第一篇:线段垂直平分线的性质定理及其逆定理教法建议
线段垂直平分线的性质定理及其逆定理教法建议 本节是利用三角形全等的判定方法来解决数学中的问题,具有一定的抽象性。
1.首先引导学生回顾探究线段垂直平分线性质定理的过程,为利用全等三角形对其证明提供思路,然后再师生一起结合图形写出定理的已知和求证,最后让学生完成证明过程。
2.引导学生回顾逆命题和逆定理的有关知识,让学生写出这个定理的逆命题,师生再一起完成证明过程,最后得出这个定理的逆定理。
3.让学生经历用尺规作线段垂直平分线的过程,并说出每步作法的依据,进一步培养学生的动手操作能力和步步有据的推理意识。
第二篇:平行线的性质定理教法建议
平行线的性质定理教法建议
为了使学生能够掌握平行线性质定理的证明和简单应用,建议如下:
1.引导学生类比平行线判定定理的处理方式来解决“一起探究”中提出的问题。应使学生认识到,“一起探究”中的前两个问题是为证明定理作铺垫的准备过程。教师应给予高度重视,给学生留出充分的时间进行思考、研讨和交流,从而使他们能够顺利地写出定理的证明过程。
2.通过教师的引导,经过学生讨论后,使每个人的思路、证法和过程在吸纳别人意见的基础上得到完善。
3.让学生独立完成“做一做”中的证明,得到平行线的性质定理二。在此过程中,教师要关注学习有困难的学生,并及时辅导,使他们也能较好地完成证明过程。
4.例题是需要应用平行线的性质定理来完成的,建议由学生独立完成,并通过交流和教师讲评,规范书写格式。
5.让学生将平行线的判定公理与定理以及性质公理与定理进行比较,并引导他们发现其间的关系后,接着结合“大家谈谈”的内容对自己的分析进行巩固,这时教师给出原命题和逆命题以及互逆命题和互逆定理的概念就自然而合理了,最后再让学生举例,以加深理解。
第三篇:线段的垂直平分线的性质教案
13.1.2 线段的垂直平分线的性质第1课时 线段的垂直平分线的性质和判定
11.掌握线段垂直平分线的性质.(重点)
2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)
一、情境导入
如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB于E,量得△BDC的周长为17m,你能帮测量人员计算BC的长吗?
二、合作探究
探究点一:线段垂直平分线的性质
【类型一】 应用线段垂直平分线的性质求线段的长
如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为()
A.5cm
B.10cm
C.15cm
D.17.5cm
解析:∵△DBC的周长=BC+BD+CD=35cm,又∵DE垂直平分AB,∴AD=BD,故BC+AD+CD=35cm.∵AC=AD+DC=20cm,∴BC=35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.
【类型二】 线段垂直平分线的性质与全等三角形的综合运用
如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.解析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.
证明:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD.(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.
【类型三】 线段垂直平分线与角平分线的综合运用
如图,在四边形ADBC中,AB与CD互相垂直平分,垂足为点O.(1)找出图中相等的线段;
(2)OE,OF分别是点O到∠CAD两边的垂线段,试说明它们的大小有什么关系.
解析:(1)由垂直平分线的性质可得出相等的线段;
(2)由条件可证明△AOC≌△AOD,可得AO平分∠DAC,根据角平分线的性质可得OE=OF.解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;
(2)OE=OF,理由如下:在△AOC和△AOD中,∵∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.
探究点二:线段垂直平分线的判定
如图所示,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,试说明AD与EF的关系.
解析:先利用角平分线的性质得出DE=DF,再证△AED≌△AFD,易证AD垂直平分EF.解:AD垂直平分EF.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠EAD=∠FAD,DE=DF.在△ADE和△ADF中,∵∴△ADE≌△ADF,∴AE=AF,∴A、D均在线段EF的垂直平分线上,即直线AD垂直平分线段EF.方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.
三、板书设计
线段的垂直平分线
1.线段的垂直平分线的作法.
2.线段的垂直平分线性质定理和逆定理.
3.三角形三边的垂直平分线交于一点.
本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.
第四篇:线段垂直平分线的性质教学反思
《线段垂直平分线的性质》教学反思
芷江三中:杨丹丹
线段垂直平分线的性质定理和判定定理可以优化证明题目的方法,这是本课最为突出的地方,感触比较深刻的就是,学生得到了新知识新方法的那个喜悦劲儿,这主要得益于学生“预学案”的先行研究。
本课我们安排的教学流程是:画直线的垂直平分线,研究和证明线段的垂直平分线的性质;体会线段垂直平分线的性质的应用,学习例题1、2、3;提出问题:由PA=PB,能说明点P一定在线段AB的垂直平分线上吗?经过P点的直线是线段AB的垂直平分线吗?过渡到线段垂直平分线的判定的研究;在证明猜想时,提出是不是过点P作线段AB的垂直平分线,学生的反应比较热烈,补艳梅,邓津桥同学提出了作PC⊥AB,垂足为C,设法证明AC=BC;刘心语同学提出取AB的中点C,连接PC,证明PC⊥AB,学生讨论证明,得到了线段垂直平分线的判定定理,并总结出证明时是“作垂直,证平分”或者“作平分,证垂直”,由此体会到“过一点不可能作直线保证既垂直又平分”,思考的第二个问题也就容易解释了,提出如果有两个这样的点P,根据 “两点确定一条直线”就能够作出已知线段的垂直平分线了,适时地引出了例4的研究;最后进行提升学习,在训练中又可以有新的知识内容的收获。
2013年10月
第五篇:线段垂直平分线的性质教学反思
13.1.2 线段的垂直平分线的性质
第1课时 线段的垂直平分线的性质和判定(教学反思)
随县炎帝学校初中部 周莎
线段垂直平分线在几何作图、证明、计算中有着十分重要的作用.线段的垂直平分线的性质定理是推证线段相等的重要途经,它的逆定理常常用来推证一条直线是一条线段的的垂线或一点是一条线段的中点.在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索.在导入新课这一环节上我先让学生直接测量课本上探究图中的线段长度。引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:P1A=P1B,P2A = P2B,P3A = P3B.然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理.在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论.从而把知识的形成过程转化为学生亲自参与、发现、探索的过程.在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。
在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步 知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合.这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解.在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。为了使学生当堂掌握两个定理的灵活运用,让学生完成两个例题,以达到巩固知识的目的。
本堂课中存在的不足有:
1.课堂容量过大,内容没有处理完。并且在处理“过直线外一点作已知直线的垂线”的作图过程中,有点仓促。
2.在让探究线段垂直平分线分判定时的三个证法耗时较多。应该让学生边做边讲。
3.为了完成课堂内容,没有充分的将课堂还给学生。