第一篇:八年级上册数学教案(3章)
第三章 图形的平移与旋转 3.1 . 学习过程 学习过程 1.引入 传送带上的电视机的形状、大小是否发生了改变”“手扶电梯上的人”“笔直的铁道上行驶的火车”“上下楼的电、、、梯”。上述这些现象所具有的共同特征: 2.总结得出平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。在平面内 3.平移的性质 根据定义得到:经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。例1 如图所示,△ABE 沿射线 XY 方向平移一定距离后成为△CDF。找出图中平行且相等的线段和全等的三角形。生活中的平移
Y X
变式练习: 如图所示,∠DEF 是∠ABC 经过平移得到的,∠ABC=33O,求∠DEF
O
的度数。
Y X A
/ / / / /
C
C
B
A
B
D
2.如图所示,将∠ABC 沿射线 XY平移至∠A/B/C/,且 BC 与 A/B/交点为 D,图中有哪些相等的角?
学习过程 学习过程
1、什么叫平移?
2、平移有哪些性质?
3、决定平移的两大要素是什么? 2.探究新知:经过平移,线段 AB 的端点移到了点 D,你能作出线段 AB平移后的图形吗? A D
B 3.例题讲解 例 1:如图,经过平移,△ABC 的顶点 A 移到了点 D,请作出平移后的三角形。作法:
1、分别过点 B、C 沿 AD 方向作线段 BE、CF,使它们与 AD平行且相等 则△DEF 即为所求。
2、顺次连结 D、E、F
例 2 将字母 A 按箭头所指的方向平移 3 厘米,作出平移后的图形。
A
B
C
D
E
如图,已知 Rt△ABC 中,∠C=90°,BC=4,AC=4,现将△ABC 沿 CB 方向平移到△A’B’C’的位置。(1)若平移距离为 3,求△ABC 与△A’B’C’的重叠部分的面积;(2)若平移距离为 x(),求△ABC 与△A’B’C’的重叠部分的面积 y,并写出 y 与 x 的关系式。3.3 生活中的旋转 学习过 学习过程 1.在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点 在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点 在平面内(circumrotate).称为旋转中心,转动的角称为旋转角.称为旋转中心,转动的角称为旋转角.注意: “将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.... .............. 在物体绕着一个定点转动时,它的形状和大小不变。因此,旋转具有不改变图形的大小和形状的特征。........... 2.由旋转的定义
总结决定旋转的三要素: 旋转中心,旋转方向,旋转角度。旋转中心,旋转方向,旋转角度。3.旋转角的定义:任意一对对应点与旋转中心的连线所成的角都是旋转角。任意一对对应点与旋转中心的连线所成的角都是旋转角。任意一对对应点与旋转中心的连线所成的角都是旋转角 4.旋转的基本性质 经过旋转,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的旋转角相等.旋转的基本性质:经过旋转 对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的旋转角相等.本性质 经过旋转,1.2 点整、7 点整,时针与分针所成的角分别为几度? 2.3 点 12 分,3 点 40 分时,时针与分针所成角各为多大?
分时,其中,析: n 点 m 分时,两针所成的角为 | n × 30° + m × 0.5° − m × 6° |。其中,时针每小时转动 30°,时针每分钟转 动
30° = 0.5 °。60
3.4 简单的旋转作图 3.4 简单的旋转作图
学习过程 学习过程 基本掌握了作图的一个要点:(1)定好旋转中心,认准旋转方向,确定旋转角度。(2)找图形的关键点。讲授新课 我们通过一例题来说明简单图形旋转后的图形的作法 例 1:如图,△ABC 绕 O 点旋转后,顶点 A 的对应点为点 D,试确定顶点 B、C 对应点的位置,以及旋转后的三角形.
分析:一般作图题,在分析如何求作时,都要先假设已经把所求作的图形作出来,然后再根据性质,确定如何操作.假设顶点 B、C 的对应点分别为点 E、点 F,则∠BOE、∠COF、∠AOD 都是旋转角.△DEF 就是△ABC 绕点 O 旋转后的三角形。根据旋转的性质知道:经过旋转,图形上的每一点都绕旋转中心沿相同方向 转动了相同的角度,即旋转角相等,对应点到旋转中心的距离相等,则∠BOE=∠COF=∠AOD,OE=OB,OF=OC,这样即可求作 出旋转后的图形。使用直尺和圆规,把这一旋转后的图形作出来,要注意把痕迹保留下来.解:(1)连接 OA、OD、OB、OC.(2)如下图,分别以 OB、OC 为一边作∠BOM、∠CON,使得∠BOM=∠CON=∠AOD.(3)分别在射线 OM、ON 上截取 OE=OB、OF=OC.(4)连接 EF、ED、FD.
△DEF,就是△ABC 绕 O 点旋转后的图形.
确定一个三角形旋转后的位置的条件为:(1)三角形原来的位置;(2)旋转中心 ;(3)旋转方向;(4)旋转角。确定一个三角形旋转后的位置的条件为
(三)课堂练习解:如下图,先确定字母 N 的四个端点绕它右下侧的顶点按顺时针方向旋转 90°后的位置,然后连线.
3.5 3.5 它们是怎样变过来的 学习过程 学习过程 图形的平移、旋转,图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式
1、利用“想一想”你能将图 3—5—2 的左图
图,通过平移或旋转得到右图吗?
图 3—5—2 例1 怎样将图 3—5—3 中的甲图变成乙图案?
图 3—5—3 练习:
1、2、是由三个正三角形拼成的,它可以看做由其中一个三角形经过怎样的变换而得到?
第三章图形的平移与旋转 一.填空题.和,只改变图形的。1.平移是由_________________________________________所决定。2.平移不改变图形的 3.钟表的分针匀速旋转一周需要 60 分,它的旋转中心是___________,经过 20 分,分针旋转__________度。4 . 如 图 四 边 形 ABCD 是 旋 转 对 称 图 形 , 点 __________ 是 旋 转 中 心 , 旋 转 了 _________ 度 后 能 与 自 身 重 合 , 则 AD=__________,AO=__________,BO=_____________。
A O B D
A1
A
C
B1
C1
B
C
;
5.△
A1 B1C1 是△ ABC平移后得到的三角形,则△ A1 B1C1 ≌△ ABC,理由是
旋转 度可得到△BCD.
6.△ABC 和△DCE 是等边三角形,则在此图中,△ACE 绕着 c 点
第七题 E O 7.如图,四边形 AOBC,它绕着 O 点旋转到四边形 DOEF 位置,在这个旋转过程中: 旋转中心是_________,旋转角是_____经过旋 转点 A 转到______,点 C 转到______,点 B 转到_____线段 OA 与线段_____,线段 OB 与线段________,线段 BC 与线段________ 是对应线段。四边形 OACB 与四边形 ODFE 的形状、大小__________。8.如图,图案绕中心旋转_______度(填最小度数)二.选择题: 次和原来图案互相重合.
第 六 题 B
A D C E
A D B F
1.下列图形中,是由(1)仅通过平移得到的是(2.在以下现象中,① 温度计中,液柱的上升或下降;
)④ 传送带上,瓶装饮料的
② 打气筒打气时,活塞的运动; ③ 钟摆的摆动;
移动
属于平移的是(
)(C)②,③(D)②,④)
(A)①,②
(B)①,③
3.将长度为 5cm 的线段向上平移 10cm 所得线段长度是((A)10cm(B)5cm(C)0cm(D)无法确定 4.如图可以看作正△OAB 绕点 O 通过(A.3 次 B.4 次 C.5 次 5.下列运动是属于旋转的是()A.滾动过程中的篮球的滚动 C.气球升空的运动 A C C B(a)C B A)7.下列说法正确的是(B B.钟表的钟摆的摆动)旋转所得到的 D.6 次
D.一个图形沿某直线对折过程); A A C B B C
6.ΔABC 是直角三角形,如图(a),先将它以 AB 为对称轴作出它的轴对称图形,然后再平移得到的图形应该是(
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小 B.平移和旋转的共同点是改变图形的位置 C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到 8.将图形按顺时 针方向旋转 900 后的图形是()
A
B
C
D
;三,解答题;1.经过平移,图中左边图形上 A 点移到 E 点,作出平移后的图形.
A
B
C
D
E
2,
将字母 A 按箭头所指的方向,平移 3 ㎝,作出平移后的图形.3,如图,经过平移,△ABC 的顶点 A 移到了点 D,请作出平移后的三角形。
4.在下图中,将大写字母 E 绕点 O 按逆时针方向旋转 90°后,再向左平移 4 个格,请作出最后得到的图案.
A
5.如图,把 ∆ABC 绕 B 点逆时针方向旋转 30º 后,画出旋转后的三角形。四 . 如 图 , 四 边 形 ABCD 的 ∠ BAD= ∠ C=90 º ,AB=AD,AE ⊥ BC 于 E,
B
C
A F
∆BEA 旋 转 后 能 与
∆DFA 重合。
(1)旋转中心是哪一点?旋转了多少度?若 AE=5 ㎝,求四边形 AECF 的面积。
B E D
如图,把 ∆ABC 绕 B 点逆时针方向旋转 30º 后,画出旋转后的三角形。
C
五.如图是日本“三菱”汽车的标志,它可以看作是由什么“基本图案”通过怎样旋转得到的?每 次旋转了多少度?
第二篇:八年级上册数学教案
提高学习效率并非一朝一夕之事,需要长期的探索和积累。前人的经验是可以借鉴的,但必须充分结合自己的特点。下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。
八年级上册数学教案人教版
《矩形》教案
教学目标:
知识与技能目标:
1.掌握矩形的概念、性质和判别条件。
2.提高对矩形的性质和判别在实际生活中的应用能力。
过程与方法目标:
1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。
2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。
情感与态度目标:
1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。
2.通过对矩形的探索学习,体会它的内在美和应用美。
教学重点:矩形的性质和常用判别方法的理解和掌握。
教学难点:矩形的性质和常用判别方法的综合应用。
教学方法:分析启发法
教具准备:像框,平行四边形框架教具,多媒体课件。
教学过程设计:
一、情境导入:
演示平行四边形活动框架,引入课题。
二、讲授新课:
1.归纳矩形的定义:
问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。)
结论:有一个内角是直角的平行四边形是矩形。
2.探究矩形的性质:
(1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)
结论:矩形的四个角都是直角。
(2)探索矩形对角线的性质:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.①随着∠α的变化,两条对角线的长度分别是怎样变化的?
②当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?
③当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?
(学生操作,思考、交流、归纳。)
结论:矩形的两条对角线相等.(3)议一议:(展示问题,引导学生讨论解决)
①矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.②直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?
(4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”)
矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.例解:(性质的运用,渗透矩形对角线的“化归”功能)
如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4
厘米,求BD与AD的长。
(引导学生分析、解答)
探索矩形的判别条件:(由修理桌子引出)
(5)想一想:(学生讨论、交流、共同学习)
对角线相等的平行四边形是怎样的四边形?为什么?
结论:对角线相等的平行四边形是矩形.(理由可由师生共同分析,然后用幻灯片展示完整过程.)
(6)归纳矩形的判别方法:(引导学生归纳)
有一个内角是直角的平行四边形是矩形.对角线相等的平行四边形是矩形.三、课堂练习:(出示P98随堂练习题,学生思考、解答。)
四、新课小结:
通过本节课的学习,你有什么收获?
(师生共同从知识与思想方法两方面小结。)
五、作业设计:P99习题4.6第1、2、3题。
板书设计:
1.矩形
矩形的定义:
矩形的性质:
前面知识的小系统图示:
2.矩形的判别条件:
例1
课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。
八年级上册数学教案人教版
《梯形》教案
教学目标:
情意目标:培养学生团结协作的精神,体验探究成功的乐趣。
能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。
认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。
教学重点、难点
重点:等腰梯形性质的探索;
难点:梯形中辅助线的添加。
教学课件:PowerPoint演示文稿
教学方法:启发法、学习方法:讨论法、合作法、练习法
教学过程:
(一)导入
1、出示图片,说出每辆汽车车窗形状(投影)
2、板书课题:5梯形
3、练习:下列图形中哪些图形是梯形?(投影)
4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。
5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)
6、特殊梯形的.分类:(投影)
(二)等腰梯形性质的探究
【探究性质一】
思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)
猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)
如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C
想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?
等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。
【操练】
(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)
(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)
【探究性质二】
如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)
如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)
等腰梯形性质:等腰梯形的两条对角线相等。
【探究性质三】
问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)
问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)
等腰梯形性质:同以底上的两个内角相等,对角线相等
(三)质疑反思、小结
让学生回顾本课教学内容,并提出尚存问题;
学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。
人教版八年级上册数学教案
《因式分解》教案
教学目标:
1、理解运用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的综合运用。
3、进一步培养学生综合、分析数学问题的能力。
教学重点:
运用平方差公式分解因式。
教学难点:
高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:
我们数学组的观课议课主题:
1、关注学生的合作交流
2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:
1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?
2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?
①-x2+y2②-x2-y2③4-9x2
④(x+y)2-(x-y)2⑤a4-b43、试总结运用平方差公式因式分解的条件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?
5、试总结因式分解的步骤是什么?
师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)
生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5:a4-b4可分解为(a2+b2)(a2-b2)
生6:不对,a2-b2还能继续分解为a+b)(a-b)
师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……
反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的'条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:
(1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:
下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。
(2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。
我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。
确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……
第三篇:浙教版数学八年级上册3章:认识不等式 (2)
3.3
一元一次不等式(1)
〖教学目标〗
◆1、知道什么是一元一次不等式和不等式的解.◆2、掌握一元一次不等式的解法.◆3、通过"等与不等"的对比使学生进一步领会对立统一的思想.〖教学重点与难点〗
◆教学重点:掌握解法步骤并准确地求出解集.并能准确的把解表示在数轴上.◆教学难点:正确地运用不等式基本性质3.◆教学关键:一元一次不等式与一元一次方程的解法步骤的区别,等式性质2与不等式的基本性质的区别.〖教学过程〗
一、创设情景
1、先复习不等式性质,解一元一次方程的解法.(1)题组练习:用“>”和“<”填空
①
0;-5
2;-7
-10;
②设a>b,则:a+1
b+1;a-3___b-3;3a
3b;-a
-b2、议论:
(1)根据不等式的基本性质,说明下列语句对不对:
①
从5
4一定能得到5a>4b,②从
1/3<
1一定能得到
1/3a 0的两边都乘以-1,竟得到100<0!它错在哪里? ②乙在不等式2x 5x的两边都除以x,竟得到2 5!它错在哪里? 生:[由学习小组(4人或6人)讨论后选一代表回答] 3、回忆解一元一次方程的一般步骤并完成练习: 解下列方程,并用数轴表示它的解: (1)3x=18; (2)5x-3=7x+1 ; 注:由四个学习小组出两名同学自选一题上黑板演算,并对挑选较难题的同学进行激励评价.4、将方程中的等号改写为不等号引入概念: (1)3x<18 ; (2)5x-3≥7x+1; 提出问题:对比一元一次方程的定义,给这两个式子起一个名字.给出定义:只含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式.5、引出课题:我们今天就是来探讨一元一次不等式1(板书:一元一次不等式1) 二、新课教学 1、想一想:把x=8代入不等式3x<18,不等式成立吗?能否因此就说不等式的解是x=8? 生:不是,还有很多.师:哦,原来还有很多很多的解哦!那请同学们帮老师把他们在数轴上指出来(师画数轴,叫一学生上来指出) 2、得出:不等式解的概念:能使不等式成立的未知数的值的全体叫做不等式的解集,简称不等式的解.3、老师讲述怎样用数轴表示不等式解的方法(强调等号取于不取的不同之处) 4、例题讲解 例1:解下列不等式,并把解表示在数轴上: (1)4x<10; (2) 例2:解不等式7x-2≤9x+3,把解表示在数轴上,并求出不等式的负整数解。 解: 先在不等式的两边同加上-9x,得7x-9x-2≤3 再在不等式的两边同加上2,得7x-9x≤3+2.合并同类项,得 -2x≤5,两边同除以-2,得 x≥-5/2 不等式的负整数解是x=-1和x=-2.5、试一试解下列不等式,并把解表示在数轴上: (1)3x<18 ; (2)5x-3≥7x+1 ; 师:(1)解不等式就是利用不等式的基本性质,把要求解的不等式变形“x x< (2)两边同加上-7x,再在不等式两边同加上3得: 5x-7x≥1+3 合并同类项得:-2x≥4 两边同除以-2得:x≤-2(注意学生改写时,不要把不等号的方向弄错) 师:(2)解方程的移项法则对解不等式是否仍然适用?若适用,它的根据是什么? 三、练一练 1、解下列不等式,并把解表示在数轴上; (1)1-x>2;(2)5x-4>4-3x;(3)--x≤1;(4)6x-1< 9x-42、解不等式2.5x-4 1、让学生来总结:这节课你们有什么收获.2、需要特别注意什么? (如果乘数或除数是负数,要把不等号方向改变,即必须特别注意不等式基本性质) 五、巩固新知,体验成功 1、作业题1、2(99页) 2、ppt演示或者板书练习题 六、布置作业 1、作业题3、4、5、62、思考:解不等式(1)3(1-x)<2(x+9) ; (2)(2+x)÷2≥(2x-1)÷3 .七、结束语: 同学们这节课学得很好,相信你们课后能很轻松地完成作业! 八年级数学教案 八年级数学教案1 八年级下数学教案-变量与函数(2) 一、教学目的 1.使学生理解自变量的取值范围和函数值的意义。 2.使学生理解求自变量的取值范围的两个依据。 3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。 4.通过求函数中自变量的取值范围使学生进一步理解函数概念。 二、教学重点、难点 重点:函数自变量取值的求法。 难点:函灵敏处变量取值的确定。 三、教学过程 复习提问 1.函数的定义是什么?函数概念包含哪三个方面的内容? 2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义? (答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。) 3.什么叫二次根式?使二次根式成立的条件是什么? (答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。) 4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。 新课 1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。 2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是: (1)自变量取值范围是使函数解析式(即是函数表达式)有意义。 (2)自变量取值范围要使实际问题有意义。 3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。 推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。 4.讲解P93中例3。结合例3引出函数值的意义。并指出两点: (1)例3中的4个小题归纳起来仍是三类题型。 (2)求函数值的问题实际是求代数式值的问题。 补充例题 求下列函数当x=3时的函数值: (1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。 (答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。) 小结 1.解析法的意义:用数学式子表示函数的方法叫解析法。 2.求函数自变量取值范围的两个方法(依据): (1)要使函数的解析式有意义。 ①函数的解析式是整式时,自变量可取全体实数; ②函数的解析式是分式时,自变量的取值应使分母≠0; ③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。 (2)对于反映实际问题的函数关系,应使实际问题有意义。 3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。 练习:P94中1,2,3。 作业:P95~P96中A组3,4,5,6,7。B组1,2。 四、教学注意问题 1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。 2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。 3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。 八年级数学教案2 教学目标: 1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。 2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。 3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。 重点与难点: 重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。 难点:分析典型图案的设计意图。 疑点:在设计的图案中清晰地表现自己的设计意图 教具学具准备: 提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。 教学过程设计: 1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23) 明确在欣赏了图案后,简单地复习近平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。 2、课本 1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。 评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。 评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。 (二)课内练习 (1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。 (2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。 (三)议一议 生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。 (四)课时小结 本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。 通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。) 八年级数学上册教案(五)延伸拓展 进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。 八年级数学教案3 一、教学目的 1.使学生进一步理解自变量的取值范围和函数值的意义. 2.使学生会用描点法画出简单函数的图象. 二、教学重点、难点 重点:1.理解与认识函数图象的意义. 2.培养学生的看图、识图能力. 难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题. 三、教学过程 复习提问 1.函数有哪三种表示法?(答:解析法、列表法、图象法.) 2.结合函数y=x的图象,说明什么是函数的图象? 3.说出下列各点所在象限或坐标轴: 新课 1.画函数图象的方法是描点法.其步骤: (1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了. 一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来. (2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点. (3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线. 一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线). 2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象. 小结 本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图. 练习 ①选用课本练习(前一节已作:列表、描点,本节要求连线) ②补充题:画出函数y=5x-2的图象. 作业 选用课本习题. 四、教学注意问题 1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征. 2.注意充分调动学生自己动手画图的积极性. 3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力. 八年级数学教案4 教学目标: 1、知识目标: (1)掌握已知三边画三角形的方法; (2)掌握边边边公理,能用边边边公理证明两个三角形全等; (3)会添加较明显的辅助线. 2、能力目标: (1)通过尺规作图使学生得到技能的训练; (2)通过公理的初步应用,初步培养学生的逻辑推理能力. 3、情感目标: (1)在公理的形成过程中渗透:实验、观察、归纳; (2)通过变式训练,培养学生“举一反三”的学习习惯. 教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。 教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。 教学用具:直尺,微机 教学方法:自学辅导 教学过程: 1、新课引入 投影显示 问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗? 这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。 2、公理的获得 问:通过上面问题的分析,满足什么条件的两个三角形全等? 让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法) 公理:有三边对应相等的两个三角形全等。 应用格式: (略) 强调说明: (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。 (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边) (3)、此公理与前面学过的公理区别与联系 (4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。 (5)说明AAA与SSA不能判定三角形全等。 3、公理的应用 (1) 讲解例1。学生分析完成,教师注重完成后的点评。 例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架 求证:AD⊥BC 分析:(设问程序) (1)要证AD⊥BC只要证什么? (2)要证∠1= 只要证什么? (3)要证∠1=∠2只要证什么? (4)△ABD和△ACD全等的条件具备吗?依据是什么? 证明:(略) (2)讲解例2(投影例2 ) 例2已知:如图AB=DC,AD=BC 求证:∠A=∠C (1)学生思考、分析、讨论,教师巡视,适当参与讨论。 (2)找学生代表口述证明思路。 思路1:连接BD(如图) 证△ABD≌△CDB(SSS)先得∠A=∠C 思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD (3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。 例3如图,已知AB=AC,DB=DC (1)若E、F、G、H分别是各边的中点,求证:EH=FG (2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。 学生思考、分析,适当点拨,找学生代表口述证明思路 让学生在练习本上写出证明,然后选择投影显示。 证明:(略) 说明:证直线垂直可证两直线夹角等于 ,而由两邻补角相等证两直线的夹角等于 ,又是很重要的一种方法。 例4 如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线, 求证:AC=2AE. 证明:(略) 学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。 5、课堂小结: (1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS) 在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。 (2)三种方法的综合运用 让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。 6、布置作业: a、书面作业P70#11、12 b、上交作业P70#14 P71B组3 八年级数学教案5 【教学目标】 知识与技能 能确定多项式各项的公因式,会用提公因式法把多项式分解因式. 过程与方法 使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解. 情感、态度与价值观 培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值. 【教学重难点】 重点:掌握用提公因式法把多项式分解因式. 难点:正确地确定多项式的最大公因式. 关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂. 【教学过程】 一、回顾交流,导入新知 【复习交流】 下列从左到右的变形是否是因式分解,为什么? (1)2x2+4=2(x2+2); (2)2t2-3t+1=(2t3-3t2+t); (3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my; (5)x2-2xy+y2=(x-y)2. 问题: 1.多项式mn+mb中各项含有相同因式吗? 2.多项式4x2-x和xy2-yz-y呢? 请将上述多项式分别写成两个因式的乘积的形式,并说明理由. 【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y. 概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法. 二、小组合作,探究方法 教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么? 【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂. 三、范例学习,应用所学 例1:把-4x2yz-12xy2z+4xyz分解因式. 解:-4x2yz-12xy2z+4xyz =-(4x2yz+12xy2z-4xyz) =-4xyz(x+3y-1) 例2:分解因式:3a2(x-y)3-4b2(y-x)2 【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法. 解法1:3a2(x-y)3-4b2(y-x)2 =-3a2(y-x)3-4b2(y-x)2 =-[(y-x)2·3a2(y-x)+4b2(y-x)2] =-(y-x)2[3a2(y-x)+4b2] =-(y-x)2(3a2y-3a2x+4b2) 解法2:3a2(x-y)3-4b2(y-x)2 =(x-y)2·3a2(x-y)-4b2(x-y)2 =(x-y)2[3a2(x-y)-4b2] =(x-y)2(3a2x-3a2y-4b2) 例3:用简便的方法计算: 0.84×12+12×0.6-0.44×12. 【教师活动】引导学生观察并分析怎样计算更为简便. 解:0.84×12+12×0.6-0.44×12 =12×(0.84+0.6-0.44) =12×1=12. 【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同? 四、随堂练习,巩固深化 课本115页练习第1、2、3题. 【探研时空】 利用提公因式法计算: 0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69 五、课堂总结,发展潜能 1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂. 2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止. 六、布置作业,专题突破 课本119页习题14.3第1、4(1)、6题. 八年级数学教案6 一.教学目标: 1.了解方差的定义和计算公式。 2.理解方差概念的产生和形成的过程。 3.会用方差计算公式来比较两组数据的波动大小。 二.重点、难点和难点的突破方法: 1.重点:方差产生的必要性和应用方差公式解决实际问题。 2.难点:理解方差公式 3.难点的突破方法: 方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。 (1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。 (2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。 (3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。 三.例习题的意图分析: 1.教材P125的讨论问题的意图: (1).创设问题情境,引起学生的学习兴趣和好奇心。 (2).为引入方差概念和方差计算公式作铺垫。 (3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。 (4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。 2.教材P154例1的设计意图: (1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。 (2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。 四.课堂引入: 除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。 五.例题的分析: 教材P154例1在分析过程中应抓住以下几点: 1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。 2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。 3.方差怎样去体现波动大小? 这一问题的提出主要复习巩固方差,反映数据波动大小的规律。 六.随堂练习: 1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm) 甲:9、10、11、12、7、13、10、8、12、8; 乙:8、13、12、11、10、12、7、7、9、11; 问:(1)哪种农作物的苗长的比较高? (2)哪种农作物的苗长得比较整齐? 2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么? 测试次数1 2 3 4 5 段巍13 14 13 12 13 金志强10 13 16 14 12 参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐 2.段巍的成绩比金志强的成绩要稳定。 七.课后练习: 1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。 2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下: 甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7 经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛。 3.甲、乙两台机床生产同种零件,10天出的次品分别是( ) 甲:0、1、0、2、2、0、3、1、2、4 乙:2、3、1、2、0、2、1、1、2、1 分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好? 4.小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒) 小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9 小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8 如果根据这几次成绩选拔一人参加比赛,你会选谁呢? 答案:1. 6 2. >、乙;3. =1.5、S =0.975、=1. 5、S =0.425,乙机床性能好 4. =10.9、S =0.02; =10.9、S =0.008 选择小兵参加比赛。 八年级数学教案7 一、教学目标 1、理解分式的基本性质。 2、会用分式的.基本性质将分式变形。 二、重点、难点 1、重点:理解分式的基本性质。 2、难点:灵活应用分式的基本性质将分式变形。 3、认知难点与突破方法 教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。 三、练习题的意图分析 1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。 2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。 教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。 3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。 “不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。 四、课堂引入 1、请同学们考虑:与相等吗?与相等吗?为什么? 2、说出与之间变形的过程,与之间变形的过程,并说出变形依据? 3、提问分数的基本性质,让学生类比猜想出分式的基本性质。 五、例题讲解 P7例2.填空: [分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。 P11例3.约分: [分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。 P11例4.通分: [分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。 八年级数学教案8 创设情境 1.什么叫平行四边形?平行四边形有什么性质? 2.将以上的性质定理,分别用命题形式叙述出来。 根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立? 探究归纳 平行四边形的判定方法: 证明:两组对边分别相等的四边形是平行四边形 已知: 求证: 做一做:将四根细木条(其中两条长相等,另外两条长也相等)用小钉子钉在一起,做成一个四边形,使等长的木条成为对边。它是平行四边形吗? 学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。 观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形 练习:如图,在ABCD中,E,F,G和H分别是各边中点.求证:四边形EFGH为平行四边形 八年级数学教案9 教学目标: 1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。 2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。 3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。 4、能利和计算器求一组数据的算术平均数。 教学重点: 体会平均数、中位数、众数在具体情境中的意义和应用。 教学难点: 对于平均数、中位数、众数在不同情境中的应用。 教学方法: 归纳教学法。 教学过程: 一、知识回顾与思考 1、平均数、中位数、众数的概念及举例。 一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。 如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。 中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。 众数就是一组数据中出现次数最多的那个数据。 如3,2,3,5,3,4中3是众数。 2、平均数、中位数和众数的特征: (1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。 (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。 (3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。 (4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。 3、算术平均数和加权平均数有什么区别和联系: 算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。 4、利用计算器求一组数据的平均数。 利用科学计算器求平均数的方法计算平均数。 二、例题讲解: 某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少? 三、课堂练习: 复习题A组 四、小结: 1、掌握平均数、中位数与众数的概念及计算。 2、理解算术平均数与加权平均数的联系与区别。 五、作业: 复习题B组、C组(选做) 八年级数学教案10 教学指导思想与理论依据 《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。 教学内容分析: 本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。 学生情况分析: 本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。 教学方式与教学手段说明: 本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。 知识与技能: 1、初步理解特殊四边形性质; 2、培养学生自主收集、描述和分析数据的能力; 过程与方法: 1、了解特殊四边形性质的形成过程; 2、初步了解探究新知识的一些方法; 情感与价值观: 1、了解特殊四边形在日常生活中的应用; 2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦; 3、初步具有感性认识上升到理性认识的辩证唯物主义思想。 教学环境: 多媒体计算机网络教室 教学课型: 试验探究式 教学重点: 特殊四边形性质 教学难点: 特殊四边形性质的发现 一、设置情景,提出问题 提出问题: 知识已生活,又服务于生活。我们经过校门时,是否注意到电动门的机械工作原理(教师用几何画板演示)? 1、电动门的网格和结点能组成哪些四边形? 2、在开(关)门过程中这些四边形是如何变化的? 3、你还发现了什么? 解决问题: 学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……; 当我们学习完本节知识后,其他问题就容易解决了。 (意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。) 二、整体了解,形成系统 本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。 提出问题: 1、本章主要研究哪些特殊四边形? 2、从哪几方面研究这些特殊四边形? 3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有图形呢?假设有是什么图形呢?如果没有,为什么? 解决问题: 学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。 1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形 2、从边、角、对角线、面积、周长、……等方面研究。本节课主要从边、角、对角线三方面考虑; 3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。 (意图:学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识) 三、个体研究、总结性质 1、平行四边形性质 提出问题: 在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。 解决问题: 教师引导学生拖动B点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。 在图形变化过程中, (1)对边相等; (2)对角相等; (3)通过AO=CO 、BO=DO,可得对角线互相平分; (4)通过邻角互补,可得对边平行; (5)内外角和都等于360度; (6)邻角互补; …… 指导学生填表: 平行四边形性质矩形性质正方形性质 菱形性质 梯形性质等腰梯形性质 直角梯形性质 (既属于平行四边形性质又属于矩形性质可以画箭头) 按照平行四边形性质的探索思路,分别研究: 2、矩形性质; 3、菱形性质; 4、正方形性质; 5、梯形性质; 6、等腰梯形性质; 7、直角梯形的性质。 (意图:学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。) 教师总结: (意图:掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。) 四、联系生活,解决问题 解决问题: 学生操作电脑,观察图形、分组讨论,教师个别指导。 学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。 四边形具有不稳定性,而三角形没有这个特点…… (意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。) 五、小结 1.研究问题从整体到局部的方法; 2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。 六、作业 1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。 2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。 学习效果评价 针对教学内容、学生特点及设计方案,预计下列学习效果: 利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。 在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。 学生演示开(关)门过程中,了解特殊四边形在日常生活中的应用,并用所学的知识解释实际问题,使自身价值得以实现并体会成功后的喜悦; 由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。 八年级数学教案11 教学目标: 【知识与技能】 1、理解并掌握等腰三角形的性质。 2、会用符号语言表示等腰三角形的性质。 3、能运用等腰三角形性质进行证明和计算。 【过程与方法】 1、通过观察等腰三角形的对称性,发展学生的形象思维。 2、通过实践、观察、证明等腰三角形的性质,积累数学活动经验,感受数学思考过程的条理性,发展学生的合情推理能力。 3、通过运用等腰三角形的性质解决有关问题,提高学生运用几何语言表达问题的,运用知识和技能解决问题的能力。 【情感态度】 引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验。 【教学重点】 等腰三角形的性质及应用。 【教学难点】 等腰三角形的证明。 教学过程: 一、情境导入,初步认识 问题1什么叫等腰三角形?它是一个轴对称图形吗?请根据自己的理解,利用轴对称的知识,自己做一个等腰三角形。要求学生独立思考,动手作图后再互相交流评价。 可按下列方法做出: 作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形。 问题2每位同学请拿出事先准备好的长方形纸片,按下图方式折叠剪裁,再把它展开,观察并讨论:得到的△ABC有什么特点? 教师指导:上述过程中,剪刀剪过的两条边是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。 把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。由这些重合的线段和角,你能发现等腰三角形的性质吗?说说你的猜想。 在一张白纸上任意画一个等腰三角形,把它剪下来,请你试着折一折。你的猜想仍然成立吗? 教学说明:通过学生的动手操作与观察发现,加深学生对等腰三角形性质的理解。 二、思考探究,获取新知 教师依据学生讨论发言的情况,归纳等腰三角形的性质: ①∠B=∠C→两个底角相等。 ②BD=CD→AD为底边BC上的中线。 ③∠BAD=∠CAD→AD为顶角∠BAC的平分线。 ∠ADB=∠ADC=90°→AD为底边BC上的高。 指导学生用语言叙述上述性质。 性质1等腰三角形的两个底角相等(简写成:“等边对等角”)。 性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”)。 教师指导对等腰三角形性质的证明。 1、证明等腰三角形底角的性质。 教师要求学生根据猜想的结论画出相应的图形,写出已知和求证。在引导学生分析思路时强调: (1)利用三角形全等来证明两角相等。为证∠B=∠C,需证明以∠B,∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。 (2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等。 2、证明等腰三角形“三线合一”的性质。 【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验。 三、典例精析,掌握新知 例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。 解:∵AB=AC,BD=BC=AD, ∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)。 设∠A=x,则∠BDC=∠A+∠ABD=2x, 从而∠ABC=∠C=∠BDC=2x。 于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36° 于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。 【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数。要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题。 四、运用新知,深化理解 第1组练习: 1、如图,在下列等腰三角形中,分别求出它们的底角的度数。 如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段。 2、如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数。 第2组练习: 1、如果△ABC是轴对称图形,则它一定是( ) A、等边三角形 B、直角三角形 C、等腰三角形 D、等腰直角三角形 2、等腰三角形的一个外角是100°,它的顶角的度数是( ) A、80° B、20° C、80°和20° D、80°或50° 3、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm。求这个等腰三角形的边长。 4、如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E。求证:AE=CE。 【教学说明】 等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用。 【答案】 第1组练习答案: 1、(1)72°;(2)30° 2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD 3、∠B=77°,∠C=38、5° 第2组练习答案: 1、C 2、C 3、设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三边长为4cm,6cm和6cm。 4、延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC。∴∠P=∠ACD。又∵DE∥AP,∴∠CDE=∠P。∴∠CDE=∠ACD,∴DE=EC。同理可证:AE=DE。∴AE=CE。 四、师生互动,课堂小结 这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用。请学生表述性质,提醒每个学生要灵活应用它们。 学生间可交流体会与收获。 八年级数学教案12 一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。 根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。 通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。 通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。 (二)重点、难点 一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。 (三)教学目标 1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。 八年级数学教案13 一、教材的地位和作用 现实生活中,等腰三角形的应用比比皆是、所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础、 性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一、“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据、 教学重点: 1、让学生主动经历思考和探索的过程、 2、掌握等腰三角形性质及其应用、 教学难点:等腰三角形性质的理解和探究过程、 二、学情分析 本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备、不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点、 三、目标分析 知识与技能 1、了解等腰三角形的有关概念和掌握等腰三角形的性质 2、了解等边三角形的概念并探索其性质 3、运用等腰三角形的性质解决问题 过程与方法 1、通过观察等腰三角形的对称性,发展学生的形象思维、 2、探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力、在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力、 情感态度价值观: 1、通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性、 2、通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质、 3、通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感、 四、教法分析 根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学、 设计意图 同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形、 等腰三角形的定义 有两条边相等的三角形叫做等腰三角形、 等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角、腰和底边的夹角叫做底角、 提出问题:生活中有哪些现象让你联想到等腰三角形? 首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的 通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性、 剪纸游戏 你能利用手中的这个矩形纸片剪出一个等腰三角形吗?注意安全呦! 学情分析: 大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”; 可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形; 可能还有同学先画图,再依线条剪得、 在这个过程中,注重落实三维目标、让学生在获取新知的过程中更好的认识自我,建立自信、我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨、 知其然,更重要的是知其所以然、因此,我力求让学生关注剪法的理性思考、 我设计了问题:你是如何想到的?为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”、这样就建立了“操作”与“证明”的中间桥梁、从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫、 提出问题: 等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上、 合作小组活动规则: 1、有主记录员记录小组的结论; 2、定出小组的主发言人(其它同学可作补充); 3、小组探究出的结论是什么? 4、说明你们小组所获得结论的理由、 等腰三角形的性质: 性质一:等腰三角形的两个底角相等(简称“等边对等角”)、 性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”)、 学情分析:这个环节是本节课的重点,也是教学难点、尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论、让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境、 通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法、 (1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论、 这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点、 (2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导、 巩固知识 1、等腰三角形顶角为70°,它的另外两个内角的度数分别为________; 2、等腰三角形一个角为70°,它的另外两个内角的度数分别为_____; 3、等腰三角形一个角为100°,它的另外两个内角的度数分别为_____、 内化知识 1、如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗? 知识迁移 等边三角形有什么特殊的性质?简单地叙述理由、 等边三角形的性质定理: 等边三角形的各角都相等,并且每一个角都等于60°、 拓展延伸 如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC? 由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习、将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要、让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平、 畅谈收获 总结活动情况,重在肯定与鼓励、引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力、 帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫、 反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程、 基础性作业:P65习题1、2、3、4 八年级数学教案14 一、学习目标: 让学生了解多项式公因式的意义,初步会用提公因式法分解因式 二、重点难点 重点:能观察出多项式的公因式,并根据分配律把公因式提出来 难点:让学生识别多项式的公因式. 三、合作学习: 公因式与提公因式法分解因式的概念. 三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c) 既ma+mb+mc = m(a+b+c) 由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。 四、精讲精练 例1、将下列各式分解因式: (1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x. 例2把下列各式分解因式: (1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2. (3) a(x-3)+2b(x-3) 通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤. 首先找各项系数的____________________,如8和12的公约数是4. 其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的 课堂练习 1.写出下列多项式各项的公因式. (1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab 2.把下列各式分解因式 (1)8x-72 (2)a2b-5ab (3)4m3-6m2 (4)a2b-5ab+9b (5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2 五、小结: 总结出找公因式的一般步骤.: 首先找各项系数的大公约数, 其次找各项中含有的相同的字母,相同字母的指数取次数最小的 注意:(a-b)2=(b-a)2 六、作业 1、教科书习题 2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx 4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3 八年级数学教案15 知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数 能力目标:会用变化的量描述事物 情感目标:回用运动的观点观察事物,分析事物 重点:函数的概念 难点:函数的概念 教学媒体:多媒体电脑,计算器 教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围 教学设计: 引入: 信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗? 新课: 问题:(1)如图是某日的气温变化图。 ① 这张图告诉我们哪些信息? ② 这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的? (2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数: ① 这表告诉我们哪些信息? ② 这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗? 一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。 范例:例1 判断下列变量之间是不是函数关系: (5) 长方形的宽一定时,其长与面积; (6) 等腰三角形的底边长与面积; (7) 某人的年龄与身高; 活动1:阅读教材7页观察1. 后完成教材8页探究,利用计算器发现变量和函数的关系 思考:自变量是否可以任意取值 例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。 (1) 写出表示y与x的函数关系式. (2) 指出自变量x的取值范围. (3) 汽车行驶200km时,油箱中还有多少汽油? 解:(1)y=50-0.1x (2)0500 (3)x=200,y=30 活动2:练习教材9页练习 小结:(1)函数概念 (2)自变量,函数值 (3)自变量的取值范围确定 作业:18页:2,3,4题 八年级数学教案 【教学内容】教学教材第131页的例1,完成练习二十九的第1、2题。 【教学目的】引导学生整理和复习解答简单应用题的方法,使他们进一步理解简单的应用题的数量关系。 【教学重难点】使学生会按照题目的条件和问题之间的数量关系,根据四则运算的意义选择正确的方法解答。 【教具准备】多媒体 【教学过程】 一、复习 我们在小学阶段已学过解答简单应用题的方法是:先分析题目的条件与问题之间的数量关系,再根据四则运算的意义,选择适当的方法求得答案。那小学你学过哪些数量关系呢? 出示课件“写一写”:请你根据给出的数量名称写出数量关系。数量名称 数量关系式 收入、支出、结余 单价、数量、总价 收入-支出=结余 单产量、数量、总产量 速度、时间、路程 工效、时间、工作总量 本金、利率、时间、利息 二、揭示课题 刚才大家写出了很多的数量关系,这节课我们就来复习一下怎样用数量关系来解答简单应用题。板书:简单应用题 三、学习例1 1、出示例1: 某工厂有男工364人,女工91人。这个工厂的男工和女工一共有多少人? 2、学生口述算式、答语后教师讲评。 3、请学生说说例1有哪些已知条件,问题是什么,根据什么运算意义来计算的。(这里是把两个数合并在一起,求它们的和是多少,用加法计算。)教师板书: 条件 问题 算式 男工364人 男工和女工一共多少人? 364+91=455(人) 女工91人 4、拓展学生的思维。 (1)出示课件“试一试”:根据例1的两个条件,你还能提出哪些问题?你会解答自己提出的问题吗? 学生口答,教师板书: 问题 算式 男工比女工的多少人? 364-91=273(人)女工比男工少多少人? 364-91=273(人)男工人数是女工人数的几倍? 364÷91=4 女工人数是男工人数的几分之几? 91÷364=1/4(2)出示课件“想一想”:你能调换例1的条件和问题,把它编成一道应用题吗?(教师先引导学生观察板书,弄清楚例1的条件、问题各是什么,再引导题目调换条件和问题。) 展示改编的应用题:某工厂男工和女工一共455人,其中男工364人,女工多少人? 5、教师小结:通过刚才的学习我们明白了:根据题中两个已知条件的关系,可以求出几种不同的结果;也可以把求得的结果看做已知的条件,加上原来的一个已知条件,求出原来的另一个条件。 6、巩固练习:请大家根据“单价=总价÷数量”编写一道应用题,并解答出来。(教师举出日常生活中的事例,慢慢地引导学生写句子。) 教师举例:买5支铅笔2.50元,买1支铅笔多少钱? 三、布置作业:练习二十九的1、2题。附板书: 简单应用题 条件 问题 算式 男工364人 男工和女工一共多少人? 364+91=455(人) 女工91人 男工比女工的多少人? 364-91=273(人)女工比男工少多少人? 364-91=273(人)男工人数是女工人数的几倍? 364÷91=4 女工人数是男工人数的几分之几? 91÷364=1/4 某工厂男工和女工一共455人,其中男工364人,女工多少人?第四篇:八年级数学教案
第五篇:八年级数学教案