考点18不等式的证明

时间:2019-05-13 15:47:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《考点18不等式的证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《考点18不等式的证明》。

第一篇:考点18不等式的证明

圆学子梦想 铸金字品牌

温馨提示:

此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word文档返回原板块。

考点18不等式的证明

选择题

1.(2011·全国高考理科·T3)下面四个条件中,使ab成立的充分而不必要的条件是()

(A)ab1(B)ab1(C)a2b2(D)a3b3

【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由a>b推不出的选项.【精讲精析】选A.即寻找条件p使pab,abp,逐项验证可知选A.2.(2011·全国高考文科·T5)下面四个条件中,使a>b成立的充分而不必要的条件是()

(A)a>b1(B)a>b1(C)a2>b2(D)a3>b3

【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由a>b推不出的选项.【精讲精析】选A.即寻找条件p使pab,abp,逐项验证可知选A.关闭Word文档返回原板块。

第二篇:不等式证明

不等式证明

不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。

一、不等式的初等证明方法

1.综合法:由因导果。

2.分析法:执果索因。基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。

(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。

3.反证法:正难则反。

4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:

(1)添加或舍去一些项,如:

2)利用基本不等式,如:

(3)将分子或分母放大(或缩小):

5.换元法:换元的目的就是减少不等式中变量,以使问题

化难为易、化繁为简,常用的换元有三角换元和代数换元。

6.构造法:通过构造函数、方程、数列、向量或不等式来证明不等式。

证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。

7.数学归纳法:数学归纳法证明不等式在数学归纳法中专门研究。

8.几何法:用数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。

9.函数法:引入一个适当的函数,利用函数的性质达到证明不等式的目的。

10.判别式法:利用二次函数的判别式的特点来证明一些不等式的方法。当a>0时,f(x)=ax2+bx+c>0(或<0).△<0(或>0)。当a<0时,f(x)>0(或<0).△>0(或<0)。

二、部分方法的例题

1.换元法

换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。

注意:在不等式的证明中运用换元法,能把高次变为低次,分式变为整式,无理式变为有理式,能简化证明过程。尤其对含有若干个变元的齐次轮换式或轮换对称式的不等式,通过换元变换形式以揭示内容的实质,可收到事半功倍之效。

2.放缩法

欲证A≥B,可将B适当放大,即B1≥B,只需证明A≥B1。相反,将A适当缩小,即A≥A1,只需证明A1≥B即可。

注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。

3.几何法

数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。

第三篇:不等式证明

不等式的证明

比较法证明不等式

a2b2ab1.设ab0,求证:2.ab2ab

2.(本小题满分10分)选修4—5:不等式选讲

(1)已知x、y都是正实数,求证:x3y3x2yxy2;

(2对满足xyz1的一切正实数 x,y,z恒成立,求实数a的取值范围

.,1综合法证明不等式(利用均值不等式)3.已知abc, 求证:1 114.abbcac

4.设a,b,c均为正数,且a+b+c=1,证明:

1(Ⅰ)ab+bc+ac3;

a2b2c2

1ca(Ⅱ)b

5.(1)求不等式x32x1的解集;

121225(a)(b)a,bR,ab1ab2.(2)已知,求证:

6.若a、b、c是不全相等的正数,求证:

分析法证明不等式

7.某同学在证明命题“7要证明732”时作了如下分析,请你补充完整.62,只需证明________________,只需证明___________,+292,展开得9即,只需证明1418,________________,所以原不等式:62成立.22263,(72)(63),因为1418成立。

abc8.已知a,b,cR。3

9.(本题满分10分)已知函数f(x)|x1|。

(Ⅰ)解不等式f(x)f(x4)8;{x|x≤-5,或x≥3}(Ⅱ)若|a|1,|b|1,且a0,求证:f(ab)|a|f().10.(本小题满分10分)当a,bMx|2x2时,证明:2|a+b|<|4+ab|.反证法证明不等式

11.已知a,b,c均为实数,且a=x2y+2baπππ22,b=y2z+,c=z2x+,236

求证:a,b,c中至少有一个大于0.12.(12分)若x,yR,x0,y0,且xy2。求证:1x和1y中至少有一个小于2.yx

放缩法证明不等式

13.证明不等式:1111121231

123n2

214.设各项均为正数的数列an的前n项和为Sn,满足4SnannN,且

14n1,a2,a5,a14构成等比数列.

(1)证明:a2

(2)求数列an的通项公式;an2n1

(3)证明:对一切正整数n,有11a1a2a2a311. anan12

15.设数列an的前n项和为Sn.已知a11,2Sn12an1n2n,nN*.n33

(Ⅰ)求a2的值;a24(Ⅱ)求数列an的通项公式;ann2(Ⅲ)证明:对一切正整数n,有数学归纳法证明不等式

16.(本小题满分12分)若不等式11

n1n21a对一切正整数n都成立,求正3n12411a1a217.an4

整数a的最大值,并证明结论.25

17.用数学归纳法证明不等式:

第四篇:不等式证明经典

金牌师资,笑傲高考

2013年数学VIP讲义

【例1】 设a,b∈R,求证:a2+b2≥ab+a+b-1。

【例2】 已知0

【例3】 设A=a+d,B=b+c,a,b,c,d∈R+,ad=bc,a=max{a,b,c,d},试比较A与B的大小。

因A、B的表达形式比较简单,故作差后如何对因式进行变形是本题难点之一。利用等式ad=bc,借助于消元思想,至少可以消去a,b,c,d中的一个字母。关键是消去哪个字母,因条件中已知a的不等关系:a>b,a>c,a>d,故保留a,消b,c,d中任一个均可。

由ad=bc得:dbca1abbccaabcabc≥1。

bcabcab(ab)(ac)a0bcacaA-B=a+d-(b+c)=a =ab c(ab)a

【例4】 a,b,c∈R,求证:a4+b4+c4≥(a+b+c)。

不等号两边均是和的形式,利用一次基本不等式显然不行。不等号右边为三项和,根据不等号方向,应自左向右运用基本不等式后再同向相加。因不等式左边只有三项,故把三项变化六项后再利用二元基本不等式,这就是“化奇为偶”的技巧。

左=12(2a42b2242c)22412[(a24b)(b22244c)(c2244a)]24

≥12(2ab2bc2ca)abbcca

2发现缩小后没有达到题目要求,此时应再利用不等式传递性继续缩小,处理的方法与刚才类似。

中天教育咨询电话:0476-8705333

第1页/共9页 金牌师资,笑傲高考

ab1212

2013年数学VIP讲义

22bc2222ca2222212(2ab22222bc22222ca)22

ca)(ca2[(abbc)(bc22ab)]22≥(2abc2abc22abc)ab(abc)1a

1c【例5】(1)a,b,c为正实数,求证:(2)a,b,c为正实数,求证:

a21bb2≥

c21ab1bc1ac;

bcacab≥

abc2。

(1)不等式的结构与例4完全相同,处理方法也完全一样。

(2)同学们可试一试,再用刚才的方法处理该题是行不通的。注意到从左向右,分式变成了整式,可考虑在左边每一个分式后配上该分式的分母,利用二元基本不等式后约去分母,再利用不等式可加性即可达到目的。试一试行吗?

a2bcb2(bc)≥2a2bcb2(bc)2a

acc2(ac)≥2ac(ac)2bab(ab)≥2c2ab(ab)2c

相加后发现不行,a,b,c的整式项全消去了。为了达到目的,应在系数上作调整。

a2bcbc4≥a,b2acac4≥b,c2abab4≥a 相向相加后即可。

【例6】 x,y为正实数,x+y=a,求证:x+y≥

2a22。

思路一;根据x+y和x2+y2的结构特点,联想到算术平均数与平方平均数之间的不等关系。∵ xy22≤2x2y22

2∴ xy≥(xy)2a22

思路二:因所求不等式右边为常数,故可从求函数最小值的角度去思考。思路一所用的是基本不等式法,这里采用消元思想转化为一元函数,再用单调性求解。换元有下列三种途径:

途径1:用均值换元法消元: 令 x2a2m,yaa22m

22则 xy(m)(m)2m222aa22≥

a22

途径2:代入消元法: y=a-x,0

a2)2a22≥

a22

中天教育咨询电话:0476-8705333

第2页/共9页 金牌师资,笑傲高考

途径3:三角换元法消元:

令 x=acos2θ,y=asin2θ,θ∈(0,]

22013年数学VIP讲义

则 x2+y2=a2(cos4θ+sin4θ)=a2[(sin2θ+cos2θ)2-2sin2θcos2θ]

=a[1-2(sin2θ)]=a(1-22122

12sin2θ)≥

a22

注:为了达到消元的目的,途径1和途径3引入了适当的参数,也就是找到一个中间变量表示x,y。这种引参的思想是高中数学常用的重要方法。【例7】 已知a>b>0,求证:(ab)8a2ab2ab(ab)8b2。

12所证不等式的形式较复杂(如从次数看,有二次,一次,次等),难以从某个角度着手。故考虑用分析法证明,即执果索因,寻找使不等式成立的必要条件。实际上就是对所证不等式进行适当的化简、变形,实际上这种变形在相当多的题目里都是充要的。

ab2abab2ab2b)(a(a(a2b)2

ab(ab)b)(a8a2所证不等式可化为∵ a>b>0 ∴ ab ∴ ab0

b)2(a2b)2(ab)(a8b2b)2

∴ 不等式可化为:(a4ab)21(a4bb)2

2(ab)4a即要证

24b(ab)ab2a只需证

2bab在a>b>0条件下,不等式组显然成立 ∴ 原不等式成立 【例8】 已知f(x)=24xx38,求证:对任意实数a,b,恒有f(a)

112.不等号两边字母不统一,采用常规方法难以着手。根据表达式的特点,借助于函数思想,可分别求f(a)及g(b)=b2-4b+f(a)112的最值,看能否通过最值之间的大小关系进行比较。

82(2)a2a24aa3882a882a≤

282a82a8422

令 g(b)=b2-4b+11232 ≥32 g(b)=(b-2)2+

中天教育咨询电话:0476-8705333

第3页/共9页 金牌师资,笑傲高考

∵ 3222013年数学VIP讲义

∴ g(b)>f(a)注:本题实际上利用了不等式的传递性,只不过中间量为常数而已,这种思路在两数大小比较时曾讲过。由此也说明,实数大小理论是不等式大小理论的基础。

【例9】 已知a,b,c∈R,f(x)=ax2+bx+c,当|x|≤1时,有|f(x)|≤1,求证:

(1)|c|≤1,|b|≤1;

(2)当|x|≤1时,|ax+b|≤2。

这是一个与绝对值有关的不等式证明题,除运用前面已介绍的不等式性质和基本不等式以外,还涉及到与绝对值有关的基本不等式,如|a|≥a,|a|≥-a,||a|-|b||≤|a±b|≤|a|+|b|,|a1±a2±„±an|≤|a1|+|a2|+„+|an|。就本题来说,还有一个如何充分利用条件“当|x|≤1时,|f(x)|≤1”的解题意识。

从特殊化的思想出发得到: 令 x=0,|f(0)|≤1 即 |c|≤1 当x=1时,|f(1)|≤1;当x=-1时,|f(-1)|≤1 下面问题的解决试图利用这三个不等式,即把f(0),f(1),f(-1)化作已知量,去表示待求量。∵ f(1)=a+b+c,f(-1)=a-b+c ∴ b12[f(1)f(1)] 12|f(1)f(1)|≤12[|f(1)||f(1)|]≤

12(11)≤1 ∴ |b|(2)思路一:利用函数思想,借助于单调性求g(x)=ax+b的值域。

当a>0时,g(x)在[-1,1]上单调递增 ∴ g(-1)≤g(x)≤g(1)∵ g(1)=a+1=f(1)-f(0)≤|f(1)-f(0)|≤|f(1)|+|f(0)|≤2 g(-1)=-a+b=f(0)-f(-1)=-[f(-1)-f(0)]

≥-|f(-1)-f(0)|≥-[|f(-1)|+|f(0)|]≥-2 ∴-2≤g(x)≤2 即 |g(x)|≤2 当a<0时,同理可证。

思路二:直接利用绝对值不等式

为了能将|ax+b|中的绝对值符号分配到a,b,可考虑a,b的符号进行讨论。当a>0时

|ax+b|≤|ax|+|b|=|a||x|+|b|≤|a|+|b|≤a+|b| 下面对b讨论

① b≥0时,a+|b|=a+b=|a+b|=|f(1)-f(0)| ≤ |f(1)|+|f(0)|≤2; ② b<0时,a+|b|=a-b=|a-b|=|f(-1)-f(0)|≤|f(-1)|+f(0)|≤2。∴ |ax+b|≤2 当a<0时,同理可证。

评注:本题证明过程中,还应根据不等号的方向,合理选择不等式,例如:既有|a-b|≥|a|-|b|,又有|a-b|≥|b|-|a|,若不适当选择,则不能满足题目要求。

中天教育咨询电话:0476-8705333

第4页/共9页 金牌师资,笑傲高考

2013年数学VIP讲义

1、设a,b为正数,且a+b≤4,则下列各式一定成立的是 A、C、1a121b1a≤141b B、≤1 D、141a≤

1a1b≤

1b≥1

2、已知a,b,c均大于1,且logac·logbc=4,则下列各式中一定正确的是 A、ac≥b B、ab≥c C、bc≥a D、ab≤c

5、已知a,b,c>0,且a+b>c,设M=

a4abbcc4c,N=,则MN的大小关系是

A、M>N B、M=N C、M

6、已知函数f(x)=-x-x3,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值 A、一定大于零 B、一定小于零 C、一定等于零 D、正负都有可能

7、若a>0,b>0,x111()2ab1ab1ab,y,z,则

A、x≥y>z B、x≥z>y C、y≥x>z D、y>z≥x

8、设a,b∈R,下面的不等式成立的是 A、a+3ab>b B、ab-a>b+ab C、(二)填空题

9、设a>0,b>0,a≠b,则aabb与abba的大小关系是__________。

10、若a,b,c是不全相等的正数,则(a+b)(b+c)(c+a)______8abc(用不等号填空)。

12、当00且t≠1时,logat与log21t1a2

2aba1b1 D、a+b≥2(a-b-1)

22的大小关系是__________。

n13、若a,b,c为Rt△ABC的三边,其中c为斜边,则an+bn与c(其中n∈N,n>2)的大小关系是________________。

(三)解答题

14、已知a>0,b>0,a≠b,求证:a

15、已知a,b,c是三角形三边的长,求 证:1

中天教育咨询电话:0476-8705333

第5页/共9页

abcbaccab2。

babba。金牌师资,笑傲高考

16、已知a≥0,b≥0,求证:

18、若a,b,c为正数,求证:

19、设a>0,b>0,且a+b=1,求证:(a

20、已知a+b+c>0,ab+bc+ca>0,abc>0,求证:a,b,c全为正数。

1a)(b1b)2541a1b1ca82013年数学VIP讲义

12(ab)214(ab)≥aaba。

b383c38。

abc≥。

中天教育咨询电话:0476-8705333

第6页/共9页

第五篇:不等式证明

§14不等式的证明

不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型.证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下: 不等式的性质:abab0,abab0.这是不等式的定义,也是比较法的依据.对一个不等式进行变形的性质:

(1)abba(对称性)

(2)abacbc(加法保序性)

(3)ab,c0acbc;ab,c0acbc.(4)ab0anbn,nanb(nN*).对两个以上不等式进行运算的性质.(1)ab,bcac(传递性).这是放缩法的依据.(2)ab,cdacbd.(3)ab,cdacbd.(4)ab0,dc0,含绝对值不等式的性质:

(1)|x|a(a0)x2a2axa.(2)|x|a(a0)x2a2xa或xa.(3)||a||b|||ab||a||b|(三角不等式).(4)|a1a2an||a1||a2||an|.ab,adbc.cd 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.例题讲解 1.a,b,c0,求证:ab(ab)bc(bc)ca(ca)6abc.abc32.a,b,c0,求证:abc(abc)

abc.a2b2b2c2c2a2a3b3c3.3.:a,b,cR,求证abc2c2a2bbccaab

4.设a1,a2,,anN*,且各不相同,求证:1

12131aa3ana12..n2232n25.利用基本不等式证明a2b2c2abbcca.446.已知ab1,a,b0,求证:ab1.8

7.利用排序不等式证明GnAn

8.证明:对于任意正整数R,有(1

1n1n1)(1).nn11119.n为正整数,证明:n[(1n)1]1n(n1)nn1.23n

1n 课后练习

1.选择题

(1)方程x-y=105的正整数解有().(A)一组(B)二组

(C)三组

(D)四组

(2)在0,1,2,„,50这51个整数中,能同时被2,3,4整除的有().(A)3个(B)4个

(C)5个

(D)6个 2.填空题

(1)的个位数分别为_________及_________.4

5422(2)满足不________.等式10≢A≢10的整数A的个数是x×10+1,则x的值(3)已知整数y被7除余数为5,那么y被7除时余数为________.(4)求出任何一组满足方程x-51y=1的自然数解x和y_________.3.求三个正整数x、y、z满足

23.4.在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?

5.求的整数解.6.求证可被37整除.7.求满足条件的整数x,y的所有可能的值.8.已知直角三角形的两直角边长分别为l厘米、m厘米,斜边长为n厘米,且l,m,n均为正整数,l为质数.证明:2(l+m+n)是完全平方数.9.如果p、q、、都是整数,并且p>1,q>1,试求p+q的值.课后练习答案

1.D.C.2.(1)9及1.(2)9.(3)4.(4)原方程可变形为x=(7y+1)+2y(y-7),令y=7可得x=50.223.不妨设x≢y≢z,则,故x≢3.又有故x≣2.若x=2,则,故y≢6.又有,故y≣4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≢y≢4,y=3或4,z都不能是整数.4.可仿例2解.5.分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换的方法...

略解:a2b22ab,同理b2c32bc,c2a22ca;三式相加再除以2即得证.评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.22xnx12x2如x1x2xn,可在不等式两边同时加上x2x3x1x2x3xnx1.再如证(a1)(b1)(ac)3(bc)3256a2b2c3(a,b,c0)时,可连续使用基本不等式.ab2a2b2)(2)基本不等式有各种变式

如(等.但其本质特征不等式两边的次22数及系数是相等的.如上式左右两边次数均为2,系数和为1.6.8888≡8(mod37),∴8888333

3222

2≡8(mod37).2222

27777≡7(mod37),7777≡7(mod37),8888238+7=407,37|407,∴37|N.22

3+7777

3333

≡(8+7)(mod37),而

237.简解:原方程变形为3x-(3y+7)x+3y-7y=0由关于x的二次方程有解的条件△≣0及y为整数可得0≢y≢5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).8.∵l+m=n,∴l=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l,n-m=1.于是2222l=n+m=(m+1)+m=2m+1,2m=l-1,2(l+m+1)=2l+2+2m=l+2l+1=(l+1).即2(l+m+1)是完全平方数.222

229.易知p≠q,不妨设p>q.令(4-mn)p=m+2,解此方程可得p、q之值.=n,则m>n由此可得不定方程

例题答案:

1.证明:ab(ab)bc(bc)ca(ca)6abc

a(b2c22bc)b(a2c22ac)c(a2b22ab)

a(bc)2b(ca)2c(ab)2

0

ab(ab)bc(bc)ca(ca)6ab.c

评述:(1)本题所证不等式为对称式(任意互换两个字母,不等式不变),在因式分解或配方时,往往采用轮换技巧.再如证明a2b2c2abbcca时,可将a2b2

1(abbcca)配方为[(ab)2(bc)2(ca)2],亦可利用a2b22ab,2b2c22bc,c2a22ca,3式相加证明.(2)本题亦可连用两次基本不等式获证.2.分析:显然不等式两边为正,且是指数式,故尝试用商较法.不等式关于a,b,c对称,不妨abc,则ab,bc,acR,且

ab,,bca都大于等于1.caabbcc(abc)abc3a2abc3b2bac3c2cab3aab3aac3bba3bbc3cca3ccb3

ab3a()bb()cbc3a()cac31.评述:(1)证明对称不等式时,不妨假定n个字母的大小顺序,可方便解题.(2)本题可作如下推广:若ai0(i1,2,,n),则a11a22anaaan(a1a2an)a1a2ann.(3)本题还可用其他方法得证。因aabbabba,同理bbccbccb,ccaacaac,另aabbccaabbcc,4式相乘即得证.(4)设abc0,则lgalgblgc.例3等价于algablgbalgbblga,类似例4可证algablgbclgcalgbblgcclgaalgcblgbclga.事实上,一般地有排序不等式(排序原理): 设有两个有序数组a1a2an,b1b2bn,则a1b1a2b2anbn(顺序和)

a1bj1a2bj2anbjn(乱序和)a1bna1bn1anb1(逆序和)

其中j1,j2,,jn是1,2,,n的任一排列.当且仅当a1a2an或b1b2bn时等号成立.排序不等式应用较为广泛(其证明略),它的应用技巧是将不等式两边转化为两个有序数组的积的形式.如a,b,cR时,a3b3c3a2bb2cc2aa2ab2bc2c

a2b2c2111111abbcca;abca2b2c2a2b2c2bcabcaabc222.3.思路分析:中间式子中每项均为两个式子的和,将它们拆开,再用排序不等式证明.111111,则a2b2c2(乱序和)cbacab111111a2b2c2(逆序和),同理a2b2c2(乱序和)abccab111a2b2c2(逆序和)两式相加再除以2,即得原式中第一个不等式.再考虑数abc111333组abc及,仿上可证第二个不等式.bcacab

222不妨设abc,则abc,4.分析:不等式右边各项

ai1a;可理解为两数之积,尝试用排序不等式.i22ii设b1,b2,,bn是a1,a2,,an的重新排列,满足b1b2bn,又1111.22223nanbna2a3b2b3.由于b1,b2,bn是互不相同的正整数,b122222n2323nb3bnb11故b11,b22,,bnn.从而b12,原式得证.12222n23n所以a1评述:排序不等式应用广泛,例如可证我们熟悉的基本不等式,a2b2abba,a3b3c3a2bb2cc2aaabbbcccaabcbaccab3abc.5.思路分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换的方..法.a2b22ab,同理b2c32bc,c2a22ca;三式相加再除以2即得证.评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.22xnx12x2如x1x2xn,可在不等式两边同时加上x2x3x1x2x3xnx1.再如证(a1)(b1)(ac)3(bc)3256a2b2c3(a,b,c0)时,可连续使用基本不等式.ab2a2b2)(2)基本不等式有各种变式

如(等.但其本质特征不等式两边的次数及22系数是相等的.如上式左右两边次数均为2,系数和为1.6.思路分析:不等式左边是a、b的4次式,右边为常数式呢.44要证ab1,如何也转化为a、b的4次811,即证a4b4(ab)4.8833评述:(1)本题方法具有一定的普遍性.如已知x1x2x31,xi0,求证:x1 x211133求证:x1x2x2x3 x3.右侧的可理解为(x1x2x3).再如已知x1x2x30,3332+x3x10,此处可以把0理解为(x1x2x3),当然本题另有简使证法.38(2)基本不等式实际上是均值不等式的特例.(一般地,对于n个正数a1,a2,an)

调和平均Hnn111a1a2an 几何平均Gnna1a2an 算术平均Ana1a2an

n22a12a2an平方平均Qn

2这四个平均值有以下关系:HnGnAnQn,其中等号当且仅当a1a2an时成立.7.证明: 令biai,(i1,2,,n)则b1b2bn1,故可取x1,x2,xn0,使得 Gnb1

xxx1x,b22,,bn1n1,bnn由排序不等式有: x2x3xnx1b1b2bn

=xx1x2n(乱序和)x2x3x1111x2xn(逆序和)x1x2xn x1

=n,aaa2ana1a2nn,即1Gn.GnGnGnn111,,各数利用算术平均大于等于几何平均即可得,GnAn.a1a2an 评述:对8.分析:原不等式等价于n1(1)1平均,而右边为其算术平均.n11nn1,故可设法使其左边转化为n个数的几何n111111n21(1)n(1)(1)1(1)(1)11.n1nnnnnn1n1n个n1 评述:(1)利用均值不等式证明不等式的关键是通过分拆和转化,使其两边与均值不等式形式相近.类似可证(11n11n2)(1).nn1(2)本题亦可通过逐项展开并比较对应项的大小而获证,但较繁.9.证明:先证左边不等式

111(1n)123n1111n123n (1n)n

n111(11)(1)(1)(1)123n (1n)nn34n1223nn1n(*)

nn[(1n)1]121n1n111123n

n 34n123nn234n1nn1.n23n (*)式成立,故原左边不等式成立.其次证右边不等式

1111n(n1)nn1

23n1 n1n1n(1111111)(1)(1)(1)23nn1123n n1nn112n1123n

(**) n1nn1

(**)式恰符合均值不等式,故原不等式右边不等号成立.

下载考点18不等式的证明word格式文档
下载考点18不等式的证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    不等式证明

    不等式证明 1. 比较法: 比较法是证明不等式的最基本、最重要的方法之一,它可分为作差法、作商法 (1)作差比较: ①理论依据a-b>0a>b; a-b=0a=b; a-b0),只要证;要证A0),只要证②证明......

    不等式证明练习题

    不等式证明练习题(1/a+2/b+4/c)*1=(1/a+2/b+4/c)*(a+b+c)展开,得=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b基本不等式,得>=19>=18用柯西不等式:(a+b+......

    常用均值不等式及证明证明

    常用均值不等式及证明证明这四种平均数满足HnGnAnQn、ana1、a2、R,当且仅当a1a2an时取“=”号仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)由以上简化,有一个简单结论,......

    均值不等式证明

    均值不等式证明一、已知x,y为正实数,且x+y=1求证xy+1/xy≥17/41=x+y≥2√(xy)得xy≤1/4而xy+1/xy≥2当且仅当xy=1/xy时取等也就是xy=1时画出xy+1/xy图像得01时,单调增而xy≤1/......

    分析法证明不等式专题

    分析法证明不等式已知非零向量a,b,a⊥b,求证|a|+|b|/|a+b|0【2】显然,由|a+b|>0可知原不等式等价于不等式:|a|+|b|≤(√2)|a+b|该不等式等价于不等式:(|a|+|b|)²≤².整理即是:a......

    证明不等式方法

    不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。 1比较法比较法是证明不等式的最基本方法......

    不等式的证明

    不等式的证明不等式的证明,基本方法有比较法:(1)作差比较法(2)作商比较法综合法:用到了均值不等式的知识,一定要注意的是一正二定三相等的方法的使用。分析法:当无法从条件入手时......

    不等式的证明(推荐)

    不等式的基本性质 1、不等式:a222a,a2b22(ab1),a2b2ab恒成立的个数是 (A)0(B)1(C)2(D)3[C] 2、下列命题正确的是 c1c1 ba ab(C)ab,cd(ab)2(dc)2(D)ab0,cd0 dc(A......