第一篇:2013-2014学年度九年级数学上期中试卷分析
2013-2014学年度九年级数学上学期
期中试卷分析
---城郊中学韩婷
本套试卷从整体上看质量比较高,类似于中考题型的布局,紧扣新教材,从学生知识能力的实际水平出发,无繁、难、偏、旧的题目,符合课程标准的要求。试卷在考查基础知识、基本技能的同时,注重对阅读理解能力、逻辑思维能力和运算能力的综合考查,体现了数学学科的特色。
一、试题特点分析
1、试卷在总体上体现了《新课程标准》的评价理念,重视了对学生学习数学知识与技能的结果和过程的评价,也关注了对学生在数学思考能力、计算能力和解决问题能力等方面发展状况的评价。突出了数学思想方法的理解与应用;注重了数学与现实的练系;关注了对获取数学信息能力以及“用数学、做数学”的意识的考查;特别是重视几何推理书写及计算结果的准确为我们以后的教学起了较好的导向作用。
2、重视双基,突出重点知识考查
试卷考查双基意图明显,所占分值较大。试题对基础知识的考查既注重了全面性,也突出重点。由二次根式.一元二次方程到圆的基本性质,每个知识点无不被包括,真正做到了让题型为知识服务。试卷也侧重了对一元二次方程和圆等主干知识进行了侧重考查。
3、重视与实际生活相联系,考查数学应用能力
试题贴近学生的实际生活,体现了数学与生活的联系。在考查中引导学生经历解决实际问题的过程,体验运用数学知识解决实际问题的情感,考查学生从实际问题中抽象数学模型的能力,培养用数学、做数学的意识。
4、重视数学思想方法的考查
初中数学中常见的整体思想、分类讨论、探索开放等数学思想方法在 1
试卷中得到充分体现。
二、成绩分析及主要错误情况:
本次考试我校共参加345人,校平均分65.34,合格率47.98,优秀率11.85,各班差距不大,其中班级最高平均分65.66,最低平均分50.66,合格率最高64.15,最低21.88,优秀率最高28.85,优秀率最低0.各题的得分情况统计:-10的得分率85%75%30%83%84% 90% 95% 75% 91% 15% 11-16的得分率45%53%75%40%35%30%
17-21的得分率53%95%48%40%85%
22-25的得分率25%30%10%15%
从以上统计的数据可以发现,我们的学生在逻辑推理方面相当欠缺,在问题的实际应用方面还没有开窍,至于动手操作方面,学生随让具备一定的意识,但仍然是今后教学努力的重点。
典型错误:
1、选择题第3.5.10错误比较多,反映了学生审题不细心,概念的理解不到位,特别是对文字语言的叙述的选项存在较大的恐惧心理。
2、填空题的主要错误在第13.15.16题,13题属于概念不清,区分不开相离.外离,15题前面已经讲过,学生不善于复习.整理,还是没有灵活理解方程的解及方程根与系数的关系。第16题学生根本不会利用题中已有的信息来解题,综合应用能力差。
3、解答题中19题是课本原题,但大部分学生书写不规范,做题不能步步有据,过程不严密。20题根据根的情况求K的取值,计算能力太差,不能正确求出方程的解。21题分母有理化的知识以阅读题的形式呈现给学生,题型灵活,注重应用,但在学生答卷中发现,最后计算结果未化简的现象较为普遍,这些都是送分题,但失分的考生不少。第22.23题学生失分比较严重,22题应用题,这种类型是平时这方面练的不少,比较简单,是利润问题,而大多数学生审题不清,没有考虑游费15750是多少人的费用到底超没超过20人,导致不会列方程。23题第2问对
AD弦的长度没有放在圆的角度考虑,若能理解AD是圆O的弦就比较简单。第24题既是分类讨论又是一个动态的问题,还是一个数型结合的问题,综合性比较强,对于刚学完圆的学生来说,理解有一定的难度。附加题实质上比较简单,数形结合,学生的阅读能力差,不会数形结合或者大多数学生直接放弃。
三、从学生的失分情况上分析教情与学情
1、基础题和中档题的落实还应加强。比如,学生必会,应该拿分的一些中档题得分情况并不理想。这是因为我们在教学中对学习困难的学生关注不够,课堂密度小,双基的落实不到位。
2、学生数学能力的培养上还有待加强。
(1)审题和数学阅读理解能力较弱。如第24题,学生根本就没有读懂题,也未考虑到应该分四种情况;还有第22题,其实在利润问题中,曾讲过这种类型,但学生根本就没有理解此题,造成思维混乱。因而,无从下手;造成严重失分。
(2)计算能力较弱。从所阅卷中可以看出,一部分学生的计算能力较弱。比如,第17题至第20题,这是送分题,但学生因计算能力太差,连最基本的解方程方程也未得满分。
(3)运用数学思想方法解决数学问题的能力还需加强。试卷设置了一些涉及到开放性、探究性、应用性的问题,比如:第21题,附加题等;从阅卷和最后的得分情况可以看到学生的得分率都不高,学生所学知识较死,应变能力也不好。这说明平时教学中,注重的只是告诉学生怎么解,而忽略了为什么这么解,也就是只有结果没有过程。造成学生应变差,题目稍有变化,就不知如何下手。学生不会综合运用所学知识结合数学思想去解决问题,这也是优秀率低的一个主要原因。
四、今后的措施
针对以上情况,我们九年级数学备课组认真进行了反思,并讨论了下一阶段改进措施:
1、客观的认识全县统一考试对我们学校的影响。取得好的成绩是提高我校知名度和信誉度的主要途径,同时,也是检验我们教学效果的重
要标尺。
2、继续搞好平时的集体备课,加强评价标准的研究,抓中辅差,培尖培优,巩固前半学期的成果,争取年级的各项指标更大的提高。
3、帮助学生认识学习的重要性,在现在的年龄段就是学习,为以后的人生道路打好基础。引导学生从自己的切身利益出发,正确给自己定位,树立近期目标和长远目标。确立切实的学习目标,让每个学生学习有方向,有盼头,激发学生的学习兴趣,挖掘学生的学习潜力,调动学生的学习动力。
4、认清新课程标准的评价理念,掌握数学学科的知识体系在初中阶段的具体内容,进一步作好课堂教学与课外辅导。
5、立足课本,加强基础知识的巩固,让学生在理解的基础上掌握概念的本质,并能灵活运用。对基础较差的学生,耐心指导他们将知识内容落实到位,让他每节课都有一点收获。重视对基础知识的精讲多练,让学生在动手的过程中巩固知识,提高能力。
6、加强基本方法的训练,在教学过程中要不断引导学生归纳一些常见的题型的一般解题方法,以便让学生在以后的学习过程中能够触类旁通。
7、加强数学思想方法的渗透,提高学生的数学素养及综合解决问题的能力。
8、强化过程意识,注意数学概念、公式、定理,法则的提出过程,重视知识的形成、发展过程,解题思路的探索过程,解题方法和规律的概括过程,让学生展开思维,弄清楚其背景和来源,真正理解所学知识,学习分析、解决问题的方法。
9、重视对试题、教材的研究,多分析中考试卷的命题方向,常见题型进行针对性训练对学生进行一些解题技巧方面的指导。
本次考试让我们数学组对新课程的含义理解的更深刻,明确了努力的方向,只有踏踏实实的学习《课标》,可将知识落实到课堂上,课改才会为我们的课堂带来改变,才会改变我们的教学,改变我们的学生。
第二篇:九年级数学上学期期末试卷分析
2010--2011学上学期期末九年级数学试卷分析
黄尾中心学校王小华
一、总体评价
本套试题本着“突出能力,注重基础,创新为魂”的命题原则。突出了数学学科是基础的学科,八年级数学在中考中占的比例又大的特点,在坚持全面考察学生的数学知识、方法和数学思想的基础上,积极探索试题的创新,试卷层次分明、难易有度,既有对基础知识、基本技能的基础题,又有对数学思想、数学方法的领悟及数学思维的水平客观上存在差异的区分题,试题的立意鲜明,取材新颖、设计巧妙,贴近学生生活实际,体现了时代气息与人文精神的要求。并且鼓励学生创新,加大创新意识的考察力度,突出试题的探索性和开放性,整套试卷充分体现课改精神。
二、试题的结构、特点的分析
1.试题结构的分析
本套试题满分120分,六道大题包含21道小题,其中客观性题目占57分,主观性题目占63分。
2.试题的特点
(1)强调能力,注重对数学思维过程、方法的考查
试卷中不仅考查学生对八年级数学基础知识的掌握情况,而且也考查了学生以这些知识为载体,在综合运用这些知识的过程中所反映出来的基本的数学能力,初中阶段数学能力主要是指运算能力、思维能力和空间想象能力,以及运用所学知识分析、解决问题的能力等。
(2)注重灵活运用知识和探求能力的考查
试卷积极创设探索思维,重视开放性、探索性试题的设计,如第7题、10题、11题,考查学生灵活运用知识与方法的能力;第15题、16题、18题等具有开放性、探索性,有利于考查不同层次的学生分析、探求、解决问题的能力。
(3)重视阅读理解、获取信息和数据处理能力的考查
从文字、图象、数据中获取信息和处理信息的能力是新课程特别强调的。如第10题、19题、20题、21题等,较好地实现了对这方面能力的考查,强调了培养学生在现代社会中获取和处理信息能力的要求。
(4)重视联系实际生活,突出数学应用能力的考查
试卷多处设置了实际应用问题,如第20、21题,考查学生从实际问题中抽象数学模型的能力,体验运用数学知识解决实际问题的情感,试题取自学生熟悉的生活实际,具有时代气息与教育价值,如21题,让学生感到现实生活中充满了数学,并要求活学活用数学知识解决实际问题的能力,有效地考查了学生应用数学知识解决实际问题的能力,培养用数学,做数学的意识。
三、试题做答情况分析
试题在设计上注意了保持一定的梯度,不是在最后一题难度加大,而是注意了难度分散的命题思想,使每个学生在每道题中都能感到张弛有度。
通过对八0一班53份数学试卷进行分析,本次测试八0一班的平均分是64.4分,及格率是40%,优秀率是30%,最高分是120分。从53份试卷中可以看出答得较好的有第一题的1、4、8题,第二题的11、13题,第三题的15题,答得一般的有第三题的16题,答得较差的是第七题的21题的第二问。
四、教学启示与建议
通过对以上试卷的分析,在今后的教学过程中应注意以下几个方面: 1.研读新课程标准,以新课程理念指导教学工作
平时教学要研读数学课程标准,将数学课程标准所倡导的教学理念落实到自己的教学中。从学生已有知识和生活经验出发,创设问题情境,激发学生的学习积极性,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学经验。
2.面向全体,夯实基础
正确理解新课标下“双基”的含义,数学教学中应重视基本概念、基本图形、基本思想方法的教学和基本运算及分析问题、解决问题、运用等能力的培养。面向全体学生,做到用课本教,而不是教课本,以课本的例题、习题为素材,结合
2本校的实际情况,举一反三地加以推敲、延伸和适当变形,以期达到初中生“人人掌握必须的数学”,同时要特别关心数学学习困难的学生,通过学习兴趣培养学习方法指导,使他们达到学习的基本要求,充分体现教育的价值在于“让不同的学生得到不同的发展。”
3.注重应用,培养能力
数学教学中应经常关注社会生活,注重情感设置,引导学生从所熟悉的实际生活中和相关学科的实际问题出发,通过观察分析,归纳抽象出数学概念和规律,让学生不断体验数学与生活的联系,在提高学习兴趣的同时,培养学生的分析能力和建模能力;同时要加强思维能力和创新意识的培养,在教学中,要激发学生的好奇心和求知欲,通过独立思考,不断追求 新知,发现、提出、分析并创造性的解决问题,使数学学习成为再发现、再创造的过程,教师应选配或设计一定数量的开放性问题、探索性问题,为培养学生的创新意识提供机会,鼓励学生对某些数学问题进行探讨。
以上是我对上学期期末九年级数学试卷的分析,我相信在下学期的数学教学中,九0一班的数学成绩一定会跃上一个新的台阶,做好中考前的最后冲刺,在中考中打一个漂亮的翻身仗。
二〇一一年二月二十日
第三篇:九年级数学上学期工作总结
2010-2011学第一学期大塘中学九年级(4)班
数学教学工作总结
授课教师:管茹
今学期已结束,在本学期的教育教学工作中,我担任九年级(4)班的数学教学,虽经过一学期努力,但与兄弟学校存在一定差距,究其原因,主要忽略了学生心理方面的教育,影响了考试成绩的提高,为了今后在教育教学工作中做更加完善,为了克服缺点,发扬成绩,现总结如下:
1、做好课前准备工作: 除认真钻研教材,研究教材的重点、难点、,吃透教材外,还要深入了解学生,但也要考虑到学生通过学习会有变化,我根据学生情况拟定了课堂上辅导方案,使课堂教学中的辅导有针对性,避免盲目性,提高了实效。在了解学生中还要注意了解每个学生的知识水平、智力水平和个性心理品质,考虑影响学生学习的各种因素,并研究相应对策。把教材和学生实际很好地结合起来。
2、做好课堂工作:(1)首先搞好组织教学,这是顺利进行正常教学的保证。我们知道,组织教学的任务就是把全班学生的注意力自始至终组织到当堂课的学习任务上来。教师既要亲切又要严肃,要使课堂气氛活而不乱,尽量避免学生产生压抑和过度焦虑,使学生在和谐的气氛中发挥出正常的智力水平,高效地进行学习。(2)其次是复习旧课,引入新课。根据学生掌握知识的情况以及涉及本课的有关知识进行复习,要简明扼要,抓住要点,点穿实质,然后,自然过渡,引入新课,明确学习要求,以保证教学过程的计划性和完整性。充分地照顾了学生学习上的差异,达到了班集体与个别化相结合。(3)再次是学生根据教师要求独立进行学习活动。在理解教材内容的基础上做练习,每做一道大题或一个练习就核对答案,改错,及时反馈学习效果,自己不能解决的问题及时请教老师。在学
生自学、自练、自检等独立活动中,教师一方面巡回辅导,另一方面根据备课时所掌握的学生情况,具体地,有目的地,有针对性地帮助指导每一个学生。具体地说,对于学习思维品质不踏实的学生,要注意用具体的事例,通过严格要求,逐渐培养他们的踏实品质;对于学习成绩优异者,应指导他们向深度、广度发展,向他们提出进一步深入学习的要求,并具体落实,让他们能够充分利用课堂上这段宝贵的时间,充分发挥其潜力,提高效率,超额超前完成学习任务,对于学习基础较差,思维不敏捷的学生,应加强重点辅导。在这里教师掌握每个学生的情况和把握整个课堂,始终处于积极主动的状态非常重要。在教师主动积极的辅导中,要善于根据学生的不同情况,设计不同的问题,采用不同的方式,主动地去引导、启发学生,可问他是怎样想的?怎佯理解的?听一听他们的见解掌握他们的情况,并进行有针对性,切合实际的个别辅导,真正做到因材施教。这对于提高差生,大面积提高初中数学教学质量是会起到一定作用的。差生形成的原因虽然是多方面的,但是学生的学习基础,学习兴趣,学习动机,学习方法等方面是值得引起我们注意的问题。在课堂教学中,教师加强了对差生的辅导,耐心地帮助他们,一方面解决了学习中产生的问题,补了基础,教了方法,更重要的是增强了他们的信心,提高了他们的兴趣,对他们精神上是一个很大的激励,他们感到教师关心他,从未放弃他,只要老师坚持不懈,会逐渐增强学生的学习兴趣,从而产生强烈的学习动机,不断地提高学习水平。我们深信,对于差生的事,只要我们的工作真正做到家,在自学辅导教学中,是会有所收获的。
3、课后做好作业检查和辅导。‘
4、抓好单元目标过关测试。
5、多用激励教学法,与分层教学相适应,在单元测验采用多次层能力达标检测。对部份基础差的学生可以给些相对易一些的题目来检测。这样一来,一些班的学生也可以考上一百多分。感受到了成功的喜悦,他们当中的一些人不再那么讨厌数学,不再把数学学习当成一种负担了。存在问题是:
①学生学习目的不明确,产生讨厌学习的情绪;
②学生作业质量差,有抄作业现象,更不说课后复习;
③受不良风气影响较大;
④上课人在心不在,应付了事。
今后努力的方向、加强学习,学习新课标下新的教学思想。、学习新课标,挖掘教材,进一步把握知识点和考点。、多听课,学习同科目教师先进的教学方法的教学理念。、加强转差培优力度。、加强教学反思,加大教学投入。
6、抓好教学进度,尽快结束教学任务,争取更多的时间来进行总复习.7、在讲授新课时,经常复习旧知识,不让旧知识被遗忘.8、平时多关注临界生,对学困生多关心.9、多做学困生的思想工作.总之,今后在教育教学中,努力钻研教材,备好课,讲好课,不断改进教法,提高教学质量,调动学生的学习积极性,搞好课堂效果,热爱本职工作,为教育事业努力。
2011年1月
第四篇:2018八年级数学上期中试卷
一、选择题
1.下列说法正确的是()A.1的立方根是﹣1 B. =±2 C. 的平方根是3 D.0的平方根是0 2.下列运算正确的是()
A.a2•a3=a6 B.(a3)3=a9 C.(2a2)2=2a4 D.a8÷a2=a4 3.在实数,0,,0.1010010001…(两个1之间依次多一个0),中无理数有()A.2个 B.3个 C.4个 D.5个
4.若改动多项式3a2+12ab+b2中某一项,使它变成完全平方式,则改动的方法是()A.只能改动第一项 B.只能改动第二项
C.只能改动第三项 D.可以改动三项中任意一项
5.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+1 6.下列命题不正确的是()
A.立方根等于它本身的实数是0和±1 B.所有无理数的绝对值都是正数
C.等腰三角形的两边长是6和9,则它的周长是21或24 D.腰长相等,且有一个角是45°的两个等腰三角形全等
7.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于点S,则下列三个结论:①AS=AR;②QP∥AR;③△APR≌△QPS中()
A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确
8.如图,一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正
方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()
A.7个 B.8个 C.9个 D.10个
二、填空题
9.1 的算术平方根是,﹣ =
. 10.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:
. 11.若 与 互为相反数,则x+y的平方根是
.
12.已知﹣5x2与一个整式的积是25x2+15x3y﹣20x4,则这个整式是
. 13.计算:()2014×1.52013÷(﹣1)2014=
.
14.已知5+ 小数部分为m,11﹣ 为小数部分为n,则m+n=
.
15.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于点F,若△AEF的周长为16,则AB+AC的值为
.
16.32x=2,3y=5,则求34x﹣2y=
.
17.如图所示,AB=AC,AD=AE,∠BAC=∠DA E,∠1=25°,∠2=30°,则∠3=
.
18.如图所示,点B、C、E在同一直线上,△ABC与△CDE都是等边三角形,则下列所有正确的结论序号为
①△ACE≌△BCD,②BG=AF,③△DCG≌△ECF,④△ADB≌△CEA,⑤DE=DG,⑥∠AOB=60°.
三、解答题
19.把下列多项式分解因式(1)2xy2﹣8x(2)4a2﹣3b(4a﹣3b)20.计算或化简
(1)(﹣ a2b)3÷(﹣ a2b)2× a3b2(2)(2+1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)
21.先化简再求值,(ab+1)(ab﹣2)+(a﹣2b)2+(a+2b)(﹣2b﹣a),其中a=,b=﹣ .
22.如图,两个正方形边长分别为a、b,如果a+b=17,ab=60,求阴影部分的面积.
23.阅读下列文字与例题
将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.
例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2 +2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)参考上面的方法解决下列问题:(1)a2+2ab+ac+bc+b2=
;
(2)△ABC三边a、b、c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.
24.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;
(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.
25.将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直线顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C、A1B1交于点D、E,AC与A1B1交于点F.(1)求证:BD=B1F;
(2)当旋转角等于30°时,AB与A1B1垂直吗?并说明理由;
(3)根据图1直接判断命题“直角三角形中30°角所对的边等于斜边的一半”的真假
(填真命题或假命题);将图2中三角板ABC绕点C顺时针旋转至图3的位置,当AB∥CB1时,请直接写出A1D与CD的数量关系:
参考答案与试题解析
一、选择题
1.下列说法正确的是()A.1的立方根是﹣1 B. =±2 C. 的平方根是3 D.0的平方根是0 【解答】解:A、1的立方根是1,故选项错误; B、=2,故选项错误; C、=9,9的平方根是±3,故选项错误; D、0的平方根是0,故选项正确. 故选:D.
2.下列运算正确的是()
A.a2•a3=a6 B.(a3)3=a9 C.(2a2)2=2a4 D.a8÷a2=a4 【解答】解:A、应为a2•a3=a5,故本选项错误; B、(a3)3=a9,正确;
C、应为(2a2)2=4a4,故本选项错误; D、应为a8÷a2=a6,故本选项错误. 故选:B.
3.在实数,0,,0.1010010001…(两个1之间依次多一个0),中无理数有()A.2个 B.3个 C.4个 D.5个 【解答】解: =0.5,=2,无理数有:,0.1010010001…,共3个. 故选:B.
4.若改动多项式3a2+12ab+b2中某一项,使它变成完全平方式,则改动的方法是()A.只能改动第一项 B.只能改动第二项
C.只能改动第三项 D.可以改动三项中任意一项
【解答】解:若改动多项式3a2+12ab+b2中某一项,使它变成完全平方式,则改动的方法是只能改动第三项,故选:C.
5.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+1 【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意; B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意; C、x2﹣2x+1=(x﹣1)2,故C选项不合题意; D、x2+2x+1=(x+1)2,故D选项符合题意. 故选:D.
6.下列命题不正确的是()
A.立方根等于它本身的实数是0和±1 B.所有无理数的绝对值都是正数
C.等腰三角形的两边长是6和9,则它的周长是21或24 D.腰长相等,且有一个角是45°的两个等腰三角形全等
【解答】解:A、立方根等于它本身的实数是0和±1,所以A选项为真命题; B、所有无理数的绝对值都是正数,所以B选项为真命题;
C、等腰三角形的两边长是6和9,则它的周长是21或24,所以C选项为真命题;
D、腰长相等,且有一个角是45°的两个等腰三角形不一定全等,所以D选项为假命题. 故选:D.
7.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于点S,则下列三个结论:①AS=AR;②QP∥AR;③△APR≌△QPS中()
A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确 【解答】解:如图,在Rt△APR和Rt△APS中,∴Rt△APR≌Rt△APS(HL),∴AR=AS,①③正确; ∠BAP=∠PAS,∵AQ=PQ,∴∠PAQ=∠APQ,∴∠BAP=∠APQ,∴QP∥AB,②正确,故选:A.
8.如图,一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正 方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()
A.7个 B.8个 C.9个 D.10个
【解答】解:当BC=BP时,△BCP为等腰三角形; 当P与B重合时,△APC为等腰三角形;
当P运动到AB边的中点时,PD=PC,此时△PCD为等腰三角形; 当P与A重合时,△PBD为等腰三角形; 当PA=AD时,△PAD为等腰三角形;
当AP=AC时,△APC是等腰三角形,这时有2个; 当BD=BP时,△BDP 是等腰三角形,这时有2个; 综上,直线AB上会发出警报的点P有9个. 故选:C.
二、填空题
9.1 的算术平方根是,﹣ = .
【解答】解:1 的算术平方根是,﹣ =﹣ = . 故答案为:,.
10.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式: 如果两条直线垂直于同一条直线,那么这两条直线平行 .
【解答】解:把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.
11.若 与 互为相反数,则x+y的平方根是 ±1 . 【解答】解:∵ 与 互为相反数,∴3x﹣7+3y+4=0,3x+3y=3,x+y=1,即x+y的平方根是±1,故答案为:±1.
12.已知﹣5x2与一个整式的积是25x2+15x3y﹣20x4,则这个整式是 ﹣5﹣3xy+4x2 . 【解答】解:∵﹣5x2与一个整式的积是25x2+15x3y﹣20x4,∴(25x2+15x3y﹣20x4)÷(﹣5x2)=﹣5﹣3xy+4x2.
故答案为:﹣5﹣3xy+4x2.
13.计算:()2014×1.52013÷(﹣1)2014= . 【解答】解:()2014×1.52013÷(﹣1)2014 =(×)2013× ÷1 =1× ÷1 =,故答案为: .
14.已知5+ 小数部分为m,11﹣ 为小数部分为n,则m+n= 1 . 【解答】解:∵4<7<9,∴2< <3,∴7<5+ <8,8<11﹣ <9,∴m=5+ ﹣7= ﹣2,n=11﹣ ﹣8=3﹣,∴m+n= ﹣2+3﹣ =1. 故答案为:1.
15.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于点F,若△AEF的周长为16,则AB+AC的值为 16 .
【解答】解:∵EF∥B C,∴∠BOE=∠OBC,∠COF=∠OCB,∵在△ABC中,∠ABC和∠ACB的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EBO=∠BOE,∠FCO=∠COF,∴BE=OE,CF=OF,∴△AEF的周长为:AE+EF+AF=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC,∵△AEF的周长为16,∴AB+BC=16,故答案为16.
16.32x=2,3y=5,则求34x﹣2y= . 【解答】解:原式= =,当32x=2,3y=5时,原式= = . 故答案为: .
17.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55° .
【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.
18.如图所示,点B、C、E在同一直线上,△AB C与△CDE都是等边三角形,则下列所有正确的结论序号为 ①②③⑥
①△ACE≌△BCD,②BG=AF,③△DCG≌△ECF,④△ADB≌△CEA,⑤DE=DG,⑥∠AOB=60°.
【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中
,故①成立;
∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中
,∴△BGC≌△AFC,∴BG=AF. 故②成立;
∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中
,∴△DCG≌△ECF,故③成立;
∵△BCD≌△ACE,∴∠CDB=∠CEA,∵△ABC和△CDE都是等边三角形,∴∠BCA=∠ECD=60°,∴∠ACD=60°,∴∠BCD=120°,∴∠DBC+∠BDC=60°,∴∠DBC+∠AEC=60°. ∵∠AOB=∠DBC+∠AEC,∴∠AOB=60°. 故⑥成立;
在△ADB和△CEA中,只有AB=AC,BD=AE,两边对应相等不能得到两三角形全等;故④不成立;
若DE=DG,则DC=DG,∵∠ACD=60°,∴△DCG为等边三角形,故⑤不成立. ∴正确的有①②③⑥. 故答案为①②③⑥.
三、解答题
19.把下列多项式分解因式(1)2xy2﹣8x(2)4a2﹣3b(4a﹣3b)
【解答】解:(1)原式=2x(y2﹣4)=2x(y+2)(y﹣2);(2)原式=4a2﹣12ab+9b2=(2a﹣3b)2.
20.计算或化简
(1)(﹣ a2b)3÷(﹣ a2b)2× a3b2(2)(2+1)×(22+ 1)×(24+1)×(28+1)×(216+1)×(232+1)【解答】解:(1)(﹣ a2b)3÷(﹣ a2b)2× a3b2 =﹣ a6b3÷ a4b2× a3b2 =﹣ a2b× a3b2 =﹣2a5b3(2)(2+1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)=(2﹣1)(2+1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)=(22﹣1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)=(24﹣1)×(24+1)×(28+1)×(216+1)×(232+1)=(28﹣1)×(28+1)×(216+1)×(232+1)=(216﹣1)×(216+1)×(232+1)=(232﹣1)×(232+1)=264﹣1
21.先化简再求值,(ab+1)(ab﹣2)+(a﹣2b)2+(a+2b)(﹣2b﹣a),其中a=,b=﹣ .
【解答】解:原式=a2b2﹣ab﹣2+a2+4b2﹣4ab﹣2ab﹣a2﹣4b2﹣2ab,=a2b2﹣9ab﹣2,当a=,b=﹣ 时,原式= × +9× × ﹣2= + ﹣2= ﹣2= .
22.如图,两个正方形边长分别为a、b,如果a+b=17,ab=60,求阴影部分的面积.
【解答】解:∵a+b=17,ab=60,∴S阴影=S正方形ABCD+S正方形EFGC﹣S△ABD﹣S△BGF =a2+b2﹣ a2﹣(a+b)•b=a2+b2﹣ a2﹣ ab﹣ b2= a2+ b2﹣ ab =(a2+b2﹣ab)= [(a+b)2﹣3ab]= ×(172﹣3×60)= .
23.阅读下列文字与例题
将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.
例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)参考上面的方法解决下列问题:
(1)a2+2ab+ac+bc+b2=(a+b)(a+b+c);
(2)△ABC三边a、b、c满足a2﹣ab﹣ac+ bc=0,判断△ABC的形状. 【解答】解:(1)原式=(a+b)2+c(a+b)=(a+b)(a+b+c); 故答案为:(a+b)(a+b+c);(2)a2﹣ab﹣ac+bc=0,整理得:a(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a﹣c)=0,解得:a=b或a=c,则△ABC为等腰三角形.
24.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;
(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.
【解答】(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.
证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,∴△BCE≌△CAM(AAS),∴BE=CM.
25.将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直线顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C、A1B1交于点D、E,AC与A1B1交于点F.(1)求证:BD=B1F;
(2)当旋转角等于30°时,AB与A1B1垂直吗?并说明理由;
(3)根据图1直接判断命题“直角三角形中30°角所对的边等于斜边的一半”的真假 真命题(填真命题或假命题);将图2中三角板ABC绕点C顺时针旋转至图3的位置,当AB∥CB1时,请直接写出A1D与CD的数量关系: A1D=CD
【解答】解:(1)由题意知,BC=BC1,∠B=∠B1,∠ACB=∠A1CB1=90°,由旋转知,∠A1CB=∠A CB1,在△BCD和△B1CF中,∴△BCD≌△B1CF,∴BD=B1F;
(2)AB与A1B1垂直,理由:∵旋转角为30°,∴∠ACA1=30°,∴∠B1CF=90°﹣30°=60°,∵∠B1=60°,∴∠B1FC=180°﹣∠B1﹣∠ACB1=60°,∴∠AFE=60°,∵∠A=30°,∴∠AEF=180°﹣∠A﹣∠AFE=90°,∴AB⊥A1B1;
(3)由题意知,∠BAC=∠B1AC=30°,∠B=∠B1,∴△ABA1是等边三角形,∴BB1=AB,∵BB1=B C+B1C=2BC,∴BC= AB,∴直角三角形中30°角所对的边等于斜边的一半,故答案为:真命题; ∵AB∥CB1,∴∠ACB1=∠A=30°,∴∠ACD=90°﹣30°=60°,∴∠ADC=180°﹣∠A﹣∠ACD=90°,在Rt△ACD中,∠A=30°,∴CD= AC(直角三角形中30°角所对的边等于斜边的一半),∵AC=A1C,∴CD= A1C,∵A1D+CD=A1C,∴A1D=CD,故答案为:A1D=CD.
第五篇:人教版九年级数学上复习计划
九年级数学上学期期末复习计划
九年级数学上学期内容较多,而下学期开学时间又在三月初,离中考时间已经很近了,因此本学期不仅要完成九年级(上)数学学习任务,有必要对九年级(下)“二次函数”一章进行教学,导致本学期复习时间较短,最多只有两周左右的复习时间。根据实际情况,特作计划如下:
(一)复习目标
(1)第21章22章“二次根式”“一元二次方程”主要是计算,教师提前先把概念、性质、方法综合复习,加入适当的练习,特别是“一元二次方程”的三个重要题型:①一元二次方程的定义:②一元二次方程的解法;③一元二次方程的应用。在课堂上要逐一对这些题型归纳讲解,多强调解题方法的针对性。最后针对平时练习中存在的问题,查漏补缺。
(2)第23章是几何部分。这章的重点是旋转的性质及其生活中的应用。所以记住性质是关键,学会应用是重点。要学会生活中的旋转是随时都可以转化成数学问题,不同图形之间的区别和联系要非常熟悉,形成一个有机整体。对常见的旋转题要多练多总结。
(3)第24章主要是“圆”的教学,对这章的考试题型中实际问题背景学生可能不一定熟悉,所以要以与课本同步的题型为主,要熟记圆的垂径定理,让学生积极动手操作直角三角形与垂径定理之间的联系,并得出结论,课堂上教师讲评,尽量是精讲多练,该动手的要多动手,尽可能的让学生自己总结出圆与多种几何图形结合的实际应用问题的方法。
(二)复习方法
(1)强化训练
这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。特别是二次函数,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。
(2)加强管理严格要求
根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。对能力较强的学生要引导他们多做课外习题,适当提高做题难度,我校各班级有针对性的选择资料,要求学生能完成,教师要批改。
(3)加强证明题的训练
通过近三年的学习,我发现还有部分学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。力争让学生把各种类型题做全并抓住其特点。
(4)加强学困生的辅导
制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会,同时要配合班主任和家长搞好对学生的家庭辅导工作。
(三)课时安排
本次复习共10天左右的时间,具体安排如下:
第一部分:二次根式和一元二次方程复习时间:12月13—15
第二部分:旋转和概率初步复习时间:12月16—20
第三部分:圆复习时间:12月21—24
第四部分:二次函数复习时间:12月27—31