指数函数性质的应用

时间:2019-05-13 03:26:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《指数函数性质的应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《指数函数性质的应用》。

第一篇:指数函数性质的应用

:指数函数性质的应用

活动一:复习性质同桌交流

同桌相互提问指数函数的性质,达到熟练的程度.活动二:应用自测自我检查

1.出示自测题组(8个选择、填空题),学生当堂完成,时间10分钟.题目包括求函数值、判断函数图象、比较大小、图像过定点等问题.2.教师公布答案,学生检查对错,及时更正;

通过同桌交流解决做错的问题,解决不了的学习中心组的学生或老师讲解.活动三:突出重点突破难点

1.对指数函数底数取值范围的进一步理解

问题:举例说明为什么规定指数函数底数a>0, 且a≠1.提问中等以下水平学生,并根据情况追问,直至学生明白为止.2.学生用几何画板软件画出底数a>1的指数函数图象,让a变化,观察图像位置的变化特征..用计算机画出底数0

1.例1:根据函数性质比较大小(教材P57例7)

问题1:根据本例说明怎样利用指数函数的性质判断两个幂的大小?关键是找到对应指数函数,明确其单调性.问题2:三个式子比较大小,如何解决,有哪些方法?(两两比较、与0、1、-1等的数值比较)

2.例2:如果a 2x+1 ≦a x-5(a>0,a≠1),求x的取值范围.

第二篇:指数函数及其性质说课稿

指数函数及其性质说课稿

各位老师:

大家好!我说课的内容是新课程人教A版高中数学必修1第二章2.1.2“指数函数及其性质”的第一课时——指数函数的定义、图象及性质.我将根据新课标的理念、高一学生的认知特点设计本节课的教学。下面我从教材分析、学情分析、教法学法分析、教学过程等几个环节,向各位老师谈谈我对这节课教材的理解和教学设计。

一.教材分析

1.教材的地位和作用

函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了指数幂运算和函数概念的基础上,进一步研究指数函数,以及指数函数的图象与性质。它一方面可以使学生得到较系统的函数知识和研究函数的方法,另一方面也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。2.教学目标:

(1)知识与技能目标:理解指数函数的概念和意义,掌握指数函数的性质,运用待定系数法求相应函数解析式及函数值(2)过程与方法目标:用描点法画指数函数图像,运用图像探 索指数函数的性质,体会一般到特殊的研究问题方法。体会数形

结合的数学思想方法。

(3)情感、态度与价值观目标:感受数形结合思想的重要性。培养用不同的知识点去从不同的角度解决同一个问题的习惯。提 高观察、比较、概括的能力 3.重点与难点

指数函的概念和性质是教学重点;对指数函数图像的探究以及指数函数的性质的理解和简单应用是教学难点。

二、学情分析

(1)知识层面:学生学生在初中已经掌握了用描点法描绘函数图象的方法,通过第一章集合与函数概念的学习后函函具备了数形结合的思想。

(2)能力层面:学生已经初步掌握了函数的基本性质和简单的指数运算技能。

(3)情感层面:学生对数学新的容的学习有相当兴趣,但探究问题的能力及合作交流等发展不均衡。三.教法学法分析

结合本节课的教学内容和学生的认知水平,我将“引导式”教学与“探究式”教学有机结合,培养学生主动观察与思考,通过合作交流、共同探索来逐步解决问题,发挥学生的主体作用,使其体会成功的喜悦。

四、教学过程分析

根据新课标的理念,我把整个的教学过程分为六个环节,第一环节:创设情境、导入新知:

在本节课的开始,我设计了两个问题情境得出细胞分裂的个数y与x的函数关系式,以及木棒长度y与截的次数x之间的关系式。从而设问这两个解析式有什么共同特征?它们能否构成函数?是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?

由两个较简单的实际问题激发学生学习动机,又引发学生认知冲突,激发学生的求知欲,引出指数函数的一般模型,为导出指数函数概念作好铺垫。

第二环节:启发诱导,发现新知:

1.在上一环节的基础上教师很自然地给出指数函数的概念,即函数 (a>0且a≠1)叫做指数函数,定义域为R.。教师将引导学生探究为什么定义中规定a>0且a≠1呢?对a的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时为后面研究函数的图象和性质埋下了伏笔.在给出定义之后可能会有同学感觉定义的形式十分简单,此时教师给出问题,打破学生对定义的轻视,你能否判断下列函数哪些是指数函数吗?

在学生判断的过程中教师给予适时指导,学生体会哪些是指数函数的过程也是学生头脑中不断完善对定义理解的过程.教师提醒学生“指数函数”的定义是形式定义,必须在形式上一模一样.通过这一练习让学生对定义有更进一步的认识.此时教师把

问题引向深入,研究一个函数,就是要对一个函数的图象和性质进行进一步的研究.教师带领学生进入下一个部分——探究指数函数的图形和性质.2.首先教师给出表格,让学生同桌合作用描点法画出函数y =2x 和y =(1/2)x的图象.最后教师在多媒体上将这两个图象给予展示,这样既避免了学生在画图过程中占用过多时间,又让学生体会到了合作交流的乐趣.此时教师组织学生讨论,并引导学生观察图象的特点,学生首先发现的是这两个图象的位置关系,教师抓住时机归纳得出指数函数的底数互为倒数时,图像关于y轴对称的性质。然后引导学生从图像的位置,图像经过的定点,图像的变化趋势等方面再做深入的研究,得出a>1和0

我将给出表格,引导学生根据图象填写.让学生充分感受以图象为基础研究函数的性质这一重要的数学思想.表格的完成将 会使学生体会到很大的成功感,也将学生思考的热情带入高峰.这一环节由观察图像特点到函数性质的建构培养了学生数形结合、分类讨论和化归转化的能力。

第四环节:强化训练,巩固新知

这一环节设计利用待定系数法确定函数解析式的题目,从而求函数值,渗透方程的思想解决函数问题。第五环节:小结归纳,拓展新知

在小结归纳中我从学生的知识,方法和体验入手,带领学生从以下三个方面进行小结:

(1)通过本节课,你对指数函数有什么认识?(2)这节课主要通过什么方法来学习指数函数性质?(3)记住两个基本图形。

让学生在小结中明确本节课的学习内容,强化本节课的学习重点,优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,并为后续学习打下基础.第六环节:布置作业,内化新知

通过作业检验学生对本节课知识的理解与运用的程度,以及接受的情况。促进学生进一步巩固所学内容。及时从作业中回馈出问题,及时解决.以上六个环节层层深入,环环相扣,引导学生去亲身经历知识的形成和发展的 过程,以问题为载体,对知识的探究由 表及里,逐步深入。

教后反思

1、本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。

2、在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题。

当然,不足之处在所难免,请各位领导和老师提出宝贵意见。

第三篇:2.1.2指数函数及其性质

2.1.2指数函数及其性质(第2个课时)

一.教学目标:

1.知识与技能

①通过实际问题了解指数函数的实际背景;

②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质.③体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观

①让学生了解数学来自生活,数学又服务于生活的哲理.②培养学生观察问题,分析问题的能力.3.过程与方法

展示函数图象,让学生通过观察,进而研究指数函数的性质.二.重、难点

重点:指数函数的概念和性质及其应用.难点:指数函数性质的归纳,概括及其应用.三、学法与教具:

①学法:观察法、讲授法及讨论法.②教具:多媒体.教学过程:

1、复习指数函数的图象和性质

2、例题

例1:(P66例7)比较下列各题中的个值的大小(1)1.72.5

1.73(2)0.8与0.8(3)1.70.3 与

0.93.1 解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y1.7的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5的点的上方,所以

2.531.71..7

80.10.2x64y1.7x 5102-10-50-2-4-6-8解法2:用计算器直接计算:1.7所以,1.71.7

解法3:由函数的单调性考虑 2.532.533.77

1.74.9

1因为指数函数y1.7在R上是增函数,且2.5<3,所以,1.7x2.51.73

仿照以上方法可以解决第(2)小题.注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合.由于1.70.3=0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小.思考:

1、已知a0.8,b0.8,c1.2,按大小顺序排列a,b,c.0.70.90.82.比较a与a的大小(a>0且a≠0).指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用.例2(P67例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?

分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题: 1999年底

人口约为13亿

经过1年

人口约为13(1+1%)亿

经过2年

人口约为13(1+1%)(1+1%)=13(1+1%)2亿 经过3年

人口约为13(1+1%)2(1+1%)=13(1+1%)3亿 经过x年

人口约为13(1+1%)x亿 经过20年

人口约为13(1+1%)20亿

解:设今后人口年平均增长率为1%,经过x年后,我国人口数为y亿,则 1312y13(11%)x

当x=20时,y13(11%)2016(亿)

答:经过20年后,我国人口数最多为16亿.小结:类似上面此题,设原值为N,平均增长率为P,则对于经过时间x后总量yN(1p)x,像yN(1p)x等形如ykax(KR,a>0且a≠1)的函数称为指数型函数.思考:P68探究:

(1)如果人口年均增长率提高1个平分点,利用计算器分别计算20年后,33年后的我国人口数.(2)如果年平均增长率保持在2%,利用计算器2020~2100年,每隔5年相应的人口数.(3)你看到我国人口数的增长呈现什么趋势?(4)如何看待计划生育政策? 3.课堂练习

(1)右图是指数函数①ya

②yb

③yc

④yd的图象,判断a,b,c,d与1的大

8xxxxybxycx Y= 64ydx

yax 5102-10-5-2-4-6小关系;①y1y2

②y1>y2

(3)用清水漂洗衣服,若每次能洗去污垢的(2)设y1a3x1,y2a2x,其中a>0,a≠1,确定x为何值时,有:

3,写出存留污垢y与漂洗次数x的函数关系式,若要4x使存留的污垢,不超过原有的1%,则少要漂洗几次(此题为人教社B版101页第6题).归纳小结:本节课研究了指数函数性质的应用,关键是要记住a>1或0<a<时ya的图象,在此基础上研究其性质.本节课还涉及到指数型函数的应用,形如yka(a>0且a≠1).作业:P69 A组第 7,8 题

P70 B组

第 1,4题

x

第四篇:指数函数及其性质教案

一尺之棰,日取其半,万世不竭出自《庄子》

2.1.2指数函数及其性质教学设计

一、教学目标:

知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。

过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教学重点、难点:

教学重点:指数函数的概念、图象和性质。

教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。

三、教学过程:

(一)创设情景

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 x次后,得到的细胞分裂的个数 y与 x之间,构成一个函数关系,能写出 x与 y之间的函数关系式吗?

学生回答: y与 x之间的关系式,可以表示为y=2x。

问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。

学生回答: y与 x之间的关系式,可以表示为y=0.84x。引导学生观察,两个函数中,底数是常数,指数是自变量。1.指数函数的定义

一般地,函数yaa0且a1叫做指数函数,其中x是自变量,函数的定义域是R.x问题:指数函数定义中,为什么规定“a0且a1”如果不这样规定会出现什么情况?

(1)若a<0会有什么问题?(如a2,x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题?(对于x0,a无意义)

(3)若 a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要.)师:为了避免上述各种情况的发生,所以规定a0且 a1.练1:指出下列函数那些是指数函数:

x1(1)y4x(2)yx4(3)y4x(4)y4(5)yx(6)y

xx练2:若函数2.指数函数的图像及性质

是指数函数,则a=------

1在同一平面直角坐标系内画出指数函数y2x与y的图象(画图步骤:列表、21描点、连线)。由学生自己画出y3与y的函数图象

3xxx 然后,通过两组图象教师组织学生结合图像讨论指数函数的性质。

特别地,函数值的分布情况如下:

(四)巩固与练习

例1: 比较下列各题中两值的大小

教师引导学生观察这些指数值的特征,思考比较大小的方法。

(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。

(5)题底不同,指数相同,可以利用函数的图像比较大小。(6)题底不同,指数也不同,可以借助中介值比较大小。例2:已知下列不等式 , 比较m,n的大小 :

设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

(五)课堂小结

(六)布置作业

板书设计:

第五篇:指数函数及其性质教案

1—2.1.2指数函数及其性质

一、教学内容分析:

本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。

二、课标分析:

课程标准要求:

① 通过具体实例(如,细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。

② 理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

③ 理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图像,探索并理解指数函数的单调性与特殊点。

④ 在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。

三、学情分析:

学生已经学习了函数的知识,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。

学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。

高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。

四、教学目标:

知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。

过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

五、教学重点、难点:

教学重点:指数函数的概念、图象和性质。指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一。作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础;同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。指数函数是学生完全陌生的一类函数, 对于这样的函数应怎样进行较为系统的理论研究是学生面临的难题。

六、教法分析与学法指导

一、教学方法:

1、教材的处理:由实例引入定义,在根据定义利用描点法画出函数图像,通过图像引导学生发现,概括出函数的性质。

2、教法的选择:根据本节特点,我主要运用问题情景教学法、启发发现法、讨论法。设计意图:这些方法充分体现教师为主导、学生为主体、训练为主线的“三为主”教学原则,充分调动学生的积极性。在教学的同时,培养学生各方面的能力,并有利于既定目标的渗透。教学用具:多媒体、三角板、直尺。

二、学法分析: 高一学生虽然已经学习掌握了指数与指数运算等内容,但对知识的理解和方法的掌握上不完备,反应在解题中就是思维不严密,过程不完整;能力上具备了一定的观察、类比、分析、归纳能力,但知识整合和主动迁移的能力较弱,数形结合的意识和思维的深刻性还需进一步培养和加强,所以应从下面两方面来提高学生的水平。(1)让学生利用图形直观感受;

(2)让学生“设问、尝试、讨论、归纳、运用”,重视学生的主动参与,注重信息反馈,通过引导学生多思、多说、多练,使认识得到深化。通过本节课的学习,教会学生以下几点:善于思考,勤于动手,善于记忆的学习习惯和数形结合的数学思想方法。

七、教学过程:

(一)创设情景

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,„„一个这样的细胞分裂

x次后,得到的细胞分裂的个数 y与 x之间,构成一个函数关系,能写出 x与 y之间的函数关系式吗?

学生回答: y与 x之间的关系式,可以表示为y=2。

问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。

学生回答: y与 x之间的关系式,可以表示为y=0.84。

(二)导入新课

引导学生观察,两个函数中,底数是常数,指数是自变量。

设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。xx函数y=

2、y=0.84 分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。

(三)新课讲授 1.指数函数的定义

一般地,函数是R。设计意图:为按的含义:

叫做指数函数,其中x是自变量,函数的定义域

xx

两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:(0,1)∪(1,+∞)

问题:指数函数定义中,为什么规定“况?

设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。

对于底数的分类,可将问题分解为:

”如果不这样规定会出现什么情(1)若a<0会有什么问题?(如(2)若a=0会有什么问题?(对于

x,则在实数范围内相应的函数值不存在)都无意义),(3)若 a=1又会怎么样?(1无论x取何值,它总是1,对它没有研究的必要.)师:为了避免上述各种情况的发生,所以规定a>0且

.在这里要注意生生之间、师生之间的对话。

设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。

教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。

1:指出下列函数那些是指数函数:

2:若函数

是指数函数,则a=------3:已知y=f(x)是指数函数,且f(2)=4,求函数y=f(x)的解析式。设计意图 :加深学生对指数函数定义和呈现形式的理解。2.指数函数的图像及性质

在同一平面直角坐标系内画出下列指数函数的图象

画函数图象的步骤:列表、描点、连线 思考如何列表取值? 教师与学生共同作出

图像。

设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于

时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。

教师组织学生结合图像讨论指数函数的性质。

设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。

师生共同总结指数函数的性质,教师边总结边板书。

特别地,函数值的分布情况如下:

设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。

(四)巩固与练习

例1: 比较下列各题中两值的大小

教师引导学生观察这些指数值的特征,思考比较大小的方法。

(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。

(5)题底不同,指数相同,可以利用函数的图像比较大小。(6)题底不同,指数也不同,可以借助中介值比较大小。例2:已知下列不等式 , 比较m,n的大小 :

设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

(五)课堂小结

(1)通过本节课的学习,你学到了那些知识?

设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。

(六)布置作业

1、练习B组第2题;习题3-1A组第3题 思考题

2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,第三天给A先生4元,第四天给A先生8元,依次下去,„,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?

3、观察指数函数的图象,比较a,b,c,d,的大小。

设计意图:课后思考的安排,激发学生的学习兴趣,主要为学有余力的学生准备的。并为下一节课讲授指数函数图像随底数a变化规律作铺垫。

八、板书设计:

下载指数函数性质的应用word格式文档
下载指数函数性质的应用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    指数函数及其性质教案

    2.1.2指数函数及其性质教学设计 一、教学目标: 理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。 二、教学重点、难点:教学重点:指数函数的概念、图......

    指数函数及其性质(说课稿)

    指数函数及其性质(说课稿) 各位评委,各位同行:大家好!我本节课说课的内容是高中数学人教A版必修一2.1.2“指数函数及其性质”的第一课时.本节课的课标要求为:1、通过具体实例(如细......

    指数函数及其性质(第一课时)

    2.1.2指数函数及其性质(第一课时) 学习目标 ①通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义,能准确作出指数函数的图象,并能根据图象理解和掌握指数函数的性......

    指数函数及其性质教学反思

    指数函数及其性质教学反思 篇一:《指数函数的图像和性质》教学反思《指数函数的图像和性质》教学反思晏伟峰 本节课节选自北师大版《数学》必修一第三章第三节内容。函数是......

    指数函数及其性质教学设计[推荐]

    指数函数及其性质教学设计 一、教学目标: 知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。 过程与方法:通过观察图象,分析、归纳、总结、......

    《指数函数及其性质》教学设计

    《指数函数及其性质》教学设计 尚义县第一中学 乔珺 一、指数函数及其性质教学设计说明 新课标指出: 学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线......

    指数函数及其性质 教案2

    让更多的孩子得到更好的教育 指数函数及其性质 一. 教学目标: 1.知识与技能 ①通过实际问题了解指数函数的实际背景; ②理解指数函数的概念和意义,根据图象理解和掌握指数函数......

    指数函数及其性质教学反思

    教学反思 “指数函数及性质”的教学共分两个课时完成,这是第一课时。本节课主要学习了指数函数的定义,研究了指数函数的图像及相关的性质。回顾这节课,心中有很多感想,也有下面......