教学目标:
1、整理有关代数的初步知识,使学生形成知识网络,并能解决有关的实际问题,使认知水平有所提高。
2、通过对知识的梳理,培养学生整理、概括知识的能力。
3、通过情境的创设,使学生自主的对所学的知识进行整理,进行一定的学习方法的渗透。
4、在整理知识、解决问题的实践活动中,初步意识到整理知识的重要性,并逐渐养成边学习边整理知识的习惯。
教学重点:梳理知识,形成网络。
教学难点:综合动用知识解决实际问题。
教学过程:
一、借助一个有趣的知识导入对代数知识的整理。
(1)师:在某地,蟋蟀的叫的次数除以7再加上3就等于当地的气温。
(2)提问:①你能用一个算式表示出它们的关系吗?
②这涉及到了我们学过的哪些知识?
(3)出示课题。
二、小组合作,自主梳理有关代数的知识。
1、回忆知识点:提问:自已看书,看代数的初步知识,可以分为几部分?
2、全班交流:教师课件演示。(用字母表示数、简易方程、运算定律、比和比例、方程的解、解方程、数量关系、计算公式、列方程解应用题、求积公式)
3、整理知识点:
提出要求:以小组为单位对这些知识进行整理,看哪个小组整理得简洁、清晰、与众不同。
4、学生汇报整理的情况:
数量关系
用字母表示数运算定律
计算公式(或使用树状结构的方式等)
方程
简易方程方程的解
解方程
5、组织评价:提问:①你更喜欢哪种方式?②他们都是根据什么进行整理的?
6、师:这节课我们重点复习用字母表示数和简易方程。
三、在实践活动中巩固提高
1、出示:用含有字母的式子表示下面的数量关系。
(1)学校去年种桔树a棵,今年比去年的2倍多6棵。今年种()棵
(2)商店原有洗衣机a台,现在又运进30台,现在共有洗衣机()台
(3)甲乙两人共同制造一批零件。甲制造a个,乙每小时制造b个,乙工作了4.5小时,两人就完成了任务。这批零件共()个。
(4)李红a天看了60页书,照这样计算,看完这本书需要b天,这本书共()页。
想一想,书写含有字母的式子要注意什么?
2、复习简易方程,小组同学互相说说:方程、方程的解和解方程这三个概念有什么不同?
3、判断下面各式是不是方程
(1)X-42=78÷3(2)4X﹤9(3)5X-2X=150
(4)2X-16
监控:
(1)(2)、(4)为什么不是方程?
(2)动手解(1)、(3)两个方程
(3)解方程时要注意点什么呢?
4、解决实际问题(选择其中之一)
①再多一些梯形,周长可以用什么表示?
②用字母表示梯形的数量和周长之间的关系?
③周长是299个,这个图形是由多少个梯形组成的?
(2)课件演示:由重庆到淄博,乘火车要花400元,用餐2天;到了淄博后,住5天,用餐5天。
①用含有字母的式子表示淄博一行的人武部开支。(每天用餐a元,住宿b元)
整理后:800+9a+5b
②你觉得每天用餐、住宿开支多少元合适?请你设计一下?
③评价设计方案
代数知识复习
选择题(每题3分,共30分)
1.下列运算正确的是()
22235A.a6a2a3B.5a3a2aC.(a)aaD.5a2b7ab
2的结果是()
A.-2B.±2C.2D.
43、从2010年4月14日青海玉树地震发生后,截止至4月23日15时,中华慈善总会接收社会各界通过银行捐赠的玉树地震救灾款已达5.95亿元。用科学记数法保留两位有效数字表示“5.95亿”应记为()
A、5.95×1010B、5.9×109C、6.0×108D、5.9×1074、不等式组2x40的解集在数轴上表示正确的是()
A
B
CD
5.若抛物线yax22xc的顶点坐标为(2,3),则该抛物线有()
A.最大值3B.最小值3C.最大值2D.最小值
26.已知关于x的方程2x2-9x+n=0的一个根是2,则n的值是()
A.n=2B.n=10C.n=-10D.n=10或n=2
7.若关于x的一元二次方程nx22x10无实数根,则一次函数y(n1)xn的图像不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
8.如图,在某中学生耐力测试比赛中,甲、乙两学生测试的路程s(米)与时间t(秒)之间的函数关系的图象分别为折线
OABC和线段OD,下列说法正确的是()A、乙比甲先到终点;B、乙测试的速度随时间增加而增大;C、比赛进行到29.4秒时,两人出发后第一次相遇;D、比赛全程甲的测试速度始终比乙的测试速度快
9.如图,边长为4的正方形OABC放置在平面直角坐标系中,OA在x轴正半轴上,OC在y轴正半轴上,当直线yxb中的系数b从0开始逐渐 变大时,在正方形上扫过的面积记为S.则S关于b的函数图像是()
瀚识教育
10.在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是2816cm2,设金色纸边的宽为xcm,那么x满足的方程是()
A.(602x)(402x)2816
B.(60x)(40x)2816
C.(602x)(40x)2816
D.(60x)(402x)2816
一、填空题(每题3分,共18分)
11、不等式–3x25的解集是
12、若二次根式a 与是同类二次根式,则ab = ______________________
13、观察下列等式(式子中的“!”是一种数学运算符号)1!= 1,2!= 2×1,3!= 3×2×1,4!= 4×3×2×1,„„,那么计算:
14、关于x的一元二次方程 k1xk212009!=__________。2010!6x80 的解为_________________.
15.已知关于的方程x2-px+q=0的两个根是0和-3,则
P=______ , q=__.
216、如图为二次函数y的图象,给出下列说法: axbxcx
21,x3xbxc0①ab0;②方程a的根为x;③12
abc01x3;④当x1时,y随x值的增大而增大;⑤当y0时,. 其中,正确的说法有.(请写出所有正确说法的序号)
二、解答题(共72分)
3 x5y1917、(10分)计算:①、2sin60º+21-(
2010)0–②、4x3y618、(6分)解方程:
19.(8分)先化简,再求值:(20、某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.
⑴求每件T恤和每本影集的价格分别为多少元?
⑵有几种购买T恤和影集的方案?
21.关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2。
(1)求k的取值范围;
(2)如果x1+x2-x1x2<-1且k为整数,求k的值。
22、(10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单
3x20 x1x(x1)a2a14a1)a.,其中22a2aa4a4a
2价x(元)符合一次函数ykxb,且x65时,y55;x75时,y45.
(1)求一次函数ykxb的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
23、(10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
24、阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如23+=(1+).善于思考的小明进行了以下探索:
设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.
22∴a=m+2n,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子
=(+
分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+)2;
(3)若a+4=,且a、m、n均为正整数,求a的值?