第一篇:10.2二元一次方程组的解法(第一课时)
二元一次方程组的解法(第1课时)
学习目标:
1.通过探索,逐步发现解方程组的基本思想是“消元”,化二元—次方程组为一元一次方程。2.了解“代人消元法”,并掌握直接代入消元法。
3.通过代入消元,初步理解把“未知”转化为“已知”,和复杂问题转化为简单问题的思想方法。
重点:代入法解二元一次方程组。
难点:用含一个未知数的代数式表示另一个方程。
一、【温故知新】
1.什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解? 2.把下列方程写成用含y的式子表示x的形式:如,x+y=2,则x=2-y(1)2x-5y=3(2)3x+8y-1=0(3)3y-2x =-1
二、【创设情境】
诸城市将举行篮球联赛,比赛规则:每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,我校为了争取较好名次,想在全部22场比赛中得40分,请计算一下我校的胜负场数各是多少。1)如果设一个未知数:胜x场,可得一元一次方程. 2)如果设两个未知数:胜x场,负y场,可得方程组
3)请以小组为单位思考:得出的一元一次方程与二元一次方程组有什么关系?
三、【探索新知】
(一)情境分析:
用一个未知数表示另一个未知数 ⑴x+2y=4,所以x=________;⑵3x+4y=5,所以x=________,y=________.
(二)合作探究:
探究一:
1、在方程组①中,方程②说明y和4x是相等的,因此方程①中的y可以用————代替,从而方程①y=4x②
可变成一元一次方程,解这个一元一次方程可得x=,再把x的值代入①或②,可得到y=x=解:把代入得(②说明y和4x相等)
(①中消去y,只剩x,从而变为一元一次方程)
解得:x=(解出x的值)
把x=代入②得(可以代入①求y吗?)y=(求出y的值)
所以(写出方程组的解)
y=
2、二元一次方程组中有个未知数,消去其中的一个未知数,就把二元一次方程组转化成了我们熟悉的,我们可以先求出,然后再求出,这种将未知数由化,逐一解决的思想叫做消元思想。
3、把二元一次方程组中一个方程的一个未知数,用含另一个未知数的表示出来,再代入,从而转化为,进而求得这个二元一次方程组的解,这种消元方法叫代入消元法,简称代入法。探究二: 写出解二元一次方程组
xy22 ①2xy40 ②的过程
结论:用代入法解二元一次方程组的一般步骤是:
(1)将方程组中的一个方程变形,使得一个未知数能用含另一个未知数的代数式表示;
(2)用这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;
(3)把这个未知数的值代入代数式,求得另一个未知数的值;(4)写出方程组的解。
四、【巩固提升】
1、把方程2x=3y+7变形,用含y的代数式表示x,x=;用含x的代数式表示y,则y=。2.⑷
8x3y20
4x5y80
五、【课堂小结】
通过本节课的学习,谈谈你的收获和疑问。
六、【达标检测】
1、若
3x5a2b1y2
与5x6y3a2b14
是同类项,则,2、二元一次方程组xy1
kx2y5的解是方程x-y=1的解,则k=。
3、如果(5a-7b+3)2
+3ab5=0,求a与b的值。
4、若方程组
4xy5axby1与3xy9
有公共的解,求a,b.3ax4by18
第二篇:二元一次方程组第一课时教学设计
二元一次方程组(第一课时)
教学设计
一、教学目标
(-)知识目标
1.了解二元一次方程、二元一次方程组和它的解的概念.
2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.
3.会检验一对数值是不是某个二元一次方程组的解.
(二)能力目标
培养学生分析问题、解决问题的能力和计算能力.
(三)德育目标
培养学生严格认真的学习态度.
(四)美育目标
通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.
二、学法引导
1.教学方法:讨论法、练习法、尝试指导法.
2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.
三、重点•难点•疑点及解决办法
(-)重点
使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.
(二)难点
了解二元一次方程组的解的含义.
(三)疑点及解决办法
检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.
四、课时安排
一课时.
五、教具学具准备
电脑或投影仪、自制胶片.
六、师生互动活动设计
1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.
2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.
3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.
七、教学步骤
(-)明确目标
本节课的教学目标为理解二元一次方程及二元一次方程组的概念并会判断一对未知数的值是否为二元一次方程组的解.
(二)整体感知
由复习方程及其解,导入二元一次方程及二元一次方程组的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验二元一次方程组解的问题.
(三)教学过程
1.创设情境、复习导入
(1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?
回答老师提出的问题并自由举例.
【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.
(2)依据意思列出方程
1、小红x岁,小明y岁,小红比小明大2岁。
2、篮子里有5个苹果,芳芳拿走了2x个,亮亮拿走了剩下的3y个。
3、长方形的长为a,宽为b,周长为10.4、某个景点门票大人m元/人,小孩n元/人,有3个大人和2个小孩共付了100元。
学生活动:思考,设未知数,回答.
方程里含有两个未知数,并且未知项的次数是1,像这样的方程,叫做二元一次方程.
这节课,我们就开始学习与二元一次方程密切相关的知识—二元一次方程组.
【教法说明】学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于对概念的理解.
2.探索新知,讲授新课
(1)关于二元一次方程的教学.
我们已经知道了什么是二元一次方程,下面完成练习.
练习一 判断下列方程中那些是二元一次方程?并说明不是的理由?
1.2x+x=4
2.x+y+z=5
3.x/2+y=7
4.x2 +y=1 5.2x+z+4=16
6.3m+n=10
7.1/x+y=5
8.xy=6 练习二
分组练习:同桌结组,一人举例,一人判断是否为二元一次方程.并编写一个二元一次方程吗?
学生活动:以抢答形式完成练习1指定几组同学完成练习2
【教法说明】这样做既可以活跃气氛,又能加深学生对二元一次方程概念的理解.
练习三
提出问题:二元一次方程的解是惟一的吗?学生回答后,教师归纳:一元一次方程只有一个解,而二元一次方程有无限多解,其中一个未知数(或)每取一个值,另一个未知数(或)就有惟一的值与它相对应.
练习四
篮球联赛中,每场比赛都要分出胜负,每
队胜一场得2分,负一场得1分,某队在全 部10场比赛中得到16分,那么这个队胜负 场数应分别是多少?(学生回答)
2)关于二元一次方程组的教学.
上面的问题包含两个必须同时满足的条件,一是香蕉和苹果共买了9千克,一是共付款33元,也就是必须同时满足两个方程.因此,把这两个方程合在一起,写成这两个方程合在一起,就组成了一个二元一次方程组.
方程组各方程中,同一字母必须代表同一数量,才能合在一起.
练习五
已知、都是未知数,判别下列方程组是否为二元一次方程组?
【教法说明】练习五有助于学生理解二元一次方程组的概念,目的是避免学生对二元一次方程组形成错误的认识.
是二元一次方程组的解.
学生活动:尝试总结二元一次方程组的解的概念,思考后自由发言.
教师纠正、指导后板书:
使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.
例题 判断 是不是二元一次方程组 的解.
学生活动:口答例题.
此例题是本节课的重点,通过这个例题,使学生明确地认识到:二元一次方程组的解必须同时满足两个方程;同时,培养学生认真的计算习惯.
3.尝试反馈,巩固知识
练习:
变式训练,培养能力
练习今有鸡兔同笼
上有三十五头
下有九十四足
问鸡兔各几何
【教法说明】为列二元一次方程组找等量关系打下基础,培养了学生分析问题、解决问题的能力.
(四)总结、扩展
1.让学生自由发言,了解学生这节课有什么收获.
2.教师明确提出要求:弄懂二元一次方程、二元一次方程组和它的解的含义,会检验一对数值是不是某个二元一次方程组的解.
八、布置作业
1.必做题:习题8.1
1, 2 2.选做题:习题8.1
设计点评:
以情境教学为主,教师引导和指导,学生积极参与,逐步领悟,教师概括总结和学生自我学习评价相结合,提高课堂教学效益,充分体现以学为主的原则. 设计说明 本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解——不止一个解——无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“一般——特殊——一般——特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。
第三篇:二元一次方程组的解法复习教案
《二元一次方程组的解法复习》教案设计
湖州四中
金志彬
一、教材分析
本课是对七年级下册的第二章第三节《解二元一次方程组》加强巩固,熟练的解二元一次方程组在整个教材中起到了承上启下的作用,二元一次方程组的解法中不仅体现了“转化思想”和“整体思想”,而且也是解决后续——二元一次方程组的应用和三元一次方程组及其解法等学习的基础,为数学交流提供了有效的途径。
二、学情分析
学生已经学习了二元一次方程组的解法,包括代入消元法、加减消元法,对于书写的步骤也有一定的规范。但是对于不同类型的二元一次方程组不能用恰当的方法解决,对于复杂一点的二元一次方程组和有点技巧性的二元一次方程组解决方法还不熟练,所以在学习的过程中,教师要对他们进行学法指导,尤其要对他们进行数学学习方法和数学思想的培养。
三、教学目标 【知识与能力】
1.熟练的运用代入法和消元法解二元一次方程组; 2.会用整体思想解决二元一次方程组;
3.能根据具体的二元一次方程组来选择恰当的方法来解二元一次方程组。【过程与方法】 4.通过对二元一次方程组的解法复习巩固,体验数学学习中的转化思想;
5.在对方程的整体代入和计算中,渗透整体思想。【情感态度与价值观】
6.体会转化和整体的数学思想,在探求新知过程中体会小组合作的学习方式。
四、教学重难点
【教学重点】:熟练的运用代入法和加减法解二元一次方程组。【教学难点】:会用整体思想解二元一次方程组。
五、教学过程
(一)创设情境
3xy6 x3y10
师:这是什么? 生:二元一次方程组.师:那么接下来我们可以做些什么呢? 生:解二元一次方程组.师:那么解二元一次方程组的基本思想是什么呢? 生:消元(教师板书基本思想—消元)师:通过消元,我们可以得到什么? 生:把二元一次方程组转化成一元一次方程.师:这体现了什么数学思想? 生:转化思想(教师板书)师:请大家思考这个方程该怎么解?
请学生回答,引出二元一次方程组的解法有①代入法②消元法(教师板书)
师:听起来大家掌握的都不错,实践是检验真理的唯一标准,接下来练一练.【你会用恰当的方法解下列二元一次方程组吗?】
2x3y7(1) 3x2y
4xy126(2)x3y11010一、二大组做第1道,三、四大组做第2道.①请学生板演 ②板演完毕针对性点评
师:什么时候用代入法方便?解二元一次方程组时第一步要做什么? 学生回答教师引导总结如下: 【解二元一次方程组不要急】
先观察根据方程组的数和式的特点,然后选择恰当的方法.代入法:当未知数前面的系数为1或-1的.加减法:用代入法不方便的.用恰当的方法解题会有事半功倍的效果.(二)灵活运用
3xy6x3y101、已知二元一次方程组
求①x+y=________②x-y=__________
③2(x+3y)-(3x+y)=____________(引出整体思想并板书)
2.若方程组
3xy6x3y10的解是x13(ab)(ab)6,则方程组的解是_________.y3(ab)3(ab)10x22(y1)3.解方程组.2(x2)(y1)53xya54.方程组.2xy4a(1)其中x、y的值相等,求a的值.(2)①x=________(用a表示x)
②y=________(用a表示y)
③其中x是y的两倍,求a的值.(三)拓展提高
xy3.1、已知yz4,则xyz________xz5x4y0x2、已知(y0),求的值.zy2z0
(四)、课堂小结
通过本节课你有哪些收获?(请学生自由回答)
六、教学反思
本节课的目的是让学生熟练的用代入法和消元法解二元一次方程组并能用整体思想解决相关的二元一次方程组,整堂课完成了教学目标与教学重难点,课堂纪律也较好,个别学生上课积极举手发言。
当然不足之处也有许多,学生在录播教室很拘谨,气氛比较沉闷,我没能及时调动学生的积极性.此外,二元一次方程组的解法复习中应多总结解题规律以及在解方程组时易出现的错误。结束时的课堂的提问让学生谈收获的时候问的太宽泛了,导致学生不知如何回答.在以后的教学和学习中我会及时改正以上不足,多去请教老教师.
第四篇:二元一次方程组的解法教学设计
6.2二元一次方程组的解法----加减消元法
永年县第八中学 王银川 七年级数学
教学设计
一、教学目标
(1)知识与技能:使学生掌握用加减法解二元一次方程组的步骤;能运用加减法解二元一次方程组。
(2)过程与方法:根据方程的不同特点,进一步体会解二元一次方程组的基本思想——消元;训练学生的运算技巧。
(3)情感态度与价值观:进一步理解解二元一次方程组的消元思想,在化“未知为已知”的过程中,体验化归的数学美;根据方程组的特点,引导学生多角度思考问题,培养开拓、创新意识;在合作交流中培养学生的集体荣誉感。
二、教学重点
(1)掌握用加减法解二元一次方程的原理及一般步骤;(2)进一步渗透“消元”的数学思想;
(3)能熟练的运用加减法解二元一次方程组。
三、教学难点
灵活运用加减消元法的技巧
四、教学过程
(一)、基本练习(5分钟)
用代入消元法解下列方程组: 3x2y55x2y15
1、
2、
6x5y18x3y23找两名学生到讲台上板演,其余学生在练习本上解这两道题,教师在下面巡视并指导学生做题,然后对讲台上两名学生做的答案做出点评。
(二)、导入新课(3分钟)
5x3y16(1)观察二元一次方程组中未知数的系数,有什么特点?
2x3y2(2)根据你发现的特点,试解这个方程组。
学生观察思考,发现其未知数系数的特点(两个方程中未知数y的系数互为相反),探索出新的消元方法(式+式),消去未知数y(3)思考:如果相同未知数的系数相同,怎么消元呢?(式-式)
师:揭示本节课的课题:加减消元法解二元一次方程组
(三)、进行新课(15分钟)
1、出示尝试题
解下列方程组:
2xy64x7y6
3xy9x7y9 思考:
1、在什么条件下可以用加减消元法进行消元?
2、什么条件下用加法?什么条件下用减法?(学生分组解答后回答问题)两名学生到讲台上板演,教师在下面巡视并指导学生解题,最后针对讲台上两名学生所解的题进行讲评。
最后教师板书加减消元法的概念:
将二元一次方程组中两个方程相加(或相减,或进行变形后再加减),消去一个未知数,得到一个一元一次方程,通过求解一元一次方程,再求得二元一次方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。
2、自学课本p11,进一步掌握加减消元的思想及其步骤
3、尝试练习
用加减消元法解下面方程组
3x4y165x6y7
5x6y332x3y
44、学生讨论
(1)、以上这两道题是否可以直接用加减消元法解?
(2)、这两个方程是否能经过适当的变形后可以用加减法解?(3)、消x怎样变形?消y怎样变形?那一种方法相比简单?
经过讨论后两名学生到讲台上板演,教师下面巡视并指导学生。
5、教师讲解
3x4y16 5x6y7
5x6y332x3y4 解: ①*3 ②*2 得: 解: ②*2 得:
9x12y48③ 4x+6y=8 ③
10x12y66④ ①-③ 得
③+④得 x=-1
19x=114 把x=-1代入②式得
解得:x=6 y=6 把x=6代入式得 所以原方程组的解为
x1 y=-0.5
y2 所以原方程组的解为
x6
y0.5(四)、试探练习(6分钟)
1、用加减法解方程组
8x5y62x5y7(1)(2)
8x5y102x3y13x2y205x2y25(3)(4)
4x5y193x4y15四名学生讲台上板演,其余学生在练习本上做,教师在下面巡视并指导。针对四名学生做题情况教师加以点评补充。
(五)、课堂作业(10分钟)
用加减消元法解下列方程组
2xy32x3y17(1)(2)
3xy72x4y165x6y9mn1(3)(4)
7x4y52m3n7 学生当堂课完成以上作业。
(六)、课堂小结
1、本节课学习了二元一次方程组的另一种方法——加减法,它是通过把两个方程两边相加(或相减)消去一个未知数,把二元一次方程组转化为一元一次方程。
2、二元一次方程组的解法有代入法和加减法。
第五篇:二元一次方程组解法(加减法)评课稿
二元一次方程组解法(加减法)评课稿
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了代入法解二元一次方程组的基础上继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法为以后函数等知识的学习打下基础.一、首先本节课教师所设计的一系列的教学活动都是建立在学生的认知发展水平和已有的知识经验基础之上的。教师通过复习上节课代入法解二元一次方程组的方法及其解题思想引入除了带入消元法还有其他方法吗?从而导入新课即加减法解二元一次方程组.激发学的求知欲和学习积极性。
二、教师向学生提供充分从事数学活动的机会,具体体现在对于不同系数的二元一次方程组不同方法的优化和选择,例如对于系数相同系数互为相反数的,系数互为倍数的,系数没有特殊关系的二元一次方程组帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
三、教师教学过程中真正体现了学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。通过和独立探索,小组合作交流,组内展示和班级展示等环节突出了学生的主体地位。
四、教师在教学过程中评价贯穿于每一个教学环节,充分体现了评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学,同时本节课评价目标多元、评价方法多样,如对学生学习能力,学习方法学习态度,包括字迹书写,对数学学习的评价不仅关注学生学习的结果,更要关注他们学习的过程,关注学生数学学习的水平,更关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
五、设计好的问题让学生经历思想方法的形成过程“消元--二元一次方程组的解法”的教学中蕴含的思想方法体现了数学思想方法的层次性的特点,这种层次也反映了对数学内容本质的认识的概括程度的高低。这里化归是第一个层次,消元是第二个层次,代入和加减是第三个层次恒等变换是第四个层次。从培养学生良好的思维习惯和方法的角度看、本节课的教学不仅要让学生学会用加减法解二元一次方程组,更重要的是要引导学生产生和理解消元思想,体会解决新问题的过程(化归)。消元是学生自觉地、主动地理解和掌握代入法、加减法等具体解法的基础也是避免死记硬背解法程序的关键。
要使学生真正理解数学思想方法,必须要有他们自己身体力行的实践,从自己亲身经历的探索思考过程中获得体验,从自己不断深入的概括活动中,获得对数学思想方法的领悟。因此在数学教学设计中在运用数学思想方法产生解决问题策略的“关节点”上要注意提出恰当的、对学生数学思维有适度启发的问题,结合问题的解决,让学生经历思想方法的形成过程。
在教学设计时,还要注意例子的选择。一个好例子胜过百次抽象说教。好例子能给学生的数学活动提供一个“生长点”使他们在遇到具体问题时能受到例子的启发而想到该怎么做也有助于结合它们理解解决问题的思想方法。例子的选择要注意指向核心的知识和思想方法。例如:在“二元一次方程组的解法”的教学设计中,黄老师都使用了如和的解方程组例子。教师的本意是突出训练整体代换的方法进行消元。实际上相比化归、消元而言,整体代换更是技巧,如果是方法,也是比前文讲的“恒等变换”还要最低层次的方法。作为二元一次方程组织的解法的第一课时,本节课选择的例题和练习应更关注基本题型以更有助于学生对基本思想方法的理解。
3.发挥小结的作用,让学生学习的思想方法也纳入认知系统。课堂小结不仅引导学生归纳知识结构,还对思想方法进行概括总结,本节课采用框架图的方式进行总结,这一框图展示了加减消元法解二元一次方程组的具体步骤,可以结合框图回顾解二元一次方程组的过程渗透算法化、程序化的思想,也可以结合框图总结消元、化归的思想方法。这样处理使得学生对知识、技能、思想方法的总结融为一体,使得思想方法有了载体,知识技能有了灵魂。
吴克付 2016.4