第一篇:线段垂直平分线几何语言(数学八年级上册)
1.线段垂直平分线的性质定理:
线段垂直平分线上的点与这条线段两端点的距离相等
几何语言∵PO是线段AB的垂直平分线,点P在PO上(已知)
∴ PA=PB(线段垂直平分线上的点和这条线段两端点的距离相等)2.线段垂直平分线的逆定理:与一条线段两端点距离相等的点在这条线段的垂直平分线上 AO
几何语言∵ PA=PB(已知)
∴点P在AB的垂直平分线上(和一条线段两端点距离相等的点在这条线段的垂直平分线上)
B
第二篇:八年级数学教案示例:线段的垂直平分线
八年级数学教案示例:线段的垂直平分线
1、教材分析
(1)知识结构
(2)重点、难点分析
本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.2、教法建议
本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:
(1)参与探索发现,领略知识形成过程
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.(2)采用“类比”的学习方法,获取逆定理
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.(3)通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.教学目标:
1、知识目标:
(1)掌握线段的垂直平分线的性质定理及其逆定理;
(2)能运用它们证明两条线段相等或两条直线互相垂直;
2、能力目标:
(1)通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
(2)提高综合运用知识的能力.3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;;
(2)通过知识的纵横迁移感受数学的辩证特征.教学重点:线段垂直平分线定理及其逆定理
教学难点:定理及逆定理的关系
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习
(1)线段垂直平分线的概念
(2)问题:(投影显示)
如图,CD是线段AB的垂直平分线,P为CD上任意一点,PA、PB有何关系?为什么?
整个过程,由学生完成.找一名学生代表回答上述问题并
投影显示学生的证明过程.2、定理的获得
让学生用文字语言将上述问题表述出来.定理:线段垂直平分线上的点和这条线段两个端点的距离相等.强调说明:线段垂直平分线性质定理是证明线段相等的一条依据,在计算、作图中也有重要作用.学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.3、逆定理的获得
类比角平分线逆定理获得的过程,让学生讲解下一环节所要学习研究的内容.这一过程,完全由学生自己通过小组的形式,代表到台前讲解.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.强调说明:定理与逆定理的联系与区别
相同点:结构相同、证明方法相同
不同点:用途不同,定理是用来证线段相等
4、定理与逆定理的应用
(1)讲解例1(投影例1)
例1 如图,△ABC中,∠C=,∠A=,AB的在垂线交AC于D,交AB于E
求证:AC=3CD
证明:∵DE垂直平分AB
∴AD=BD
∴∠1=∠A=
∵
∴∠2=
∴CD= BD
∴CD= AD
∴AD=2CD
即AC=3CD
讲解例2(投影例2)
例2:在△ABC中,AB=AC,AB的中垂直线与AC所在直线相交所得的锐角为,求底角B的大小.(学生思考、分析、讨论,教师巡视,适当参与讨论)
解:(1)当AB的中垂线MN与AC相交时,如图(1),∵∠ADE=,∠AED=
∴∠A=-∠AED=-=
∵AB=AC ∴∠B=∠C
∴∠B=
(2)当的中垂线与的延长线相交时,如图
∵∠ADE=,∠AED=
(2)
∴∠BAE=-∠AED=-=
∵AB=AC ∴∠B=∠C
∴∠B=
例3(1)在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=,求∠NMB的大小
(2)如果将(1)中∠A的度数改为,其余条件不变,再求∠NMB的大小
(3)你发现有什么样的规律性?试证明之.(4)将(1)中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改
解:(1)∵AB=AC
∴∠B=∠ACB
∴∠B=
∵∠BNM=
∴
(2)如图,同(1)同理求得
(3)如图,∠NMB的大小为∠A的一半
5、课堂小结:
(1)线段垂直平分线性质定理和逆定理
(2)在应用时,易忽略直接应用,往往又重新证三角形的全等,使计算或证明复杂化.6、布置作业:
书面作业P119#
2、3
思考题:已知:如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高
求证:AD垂直平分EF
证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC
∴DE=DF
∴D在线段EF的垂直平分线上
在Rt△ADE和Rt△ADF中
∴Rt△ADE≌Rt△ADF
∴AE=AF
∴A点也在线段EF的垂直平分线上
∵两点确定一条直线
∴直线AD就是线段EF的垂直平分线
板书设计:
第三篇:新人教版数学八年级上册教案 13.1.2 线段的垂直平分线的性质
13.1.2 线段的垂直平分线的性质
教学目标: 〔知识与技能〕
1. 探索作出轴对称图形的对称轴的方法.掌握轴对称图形对称轴的作法.
2.在探索的过程中,培养学生分析、归纳的能力.
〔过程与方法〕
1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;
2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。〔情感、态度与价值观〕
1、体会数学与现实生活的联系,增强克服困难的勇气和信心;
2、会应用数学知识解决一些简单的实际问题,增强应用意识。教学重点:
轴对称图形对称轴的作法. 教学难点:
探索轴对称图形对称轴的作法. 教具准备:圆规、三角尺 教学过程
一.提出问题,引入新课
1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,•你能比较准备地作出轴对称图形的对称轴吗?
2.轴对称图形性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.
3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.
4.问题:如何作出线段的垂直平分线? 二.导入新课
1.要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.
[例]如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗?
已知:线段AB[如图(1)].
求作:线段AB的垂直平分线.
作法:如图(2)
(1).分别以点A、B为圆心,以大于(2).作直线CD.
直线CD就是线段AB的垂直平分线.
2.[例]图中的五角星有几条对称轴?作出这些对称轴.
作法:
1.找出五角星的一对对应点A和A′,连结AA′.
2.作出线段AA′的垂直平分线L.
则L就是这个五角星的一条对称轴.
用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴. 三.随堂练习
(一)课本35练习1、2、3
如图,与图形A成轴对称的是哪个图形?画出它们的对称轴.
1AB的长为半径作弧,两弧相交于C和D两点;
2答案:与A成轴对称的是图形D(或B). 四.课时小结
本节课我们探讨了尺规作图,作出线段的垂直平分线.并据此得到作出一个轴对称图形一条对称轴的方法:找出轴对称图形的任意一对对应点,连结这对对应点,•作出连线的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴. 五.课后作业
课本P36-37习题12.1 5、10、11、12题.
第四篇:1.3 线段的垂直平分线教案(八年级下册)
1.3线段的垂直平分线(教案)
教学目标
(一)教学知识点
1.经历探索、猜测过程,能够运用公理和所学过的定理证明线段垂直平分线的性质定理和判定定理.
2.能够利用尺规作已知线段的垂直平分线.(二)思维训练要求
1.经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力. 2.体验解决问题策略的多样性,发展实践能力和创新精神. 3.学会与人合作,并能与他人交流思维的过程和结果.(三)情感与价值观要求
1.能积极参与数学学习活动,对数学有好奇心和求知欲.
2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点
1.能够证明线段的垂直平分线的性质定理、判定定理及其相关结论. 2.能够利用尺规作已知线段的垂直平分线.
教学难点 写出线段垂直平分线的性质定理的逆命题并证明它. 教具准备 多媒体演示、直尺、圆规
教学过程
Ⅰ.创设现实情境,引入新课 教师用多媒体演示:
如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应
建在什么位置?
[生]码头应建在线段AB的垂直平分线与在A,B一侧的河岸边的交点上.
[师]同学们认同他的看法吗? [生]是的
[师]认为对的说说你的理由是什么呢?
[生](回忆定理)我们以前曾学过线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等.所以在这个问题中,要求在“A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等”利用此性质就能完成.
[师](边说边用折纸的方法再现定理)这位同学分析得很好,我们在七年级时研究过线段的性质,线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴.我们曾经像这样利用折纸的方法得到“线段垂直平分线上的点到线段两个端点的距离相等”这一简单事实,但是用这种观察的方式是很难说服别人的,你能用公理或学过的定理来证明这一结论吗?
教师演示线段垂直平分线的性质:
定理
线段垂直平分线上的点到线段两个端点的距离相等. Ⅱ.讲述新课
[第一部分] 线段垂直平分线的性质定理
[师]我们从折纸的过程中得到了线段垂直平分线的性质定理,大家知道这是
1
不够的,还必须利用公理及已学过的定理推理、证明它.那么如何证明呢?
[师](引导)
问题一:①要证“线段垂直平分线上的点到线段两个端点的距离相等”,可线段垂直平分线上的点有无数多个,需一个一个依次证明吗?
(强调)我们只需在线段垂直平分线上任取一点代表即可,因为线段垂直平分线上的点都具有相同的性质.(开始让学生有这样的数学思想)
②你能根据定理画图并写出已知和求证吗? ③谁能帮老师分析一下证明思路? [生](思考回答)
[师生共析] 已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点.
求证:PA=PB.
分析:要想证明PA=PB,可以考虑包含这两条线段的两个三角形是否全等. 证明:∵MN⊥AB,∴∠PCA=∠PCB=90°. ∵AC=BC,PC=PC,∴△PCA≌△PCB(SAS).
∴PA=PB(全等三角形的对应边相等).
[第二部分] 线段垂直平分线的判定定理
教师用多媒体完整演示证明过程.同时,用多媒体呈现: 想一想
你能写出上面这个定理的逆命题吗?它是真命题吗? [师](引导、并提问两学生)
问题二:①这个命题是否属于“如果„„那么„„”的形式?
②你能分析原命题的条件和结论,将原命题写成“如果„„那么„„”的形式吗?
③最后再把它的逆命题写出来 [生A](思考分析)原命题的条件是“有一个点是线段垂直平分线上的点”.结论是“这个点到线段两个端点的距离相等”.
[师]有了这位同学的精彩分析,逆命题就很容易写出来.
[生B]如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.
[师]很好,能否把它描述得更简捷呢?
[生B]到线段两个端点的距离相等的点在这条线段的垂直平分线上. [师]good!当我们写出逆命题时,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.请同学们类比原命题自己独立写出已知、求证.
(给学生思考空间)
已知:线段AB,点P是平面内一点且PA=PB. 求证:P点在AB的垂直平分线上.(分组讨论,鼓励学生多想证明方法,并派代表上黑板写写本组的证明过程)
2
[师]看学生的具体情况,做适当的引导
证法一:
证明:过点P作已知线段AB的垂线PC. ∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL定理). ∴AC=BC,即P点在AB的垂直平分线上.
证法二:
证明:取AB的中点C,过PC作直线. ∵AP=BP,PC=PC,AC=CB,∴△APC≌△BPC(SSS).
∴∠PCA=∠PCB(全等三角形的对应角相等). 又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB. ∴P点在AB的垂直平分线上.
证法三:
证明:过P点作∠APB的角平分线. ∵AP=BP,∠1=∠2,PC=PC,∴△APC≌△BPC(SAS).
∴AC=DC,∠PCA=∠PCB(全等三角形的对应角相等,对应边相等).
又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°.
∴P点在线段AB的垂直平分线上
.
[师]先肯定学生的思考,再对证明过程严谨的小组加以表扬,不足的加以点评和纠正。
[师]从同学们的推理证明过程可知线段垂直平分线的性质定理的逆命题是真命题,我们把它称做线段垂直平分线的判定定理.到现在我们已经学习了线段垂直平分线的性质定理和判定定理,下面小试牛刀 教师多媒体演示:
P26随堂练习(抢答):
如图:已知AB是线段CD的垂直平分线,E是AB上的一点,如果EC=7cm,那么ED=_____cm,如果∠ECD=60°,那么∠EDC=___°
3
(让学生说出理由)
[第三部分] 用尺规作线段垂直平分线
答对了上面的题,咱们来轻松一下,一起来欣赏一组美丽的数学图。
教师多媒体演示: 做一做
用尺规作线段的垂直平分线.
[师](边演示图边讲讲作图有关的数学史)大家知道这些图是用什么工具作出来的吗?
(资料:古希腊以来,平面几何中的作图工具习惯上限用直尺和圆规两种.其中,直尺假定直而且长,但上面无任何刻度,圆规则假定其两腿足够长并能开闭自如.作图工具的这种限制,最先大概是恩诺皮德斯(Oenopides,约公元前465年)提出的,以后又经过柏拉图(Plato,公元前427—347)大力提倡.柏拉图非常重视数学,强调学习几何对训练逻辑思维能力的特殊作用,主张对作图工具要有限制,反对使用其他机械工具作图.之后,欧几里得(Euclid,约公元前330—275)又把它总结在《几何原本》一书中。于是,限用尺规进行作图就成为古希腊几何学的金科玉律。)
[师]其实同学们也能用圆规、直尺画出优美的图形,下面咱们就一起来学用尺规作线段的垂直平分线。
(分析:要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两个端点距离相等的点在这条线段的垂直平分线上,那么我们必须找到两个到线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线.)
类似于证明题要写出已知、求证和证明,作图题也要根据条件写出已知、求作和作法,下面我们一同来写出已知、求作、作法,体会作法中每一步的依据.
[教师示范,请学生同时练习] 已知:线段AB(如图).
求作:线段AB的垂直平分线.
1作法:1.分别以点A和B为圆心,以大于AB
2的长为半径作弧,两弧相交于点C和D.
2.作直线CD.
直线CD就是线段AB的垂直平分线.
[师]根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线吗?请与同伴进行交流.
[生]从作法的第一步可知
4
AC=BC,AD=BD.
∴C、D都在AB的垂直平分线上(线段垂直平分线的判定定理). ∴CD就是线段AB的垂直平分线(两点确定一条直线).
[师]我们曾用刻度尺找线段的中点,当我们学习了线段垂直平分线的作法时,一旦垂直平分线作出,线段与线段垂直平分线的交点就是线段AB的中点,所以我们也用这种方法作线段的中点.
Ⅲ.随堂练习
解决引例(假如要把码头的具体位置准确的画出来,你会画了吗?)看时间是否允许,可让学生完成P27试一试,同桌之间相互检查批改,加深理解。
Ⅳ.课时小结
本节课我们先推理证明了线段的垂直平分线的性质定理和判定定理,并学会用尺规作线段的垂直平分线.
Ⅴ.课后作业 第1、3题 Ⅵ.板书设计
1.3 线段的垂直平分线
一、线段垂直平分线的性质定理.
二、线段垂直平分线的判定定理.
三、用尺规作线段的垂直平分线.
5
第五篇:线段垂直平分线教学反思
《线段的垂直平分线》教学反思
一、构建崭新的交互环境,师生互动性更强
本节课我采用了电子白板授课,改变了以往PPT课件授课模式,PPT课件的程序是预先设定好的,伴随着一步步的点击,投影出幻灯片,教师与学生的交互性很受局限。通过使用交互式电子白板,教师操作课件可以直接在触屏上进行,例如:在电子白板上演示用尺规作线段的垂直平分线等,避免了在讲台与黑板之间来回走动过程中分散学生注意力。白板教学环境下加强了集体共同参与的学习过程,师生之间的交流更直接,例如:探究新知2中方法的多样性可以让学生在电子白板上尽情的展示自己的方法,而不会出现黑板不够用的状况。电子白板的使用,可以真正实现人与人之间的交流,而不是人与课件之间的交流。同时,白板课件每个页面中的素材都可以根据学生的具体情况来灵活处理。
二、建立符合学生的认知结构
在进行创设情境中,我没有采用课本上的形式,而是改用七年级学习过的建水电站问题,即将水电站建在何处到在河同一侧的两个村庄的距离之和最短?在学生回忆并解决后将问题变为“建在何处到两个村庄的距离相等?”,这样的设计避免了死板的套入教学内容,不但符合学生的元认知结构,还可以极大的调动学生的学习积极性,使学生快速融入到教学之中,而且题目设计实现知识的纵向迁移,加深了学生对知识的理解、内化,形成自我知识体系,教学实践证明效果显著。
三、充分发挥教师在教学中的的主导性
在这一节中,所介绍的定理实际是在七年级曾经探索过的命题,如线段垂直平分线的性质定理,当时采用的方法是折纸法,作为探索活动的自然延续和必要发展,我们作为老师要善于引导学生从问题出发,根据观察、实验的结果,先得出猜想,然后再进行证明,要求学生掌握证明的基本要求和方法,注意数学思想方法的强化和渗透,例如:归纳法、数形结合思想和分类讨论在教学中的应用。
四、创新性的使用教材
线段垂直平分线性质定理的证明,我没有直接采用课本中的方法,而是在教学设计时引入分类思想,从两个方面进行证明:(1)当点P在线段AB 上,即点P与垂足重合时,显然点P是线段的中点,因此有PA=PB;(2)当点P不在线段AB上,同教材中的证明,分两种情况考虑这个定理的证明。还有在逆定理的说理过程中,课本上没有给出证明,我也引入了分类思想,分两种情况证明:(1)如果点P满足PA=PB,且在线段AB上,那么,点P显然是线段AB的中点,而线段的中点自然在线段的垂直平分线上.(2)如果点P不在线段AB上,且满足PA=PB。让学生探究和展示方法,体现学生在学习中的主体地位,从而突破本节课的难点。
五、实际教学效果:
在实现教学活动中,学生有较好的参与意识 和求知欲望,同时能够跟随着老师的提问而不断的进行更深入的思考。在探究2的方法的多样性上,学生能积极探究,在电子白板上尽情展现自己的成果;在尺规作图上,学生能积极自主探究,并通过电子白板演示,提高学生动口、动手、动脑的综合能力。通过巩固达标训练,提高学生解决问题的能力,从而实现本节课的目标,教学效果良好。
《线段的垂直平分线》教学反思
古交十一中
秦 云 峰
2013年9月