出了一个用代数运算判定一个三角形是直角三角形的方法,内容是:“如果三角形的三边长a、b、c满足abc,那么这个三角形是直角三角形”。

这两大定理都来源于实践,并在实践中得到广泛的应用。

定理的证明,有助于加深对定理得理解,有助于实现从感性认识到理性认识的飞跃。教材中,勾股定理的证明采用了多种方法,学生容易理解。而

课本里用三角形全等证明了该定理。勾股定理的逆定理,只用“三角形全等”来证明,这种方法学生一时不易理解。实际上,我们也可以用“勾股定理”来证明“勾股定理的逆定理”——反证法。表述如下:

已知△ABC的三边长a、b、c满足abc,求证:△ABC是直角三角形。用反证法证明如下:

由abc,可知c边最大,即∠ACB最大。只要证明了∠ACB=90°,即△ABC是直角三角形。

分两种情况进行。

(一)假设△ABC不是直角三角形而是钝角三角形,则∠C>90°。如图(1)222222222222

B

图(1)

过B作BD垂直于AC的延长线于D,垂足为D。如图(2)

图(2)

在图(2)中,△ABD与△CBD都是直角三角形,根据勾股定理有:

a1(bb1)2c2(1)

a1b1a2(2)

22由(1)得a1b12bb1bc(3)22222

把(2)代入(3)得a2b22bb1c2(4)

对比已知条件abc

可得b10

把b10代入(2)得a1a2,则a1a

因此点C与点D重合,∠ACB=∠ADB=90°,结论与假设矛盾,所以△ABC是直角三角形。

(二)假设△ABC不是直角三角形而是锐角三角形,则∠C<90°。如图(3)2222

B

c a

A

b

图(3)C

过B作BD垂直于AC于D,垂足为D。如图(4)

B

c a

a1

Ab

b D C b2

图(4)

其中BD=a1,AD=b1,DC=b2,b1b2b

在图(4)中,△ABD与△CBD都是直角三角形,根据勾股定理有:

22a1b1c2(5)

a1b2a2(6)

把(5)-(6)得

2222c2a2b1b2(b1b2)(b1b2)b(b2b2)b22bb2

整理得

c2a2b22bb2(7)

对比已知条件abc

得b20

所以b1b

则点C与点D重合,∠ACB=∠ADB=90°,结论与假设矛盾,所以△ABC是直角三角形。

因此,勾股定理的逆定理得到证明。

2007-3-12 222

第三篇:弦切角的逆定理的证明

弦切角逆定理证明

已知角CAE=角ABC,求证AE是圆O的切线

证明:连接AO并延长交圆O于D,连接CD,则角ADC=角ABC=角CAE

而AD是直径,因此角ACD=90度,所以角DAC=90度-角ADC=90度-角CAE

所以角DAE=角DAC+角CAE=90度

故AE为切线

第四篇:三垂线定理及逆定理-高中数学知识口诀

中小学教育资源交流中心http://提供

三垂线定理及逆定理

上海市同洲模范学校宋立峰

三垂线定理及逆定理

面内直线面外点,过点引出两直线; 斜线斜足定射影,斜垂射影必共面。面内直线垂射影,该直线就垂斜线。面内直线垂斜线,垂直射影来作伴。

三垂线定理

影垂不怕线斜(形影不离)

即:垂直射影垂斜线

三垂线定理逆定理

斜垂影随其身(影随其身)

即:垂直斜线垂射影

欢迎访问 http://

第五篇:柯西积分定理的一个简单证明

柯西积分定理的一个简单证明

摘要:本文用到零的同源环给出了柯西定理的一个证明。证明运用了解析函数基本的局部性质,没有额外的几何以及拓扑论证。

本文的目的是给出关于柯西定理for circuits homologous to 0的一个简洁明了的证明。

柯西定理:假设D是C的一个开子集,是D中的一个环。假设是与零同源的,并且每个E中的D都是确定的。那么对于每一个D中解析函数f:

(1)f(z)dz0

1(2)对于任意与无关且属于D的w,有Ind(,w)f(w)(2i)

(zw)1f(z)dz

证明:考虑DDC的函数g,且对zw满足g(w,z)(f(z)f(w))/(zw),g(w,w)f'(w)。可知g是连续的,并且对每个z,w,g(w,z)是解析的。给定h:CC,并且在D上h(w)g(w,z)dz,在E上h(w)(zw)1f(z)dz。假设CDE,由

于Ind(,w)0,则这两种h(w)的表示在DE是相等的。

那么可知h在D和E上都是可导的,所以h是整函数。由于的映射是有限的,并且E包含了的一个邻域,h(w)0时有w。这表明h是连续的(刘伟尔定理),并且h=0.则对于所有D不依赖于。最后设u是D中g(w,z)dz=0。这样就证明了(2)

不依赖于的定点。将(2)用于函数zf(z)(zu),计算wu的情况,便得到(1)。

下载阿波罗尼定理之逆定理的一个证明(合集5篇)word格式文档
下载阿波罗尼定理之逆定理的一个证明(合集5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    正弦定理证明

    新课标必修数学5“解三角形”内容分析及教学建议江苏省锡山高级中学杨志文新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中......

    原创正弦定理证明

    1.直角三角形中:sinA= ,sinB=, sinC=1即c=∴abc, c= ,c=.sinAsinBsinCacbcabc== sinAsinBsinC2.斜三角形中证明一:(等积法)在任意斜△ABC当中S△ABC=absinCacsinBbcsinA两边同除以abc即......

    数学定理证明

    一.基本定理: 1.(极限或连续)局部保号性定理(进而证明保序性定理) 2.局部有界性定理. 3.拉格朗日中值定理. 4.可微的一元函数取得极值的必要条件. 5.可积函数的变上限积分函数的连续性. 6.牛......

    几何证明定理

    几何证明定理一.直线与平面平行的(判定)1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面)二.平面与......

    正弦定理证明

    正弦定理证明1.三角形的正弦定理证明: 步骤1. 在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中,......

    正弦定理证明范文合集

    正弦定理证明1.三角形的正弦定理证明:步骤1.在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/s......

    定理与证明

    定理与证明(一)教学建议(一)教材分析1、知识结构2、重点、难点分析重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将......

    正弦定理证明

    正弦定理 1.在一个三角形中,各边和它所对角的正弦的比相等,且等于其外接圆半径的两倍, 即abc2R sinAsinBsinC 证明:如图所示,过B点作圆的直径BD交圆于D点,连结AD BD=2R, 则 D=C,DAB......