第一篇:线段的垂直平分线的性质教案
13.1.2 线段的垂直平分线的性质第1课时 线段的垂直平分线的性质和判定
11.掌握线段垂直平分线的性质.(重点)
2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)
一、情境导入
如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB于E,量得△BDC的周长为17m,你能帮测量人员计算BC的长吗?
二、合作探究
探究点一:线段垂直平分线的性质
【类型一】 应用线段垂直平分线的性质求线段的长
如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为()
A.5cm
B.10cm
C.15cm
D.17.5cm
解析:∵△DBC的周长=BC+BD+CD=35cm,又∵DE垂直平分AB,∴AD=BD,故BC+AD+CD=35cm.∵AC=AD+DC=20cm,∴BC=35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.
【类型二】 线段垂直平分线的性质与全等三角形的综合运用
如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.解析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.
证明:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD.(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.
【类型三】 线段垂直平分线与角平分线的综合运用
如图,在四边形ADBC中,AB与CD互相垂直平分,垂足为点O.(1)找出图中相等的线段;
(2)OE,OF分别是点O到∠CAD两边的垂线段,试说明它们的大小有什么关系.
解析:(1)由垂直平分线的性质可得出相等的线段;
(2)由条件可证明△AOC≌△AOD,可得AO平分∠DAC,根据角平分线的性质可得OE=OF.解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;
(2)OE=OF,理由如下:在△AOC和△AOD中,∵∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.
探究点二:线段垂直平分线的判定
如图所示,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,试说明AD与EF的关系.
解析:先利用角平分线的性质得出DE=DF,再证△AED≌△AFD,易证AD垂直平分EF.解:AD垂直平分EF.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠EAD=∠FAD,DE=DF.在△ADE和△ADF中,∵∴△ADE≌△ADF,∴AE=AF,∴A、D均在线段EF的垂直平分线上,即直线AD垂直平分线段EF.方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.
三、板书设计
线段的垂直平分线
1.线段的垂直平分线的作法.
2.线段的垂直平分线性质定理和逆定理.
3.三角形三边的垂直平分线交于一点.
本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.
第二篇:线段的垂直平分线教案
线段的垂直平分线教案
www.5y
kj.co
m线段的垂直平分线
教学内容:
线段的垂直平分线
教学目的:、使学生理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。
2、了解线段垂直平分线的轨迹问题。
3、结合教学内容培养学生的动作思维、形象思维和抽象思维能力。
教学重点:
线段的垂直平分线性质定理及逆定理的引入证明及运用。
教学难点:
线段的垂直平分线性质定理及逆定理的关系。
教学关键:、垂直平分线上所有的点和线段两端点的距离相等。
2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。
教具:投影仪及投影胶片。
教学过程:
一、提问、角平分线的性质定理及逆定理是什么?
2、怎样做一条线段的垂直平分线?
二、新课、请同学们在课堂练习本上做线段AB的垂直平分线EF。
2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?
通过学生的观察、分析得出结果PA=PB,再取一点P'试一试仍然有P'A=P'B,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题。
定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。
这个命题,是我们通过作图、观察、猜想得到的,还得在理论上加以证明是真命题才能做为定理。
已知:如图,直线EF⊥AB,垂足为c,且Ac=cB,点P在EF上
求证:PA=PB
如何证明PA=PB学生分析得出只要证RTΔPcA≌RTΔPcB
证明:∵Pc⊥AB
∴∠PcA=∠PcB
在ΔPcA和ΔPcB中
∴ΔPcA≌ΔPcB
即:PA=PB。
反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?
过P,P1做直线EF交AB于c,可证明ΔPAP1≌PBP1
∴EF是等腰三角型ΔPAB的顶角平分线
∴EF是AB的垂直平分线
∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
根据上述定理和逆定理可以知道:直线mN可以看作和两点A、B的距离相等的所有点的集合。
线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。
三、举例
例:已知,如图ΔABc中,边AB,Bc的垂直平分线相交于点P,求证:PA=PB=Pc。
证明:∵点P在线段AB的垂直平分线上
∴PA=PB
同理PB=Pc
∴PA=PB=Pc
由例题PA=Pc知点P在Ac的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。
四、小结
正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。
五、练习与作业
练习:第87页1、2
作业:第95页2、3、4
《教案设计说明》
线段的垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹。在几何证明、计算、作图中都有重要应用。我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用。
在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线EF,在EF上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合。这样可以帮助学生认识理论于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。最后总结点P是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。为了使学生当堂掌握两个定理的灵活运用,让学生做87页的两个练习,以达到巩固知识的目的。
www.5y
kj.co
m
第三篇:线段垂直平分线的性质教学反思
《线段垂直平分线的性质》教学反思
芷江三中:杨丹丹
线段垂直平分线的性质定理和判定定理可以优化证明题目的方法,这是本课最为突出的地方,感触比较深刻的就是,学生得到了新知识新方法的那个喜悦劲儿,这主要得益于学生“预学案”的先行研究。
本课我们安排的教学流程是:画直线的垂直平分线,研究和证明线段的垂直平分线的性质;体会线段垂直平分线的性质的应用,学习例题1、2、3;提出问题:由PA=PB,能说明点P一定在线段AB的垂直平分线上吗?经过P点的直线是线段AB的垂直平分线吗?过渡到线段垂直平分线的判定的研究;在证明猜想时,提出是不是过点P作线段AB的垂直平分线,学生的反应比较热烈,补艳梅,邓津桥同学提出了作PC⊥AB,垂足为C,设法证明AC=BC;刘心语同学提出取AB的中点C,连接PC,证明PC⊥AB,学生讨论证明,得到了线段垂直平分线的判定定理,并总结出证明时是“作垂直,证平分”或者“作平分,证垂直”,由此体会到“过一点不可能作直线保证既垂直又平分”,思考的第二个问题也就容易解释了,提出如果有两个这样的点P,根据 “两点确定一条直线”就能够作出已知线段的垂直平分线了,适时地引出了例4的研究;最后进行提升学习,在训练中又可以有新的知识内容的收获。
2013年10月
第四篇:线段的垂直平分线教案一
线段的垂直平分线
教学目标(一)教学知识点
1.经历探索、猜测过程,能够运用公理和所学过的定理证明线段垂直平分线的性质定理和判定定理.
2.能够利用尺规作已知线段的垂直平分线.(二)思维训练要求
1.经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力. 2.体验解决问题策略的多样性,发展实践能力和创新精神. 3.学会与人合作,并能与他人交流思维的过程和结果.(三)情感与价值观要求
1.能积极参与数学学习活动,对数学有好奇心和求知欲.
2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点
1.能够证明线段的垂直平分线的性质定理、判定定理及其相关结论. 2.能够利用尺规作已知线段的垂直平分线. 教学难点
写出线段垂直平分线的性质定理的逆命题. 教学方法
探索——交流——合作法 教具准备 多媒体演示 教学过程
Ⅰ.创设现实情境,引入新课 教师用多媒体演示:
如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?
其中“到两个仓库的距离相等”三次闪烁,强调这几个字在题中有很重要的作用. [生]码头应建在线段AB的垂直平分线与在A,B一侧的河岸边的交点上.
[师]你为什么要这样做呢?
[生]我们在七年级时研究过线段的性质,线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴.我们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等.所以在这个问题中,要求在“A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等”利用此性质就能完成.
[师]这位同学分析得很详细,我们曾利用折纸的方法得到:线段垂直平分线上的点到线段两个端点的距离相等.你能用公理或学过的定理证明这一结论吗?
教师演示线段垂直平分线的性质:
定理
线段垂直平分线上的点到线段两个端点的距离相等. 同时,教师板演本节的题目: §1.3.1 线段的垂直平分线(一)Ⅱ.讲述新课
[师]我们从折纸的过程中得到了线段垂直平分线的性质定理,大家知道这是不够的,还必须利用公理及已学过的定理推理、证明它.现在就请同学们自己思考证明的思路和方法,并尝试写出证明过程.遇到困难,请同学们大胆提出来,我会给你启示.
[生]我有一个问题,要证“线段垂直平分线上的点到线段两个端点的距离相等”,可线段垂直平分线上的点有无数多个,需一个一个依次证明吗?何况不可能呢.
[师]谁有办法来解决此问题呢?
[生]我觉得一个图形上每一点都具有某种性质,只需在图形上任取一点作代表.
[师]我觉得这位同学的做法很好.我们只需在线段垂直平分线上任取一点代表即可,因为线段垂直平分线上的点都具有相同的性质. [师生共析] 已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点.
求证:PA=PB.
分析:要想证明PA=PB,可以考虑包含这两条线段的两个三角形是否全等. 证明:∵MN⊥AB,∴∠PCA=∠PCB=90°. ∵AC=BC,PC=PC,∴△PCA≌△PCB(SAS).
∴PA=PB(全等三角形的对应边相等).
教师用多媒体完整演示证明过程.同时,用多媒体呈现: 想一想
你能写出上面这个定理的逆命题吗?它是真命题吗?
[生]这个命题不是“如果„„那么„„”的形式,要写出它的逆命题,需分析原命题的条件和结论,将原命题写成“如果„„那么„„”的形式,逆命题就容易写出.
[师]谁来分析原命题的条件和结论呢?注意表述时要流畅,完整. [生]原命题的条件是“有一个点是线段垂直平分线上的点”.结论是“这个点到线段两个端点的距离相等”.
[师]有了这位同学的精彩分析,逆命题就很容易写出来.
[生]如果有一个点到线段两个端点的距离相等,那么这个点到线段两个端点的距离相等.
[师]谁能把它描述得更简捷?
[生]到线段两个端点的距离相等的点在这条线段的垂直平分线上. [师]当我们写出逆命题时,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.请同学们自行在练习册上完成. [生A]证法一:
已知:线段AB,点P是平面内一点且PA=PB. 求证:P点在AB的垂直平分线上.
证明:过点P作已知线段AB的垂线PC.∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL定理). ∴AC=BC,即P点在AB的垂直平分线上.
[生B]证法二:取AB的中点C,过PC作直线.
∵AP=BP,PC=PC,AC=CB,∴△APC≌△BPC(SSS).
∴∠PCA=∠PCB(全等三角形的对应角相等). 又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB. ∴P点在AB的垂直平分线上.
[生C]证法三:过P点作∠APB的角平分线.
∵AP=BP,∠1=∠2,PC=PC,∴△APC≌△BPC(SAS).
∴AC=DC,∠PCA=∠PCB(全等三角形的对应角相等,对应边相等). 又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°. ∴P点在线段AB的垂直平分线上.
[生D]证法四:过P作线段AB的垂直平分线PC.
∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分线上.
[生]前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂. [师]先请同学们看两个图.如图(1),PD⊥AB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下:过P作AB的垂直平分线“是不可能实现的,所以第四个同学的证法是错误的.
[师]从同学们的推理证明过程可知线段垂直平分线的性质定理的逆命题是真命题,我们把它称做线段垂直平分线的判定定理.
我们曾用折纸的方法折出过线段的垂直平分线.现在我们学习了线段垂直平分线的性质定理和判定定理,能否用尺规作图的方法作出已知线段的垂直平分线呢?
教师多媒体演示: 做一做
用尺规作线段的垂直平分线.
[师]要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两个端点距离相等的点在这条线段的垂直平分线上,那么我们必须找到两个到线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线.
下面我们一同来写出已知、求作、作法,体会作法中每一步的依据. [师生共析] 已知:线段AB(如图).
求作:线段AB的垂直平分线.
作法:1.分别以点A和B为圆心,以大于交于点C和D.
2.作直线CD.
直线CD就是线段AB的垂直平分线.
[师]根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线吗?请与同伴进行交流.
[生]从作法的第一步可知 AC=BC,AD=BD.
∴C、D都在AB的垂直平分线上(线段垂直平分线的判定定理). ∴CD就是线段AB的垂直平分线(两点确定一条直线).
[师]我们曾用刻度尺找线段的中点,当我们学习了线段垂直平分线的作法时,一旦垂直平分线作出,线段与线段垂直平分线的交点就是线段AB的中点,所以我们也用这种方法作线段的中点.
Ⅲ.随堂练习课本P25
1.如图,已知AB是线段CD的垂直平分线,E是AB上的一点.如果EC=7cm,那么ED=________cm;如果∠ECD=60°,那么∠EDC=________.
1AB的长为半径作弧,两弧相2
解:∵AB是线段CD的垂直平分线,∴EC=ED.又∵EC=7cm,∴ED=7cm.
∴∠EDC=∠ECD=60°.
2.已知直线l和l上一点P,利用尺规作l的垂线,使它经过点P. 已知:直线l和l上一点P.
求作:PC⊥l.
作法:1.以点P为圆心,以任意长为半径作弧,直线l相交于点A和B. 2.作线段AB的垂直平分线PC. 直线PC就是所求的垂线. Ⅳ.课时小结
本节课我们先推理证明了线段的垂直平分线的性质定理和判定定理,并学会用尺规作线段的垂直平分线.
Ⅴ.课后作业习题1.6第1、3题 Ⅵ.活动与探究
(1)在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40°,求∠NMB的大小;
(2)如果将(1)中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.(3)你发现了什么样的规律?试证明之;
(4)将(1)中的∠A改为钝角,对这个问题的规律性认识是否需要修改. [过程]由(1)、(2)不难认识到∠BMN的大小是∠A的一半,但也容易认为点M一定在BC的延长线上,通过(4)也就是让△ABC保持AB=AC的前提下发生变化,认识就会更全面、更准确了.
[结果](1)∵AB=AC,∴∠B=∠ACB(等边对等角). ∴∠B=11(180°-∠A)=×(180°-40°)=70°. 22∵∠BNM=90°,∴∠M=90°-∠B=90°-70°=20°〔如图(1)〕.(2)如图(2),同(1)求得∠BMN=35°.(3)如图(3),∠NMB的大小为∠A的一半. 证明:设∠A=α.
∵AB=AC,∴∠B=∠C(等边对等角). ∴∠B=1(180°-α). 211(180°-α)=α,22∵∠BNM=90°,∴∠BMN=90°-∠B=90°-即∠BMN等于顶角的一半.
(4)完整的叙述上述规律为:等腰三角形一腰上的垂直平分线与底边或底边的延长线相交,所成的锐角等于顶角的一半.
板书设计
§1.3.1 线段的垂直平分线(一)
一、线段垂直平分线的性质定理.
二、线段垂直平分线的判定定理.
三、用尺规作线段的垂直平分线.
第五篇:《线段的垂直平分线的性质与判定》教学设计
《线段的垂直平分线的性质与判定》教案
一 学习目标
1.掌握线段垂直平分线的性质与判定方法。
2.在动手感悟、总结、证明中感受知识的产生于发展过程。3.能应用线段垂直平分线的性质与判定解决简单问题。
二 学习重点
掌握线段垂直平分线的性质与判定方法,能应用解决简单问题。
三 学习难点
线段垂直平分线的性质与判定的由来以及应用。
四 教学过程
(一)课前检测
(学生独立完成,小组核对答案)
和点P(-3,2)关于y轴对称的点是()1.A.(3,2)
B.(-3,2)C.(3,-2)
D.(-3,-2)
下列英文字母属于轴对称图形的是()
2.、N B、S C、L D、E A 3.如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是)(,折痕所在的直线叫做()
4.在对称图形中,对称轴两侧相对的点到对称轴的()
对称轴_______连结两个对称点之间的线段(引出课题)5.(二)动手感悟
1.动手操作,猜想结论(让学生阅读教材相关内容,后说一说如何做一条线段的垂直平分线,简要做法,然后会做的自己按步骤完成,不会的跟着老师的演示完成,中间调控时间,让学生有足够的时间思考。)
(1)任意画一条线段AB,利用尺规画出这条线段的垂直平分线。
2)在垂直平分线上任取一点C,连接CA,CB((3)沿垂直平分线对折,观察CA,CB的数量关系?(4)你能用一句话来描述刚刚操作观察得出的结论吗?(慢慢把语言趋于简练和准确)
结论:
线段的垂直平分线上的点到线段的两个端点的距离相等。思考:这个结论成立吗?你能证明吗?(先独立思考,再小组讨论)2.总结线段垂直平分线的性质,写出符号语言表达(结合图形,对性质进行理解)
3.你能写出此性质的逆命题吗?它成立吗?
(1)先写出逆命题,小组内进行核对,全班检查。后根据写出的逆命题,画出图形,写出已知,求证。
(2)思考如何证明?四人小组内解析,讲解。(3)形成结论:
线段垂直平分线的判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。(画出图形,用符号语言来表示,进一步理解)
(三)基础过关(学生独立完成,核对答案)
A.20°
B.22.5°
C.25°
D.30° 4.如图:Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B的度数为()1.三角形三边的垂直平分线交于一点,且这点到三个顶点的距离_________.
2.到线段两端距离相等的点在这条线段的______.
3.已知线段AB外两点P、Q,且PA=PB,QA=QB,则直线PQ与线段AB的关系是____
(四)巩固提升(学生先独立思考,据情况进行小组讨论交流)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()
A.ED=CD
B.∠DAC=∠B
C.∠C>2∠B
D.∠B+∠ADE=90°
∠CAD=10°,则∠ACB=()
A.80°
B.90°
C.100°
D.110°
2.线段AB外有两点C,D(在AB同侧)使CA=CB,DA=DB,∠ADB=80°,3.已知:如图,在Rt△ABC中,∠A=90°,AB=6,AC=10,BC边上的垂直平分线DE交BC于点D,交AC于点E,求△ABE的周长。
(五)学以致用
1.威海市政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等。
(以A、B、C三点为顶点的三角形三边垂直平分线的交点)
2.在烟威高速公路L的同侧,有两个化工厂A、B,为了便于两厂的工人看病市政府计划在公路边上修建一所医院,使得两个工厂的工人都没意见,问医院的院址应选在何处?(AB垂直平分线与公路L的交点)(将实际问题转化为数学问题进行解答,渗透建模思想。)
(六)畅所欲言
这节课你有什么收获?给同学一点温馨提示
(七)布置作业
五 板书设计
六 教学反思
线段的垂直平分线
1.性质 2.判定