第一篇:低压配电线路接地故障的保护技术措施
摘 要叙述利用线路的过电流保护兼作接地故障保护的条件;采用带有单相接地保护的断路器或设备零序电流保护的要求;采用漏电电流保护器RCD 的具体做法及需要注意的问题。
关键词接地故障保护 过电流保护 漏电电流保护电器 TN系统 TT系统 IT系统低压配电线路中的单相短路,回路中相线、中性线连接不良,这种情况容易发现,例如灯会不亮或者熄灭。而占短路80%的接地故障,相线与PE线、电气设备的外露导电部分或大地间的短路却难于觉察。例如PE线PEN线连接松动灯照样亮,如PEN线迸发火花,则容易酿成火灾。配电线路应设置接地故障保护,在发生故障时,保护元件必须能及时自动切断电源,防止人身电击伤亡、电气火灾和线路损坏。
TN系统发生接地故障时,用电设备金属外壳接触电位低,故障电流大,一般过电流保护电器可快速切断故障线路,TN系统的低压配电线路采用过电流保护兼作接地故障保护需满足:Za×Ia<220V的动作特性以及切断故障电流的时间上的要求。
式中Za——接地故障回路阻抗(Ω)
Ia——保护电器在规定时间内自动切断故障回路的电流(A)Ia值应取低压断路器相应过电流脱扣器额定电流的1.3倍。
其切断故障电流的时间应符合:(1)配电干线和只供电给固定式用电设备的末级配电线路不应大于5s2 供电给手握式和移动式用电设备的末级配电线路不应大于0.4s。动作时间可从低压断路器的动作特性读取。
当过电流保护电器不能满足上式要求时,可采用带有单相接地保护的断路器或设零序电流保护措施。断路器的单相接地保护功能的实现原理有剩余电流型和零序电流型两种。剩余电流型是利用四个电流互感器分别检测三相电流和中性线(N线)的电流。无论三相电流平衡与否,则此矢量和为零(严格讲为线路与设备的正常泄露电流);Ia+Ib+Ic+In=0 当发生某一相接地故障时,故障电流会通过保护线PE及与地相关连的金属构件,即;Ia+Ib+Ic+In≠0此时电流为接地故障电流加正常泄露电流。接地电流达到脱扣器整定电流时,即可报警或驱动短路器动作,实现单相接地保护。零序电流型是在三相上各安装一个电流互感器,检测三相的电流矢量和,即零序电流Io Ia+Ib+Ic+In=Io。当发生某一相接地故障时,此时电流为接地故障电流加正常泄露电流,与脱扣器整定值比较,即可区分出接地电流,实现单相接地保护。带有单相接地保护的断路器到底是剩余电流型,还是零序电流型,以产品样本为准。
单相接地保护的断路器主要是针对配电线路的干线、主干线和近变压器端的单相对地短路保护,在线路的末端,通常都装漏电电流保护电器(RCD),其动作时间为0.1s。采用RCD时,因为TN-C接地系统中保护线PE和中性线N合用一根线PEN,PEN在正常工作时流过三相不平衡电流,当单相接地时产生的接地故障电流Id也从PEN线上流过,RCD根本无法检测出是不平衡电流还是接地故障电流。所以TN-C系统应按TN-C-S或局部TT接地处理。
TT系统中性点接地与PE线接地分开,中性线N与PE线无连接,供电线路一般较长,相-地回路阻抗较大。发生接地故障时,故障电路内包含外露导电部分接地极和电源接地极的接地电阻(R+RA),阻抗大,故障电流小,过流保护元件不易启动。在这种系统中装设RCD作单相接地保护是有效的措施之一。
对于TT系统,装有RCD的支路与不装RCD的支路不应使用公共接地极。必须有独立的接地板与PE线专供有RCD的分支回路用。
IT系统是变压器中性点不接地或经大阻抗接地,用电设备外壳直接接地。发生单相接地故障时,接地电流为电容电流。电流通道为:电源-相线-大地-网络电容-电源。故障
电流为另两相对地电容电流的相量和,故障电流小,不需要中断供电,一般不装设漏电保护。但应由绝缘监察器发出信号,以便及时排除故障。IT系统中的漏电保护器主要用于切除两处异相同时接地故障。应根据具体情况按需要装设。
IT系统两处异相同时接地故障,IT系统内外露导电部分分别装设接地极,这时故障电流流经两个接地极电阻,故障回路的切断应符合TT系统接地故障保护的要求。如图5所示。
IT系统两处异相同时接地故障,IT系统内外露导电部分公用一个接地极,这时故障电流将流经PE线形成的金属短路,故障回路的切断应符合TN系统接地故障保护的要求。如图6所示。
为了用电安全,采用了接地故障保护后,仍需要可靠的接地采用等电位连接。等电位联结的作用是降低故障情况下,电气设备间、电气设备与其他设备间的接触电压,使人体在接触时,身体所承受的电压降至最低。在以人为本的今天,电气安全可是重之又重的大事,马虎不得。
第二篇:低压配电线路保护的几个问题
低压配电线路保护的几个问题
中国航空工业规划设计研究院
任元会
[摘要]本文系统地分析了低压配电线路保护的要求和实施方法,叙述了熔断器和断路器的选型,及其参数的整定;提出处理好正常运行不动作和故障时应按规定时间动作的关系,以及动作灵敏性和选择性的关系,指出全面理解和执行线路保护的技术要求和注意点。
[关键词]短路保护 过负载保护 接地故障保护 保护电器 熔断器 断路器 选择性动作
一.概述
低压配电线路遍布工业、农业、服务业的各个角落,同时也深入千家万户;不仅专业人员接触,也有众多非专业人员,一直普通老百姓都会触及,线路发生故障的几率大大增加。如设计、施工不当,将容易导致人身触电(间接接触),或线路损坏,甚至引起电气火灾。为此,在配电线路设计中,应严格按照《低压配电设计规范》(GB50054-95)的各项规定,包括加强绝缘,妥善接地,做好等电位联结,但最根本和广泛应用的是做好配电线路保护,正确整定保护电器各项参数,保证在故障时能按要求切断电源,以策安全。
二.全面实施低压配电线路保护规范要求
《低压配电设计规范》(本文简称《规范》)实施已几十年,为广大电气设计时所熟知,并获得认真积极贯彻执行。但据知,仍有部分设计师和使用运行单位电气工程师对低压配电线路保护的要求缺乏完整系统的理解,难以全面、准确地把握。为此,本文拟对此作一较系统的叙述和分析,阐述各项要求的内在联系。
配电线路设计中,至少要考虑以下和保护相关的要求。
1.《规范》第四章规定配电线路应装设短路保护、过负载保护和接地故障保护,而且每段配电线路都应满足这三项保护要求(特别规定者除外)。
2.《规范》还规定上下级保护电器的动作应具有选择性,使故障时只切断该故障线路,而上级保护电器不应动作,力求缩短停电范围。
3.电路发生故障时,保护电器应能在规定时间内动作;另一方面,在正常工作和用电设备正常起动时,保护电器均不应动作。
4.《规范》规定导体截面应满足动、热稳定要求,要和保护电器能协调配合,也就是选择的导体类型和截面,应该和保护电器类型和整定值相关联。
5.作为分断短路电流的保护电器,还应具有足够的分断能力。
以上各项要求紧密关联,决定了保护电器的选型和参数整定,具有一定的复杂性,每一段线路和相应的每组保护电器,都应按以上条件一一计算、校验,确定各项参数。
为了全面实施《规范》的各项要求,特将规定的主要条件以及实施的方法和(或)计算式列于表1,以便全面理解和执行。
表1中的保护电器按《规范》规定编列了熔断器和断路器两类;而断路器按保护特性不同,又分为非选择性和选择性两类,由于其保护特性,实现选择性要求区别很大,应予特别关注。
表1中的接地故障保护按TN接地系统(包括TN-C、TN-S、TN-C-S)而编制,工程中TN系统仍应用最多,实施接地保护要求也较复杂。
设计时,在初定配电系统后,应从末端回路开始,自用电端到配电变压器低压侧,逐一对每段线路和保护电器按表1各项要求进行计算,以确定导体截面和保护电器参数。
三.实施配电线路保护要着重把握的几个问题
1. 做好三项计算
线路负荷计算、短路电流计算,另加电压损失计算,是配电线路设计的基础。
(1)线路负荷计算:按照该线路所接负荷安装功率,逐段计算出线路计算电流(Ijs),是确定导体截面(S)和熔断器的熔体电流(Ir)或断路器的长延时脱扣器整定电流(Izd1)的主要依据(不是唯一的)。
(2)短路电流计算:包括计算三相短路电流(I)和接地故障电流(Ikd1)两种,前者用以校验保护电器分断能力是否足够;后者是确定接地故障时保护电器动作灵敏性的重要依据。
(3)电压损失计算:对离配电变压器较远的线路,将对导体截面大小有很大影响,从而也间接关系到线路保护电器参数。
2. 处理好两对矛盾
(1)正确处理保护电器在正常工作(含设备起动)时不应动作,而在故障时要可靠动作的矛盾。
前者是常规要求,规定了保护电器整定电流的最低限值,低于此值就不能正常工作或起动;后者按《规范》规定的保护要求,规定了保护电器整定电流的最高限值,若高于此值就不能保证故障时可靠动作。因此,设计时,只能在高低两限值之间确定整定电流。
有时,两者要求互相矛盾,后者要求的整定电流最高限值比前者的最低限值还小,使你无法同时满足两者的要求。此时,设计者就要采取措施,如加大相线和PE线截面,调整配电系统接线方式,或改变保护电器类型等,解决矛盾,务求同时满足两者要求。
(2)正确处理故障时保护电器可靠动作和有选择性动作的矛盾
故障时保护电器可靠动作和有关选择性动作是一对矛盾,前者要求的动作快,后者则不宜太快,要合理调整和处理。对于末端回路,故障时保护电器应尽快动作(《规范》规定时间以内),不存在选择性问题;而对于上级和以上各级保护电器,尤其是馈点回路首端的保护电器,应满足故障时可靠动作,还应该有选择性动作,即在下级保护电器后面任一点发生故障时,只应由最近的保护电器动作,而上级不应动作。
为达到这个要求,配电干线各级保护电器(除末级外)不应选用非选择型断路器,而应选择具有反时限保护特性的熔断器;对于额定电流较大的首端主馈电线保护,应选择带有短延时脱扣器的选择型断路器,并且合理整定其各项参数,才能更好保证选择性。
3. 把握好几个要点
(1)配电箱(盘)的进线处不宜装设保护电器,宜装隔离开关。
配电箱的每回路出线都装设了保护电器,进线处再装保护电器就增加了保护的级数,是不妥当的。其实只需要装设具有隔离功能和开关功能的电器,最好就是隔离开关。装保护电器不仅没有必要,如果选型不好,反而产生不良后果。现在不少设计师常使用带长延时脱扣和瞬时脱扣的断路器作为进线开关,一旦发生接地或短路故障,瞬时脱扣器快速动作,容易破坏保护的选择性,这种方案不可取。如果一定要使用这类断路器,则建议选用只带长延时脱扣器,而不带瞬时脱扣器的断路器,主要作为一般切断负载电流的开关使用,也可具有过载保护功能。
(2)变电所低压屏接出小容量馈线要注重导体热稳定和保护电器的分断能力校验。配电变压器容量大的变电所,其低压侧的短路电流很大,如变压器容量为1000kVA时,低压屏出线处的三相短路电流可达23~25kA(按S9型变压器),变压器高压侧为三角形接线时,该处的接地故障电流也可达20 kA以上。
如果从低压屏直接引出小容量馈线,如变配电所用电、小功率电动机等,其计算电流仅几个至几十安培。若按计算电流选择馈线的导体截面和保护电器,其值都比较小,因此应注意作以下两相校验:
1)校验保护电器的分断能力
额定电流为几十安培的保护电器,如果选用熔断器,一般用刀形触头、圆筒帽等结构形
式,全封闭有填料的产品,如NT系列,其分断能力至少在50kA以上,能满足大容量变压器条件下的要求;如使用断路器,一般为非选择型断路器,其分断能力则有一般型、较高分断型和高分断型的不同产品,应选择分断能力大于该处最大短路电流的断路器,一般说,这种条件下,不应选用微型断路器,因其分断能力一般只有6~8kA,不能适应这种条件。
2)校验导体的热稳定
这种计算电流很小的馈线,若只按载流量和允许电压损失选择,截面很小,所以特别要校验短路时的热稳定,往往需要加大截面;或者采取特别措施,使发生短路和接地故障的可能性降到最小。这些措施包括选用双层绝缘线或交联聚乙烯线,电器连接处应作特殊处理。
(3)远离配电变压器的线路应特别校验保护电器动作灵敏性
离变电所远,特别是变压器容量较小时,远端接地故障电流很小,而保护电器的整定电流又很大是,往往难以满足在规定时间内可靠断开的要求,应予特别关注。如不能满足要求,应采取相关措施,或采用其他保护方式或接地方式。
(4)选用选择型断路器应正确整定其参数,才能保证其选择性
配电干线容量较大时,常常选用选择型断路器作保护。选择型断路器除有长延时和瞬时脱扣器外,还带有短延时脱扣器,使故障时能经过短延时动作,从而保护选择性。
为此,应正确整定各项参数,特别是短延时脱扣器的整定电流和延时时间,才能保证起动作选择性。短延时脱扣器整定电流(Izd2)和动作时间(t2)应符合以下要求:
1)当选择型断路器不带接地故障保护时,短延时脱扣器应满足接地故障保护要求,即要求Id1≧1.3Izd2。
2)下一级装有非选择型断路器时,Izd2应大于或等于下一级最大一台熔断器之瞬时脱扣器整定值Izd3的1.2~1.3倍,以保证其选择性。
3)当下一级装有熔断器时,短延时脱扣器的延时时间t2应着重检查和下一级熔断器相配合,要求在下一级熔断器后发生的故障电流大于Izd2时,下一级最大一台熔断器的熔体电流的全熔断时间(汗灭弧时间)应比t2小一个级差,即小0.1~0.15S,以保证下一级熔断器先熔断,而短延时脱扣器不会动作。
此外,为保证选择性,选择型断路器的瞬时脱扣器整定电流,在满足短路动作条件下应尽量整定得大些。
(5)配电线路的截面足够大时,可不作热稳定校验
根据经验,当保护电器额定电流不很大,如断路器或熔断器不超过400A,配电线路的绝缘导体或铜芯电缆在70mm2以上时,其热稳定一般能满足规范要求,可不进行校验。
四.简单的总结
综前所述,要做好低压配电设计,应该全面、准确理解《规范的要求,特别是配电线路保护的各项要求;重视配电线路保护对人身安全和线路安全、用电可靠性的重要意义;做好各项基本计算,把握基础参数;合理选择保护电器类型,正确整定各个参数;处理好保护电器整定的两对矛盾;完整、系统地执行《规范》的各项规定,才能保证《规范》的全面实施,确保用电的安全、可靠。
第三篇:10Kv线路接地故障的处理
10Kv线路接地故障的处理
[摘 要]接地故障是10Kv线路最常见的一种故障,严重影响配电网的稳定、安全运行,造成社会效益和经济效益的损失。作为10Kv线路最常用的小电流接地方式,单相接地故障的发生概率最高,虽然根据规定允许1-2个小时的持续运行,但故障不及时排除,容易使故障扩大发展为相间短路或多接地点短路,危害电网绝缘和设备安全。因此本为结合工作经验,对10Kv线路接地故障进行分析,并提出针对性的解决措施和建议。
[关键词]10Kv配电网 接地故障 防范措施
中图分类号:TP110 文献标识码:A 文章编号:1009-914X(2017)10-0080-01
1.引言
接地故障是10Kv配电网故障中最常见的故障之一。接地故障一般分为单相接地、两相接地、三相短路接地三种,其中两相接地与三相短路接地故障会引起线路跳闸。但在10Kv配电系统中,接地方式通常采用中性点不接地,因此当10Kv配电网发生接地故障时,其接地电流较小,按照国家标准规定来看,发生接地故障后为保证配单系统的正常运行,允许其继续运行1-2个小时。10Kv配电线路接地运行可能会对设备、人身造成损害,而且长实践运行也易造成不同线路不同相接地,形成相间接地短路,进而引起跳闸。在实际工作中,10Kv配电线路发生当相接地故障后通常需要停电维修,但这降低了供电的可靠性和稳定性。因此对10Kv配电线路接地故障进行深入的研究具有积极的意义。
2.10Kv配电线路接地故障原因分析
(1)自然因素
对10Kv配电线路接地故障进行统计分析可知,造成接地故障发生的原因是多层次的,其中自然因素是其主要原因之一。在自然因素中,大风、冰雪、雷雨等季节性变化是造成接地故障的主要自然因素。由于10Kv配电线路通常是在室外,大风等季节性变化在长时间内往往会导致线路断线及跳线,进而造成塔杆或设备发生放电,进而形成接地故障。比如大风造成的树木压迫线路等。冰雪天气可能会造成10Kv配电线路被冰雪覆盖,此外雷击也可能造成瓷瓶闪络,这些都会造成接地故障,尤其是瓷瓶遭雷击炸裂,则会引起永久性的接地故障。
(2)配电设备自身因素
在长期运行中,10Kv配电线路在外界自然条件的影响下,其自身质量存在变化的可能性。比如瓷瓶长期使用后的老化或者质量差等因素,可能会造成接地故障。瓷瓶在使用时间过长之后,在外界自然因素的影响下容易发生老化,进而导致瓷瓶绝缘爆炸。在10Kv配电线路施工时,如果瓷瓶扎线的工艺操作不当或者质量较差,都有可能会造成瓷瓶扎线脱落,造成接地故障。此外,线路及设备在长时间运行之后,也可能会出现老化或故障,比如导线断线、倒杆等,这些都容易造成接地故障。
(3)人为破坏
人为破坏也是10Kv配电线路接地故障发生的因素之一,从当前的故障原因统计来看,不法分子偷盗电缆的行为时有发生,电缆一旦被偷就会给整个配电接地系统带来破坏,给配电网的安全运行带来巨大的风险。此外,在10Kv配电网正常运行中,个别用户或企业对线路或设备进行私自改装,或者对接地系统结构进行私自更改,这些都会造成接地故障的发生。
3.10Kv配电线路接地故障带来的危害
在我国当前的配电系统中,10Kv配电线路通常采用中性点不接地的运行方式,在这种方式下,一旦发生单向接地故障时,流过故障点的短路电流较小,一些瞬时性接地故障能够自行消失,因此在我国电力规定中,10Kv配电线路发生单向接地故障后,仍允许继续运行一段时间,以保证电力供应的稳定性与可靠性。在这个时间段内,应尽快排查并清除故障点,以恢复系统正常运行。10Kv配电线路发生单相接地故障并长期运行也会造成一定的危害,主要表现在以下几个方面:
(1)当发生间歇弧光接地时,单相接地电弧发生间歇性的熄灭与重燃可能引起高达3.5倍相间的弧光过电压,这会导致电网绝缘薄弱的地方放电击穿和设备瞬间损坏;
(2)单相接地故障发生后,有可能发生电压互感器烧毁事故,以及熔断器频繁熔断,甚至会造成避雷器爆炸;
(3)接地故障发生时,一旦有人误触带点部位,则可能被电流烧伤或伤害;
(4)单相接地故障发生时,如果电弧不能自灭,则有可能会进一步损坏周围绝缘,造成相间短路;
(5)当10Kv配电线路的两天线路发生不同相同时接地时,会引起接地短路跳闸,进而对配电网的供电可靠性造成影响;
(6)此外,当外界自然条件不好时,比如风雨等气候条件下,一旦10Kv配电线路发生单向接地故障,配电网对地电容电流增大后,对架空线路具有较大的影响,很可能会造成短路跳闸事故频发。
4.10Kv配电线路接地故障的防范措施
从10Kv配电线路接地故障的原因及主要破坏情况的分析可知,对10Kv配电线路接地故障进行有效的防范至关重要,其防范措施可从以下几个方面进行:
(1)很对10Kv配电线路接地故障因素中的外力人为因素,供电企业应加大宣传教育力度,提升人们的电力安全意识和电力保护意识,并强化10Kv配电线路运行管理与监督,建立各级联动机制,加强重点区域的监护;
(2)针对季节性雷雨、雷击闪络等因素造成的接地故障,供电部门要进行防雷综合治理,尤其是在重雷区架设避雷线,此外还应适当采用高电压等级的绝缘子,减少雷击跳闸和断线事故的发生;
(3)针对瓷瓶绝缘击穿、炸裂造成的接地故障,电力部门应定期对所辖线路网络进行排查,及时发现老化的瓷瓶并进行更换,排除瓷瓶质量引发的接地故障;
(4)针对低压线或者弱电线放电接地问题,供电部门应按照要求和计划进行“三线”清理,不允许弱电线挂在电线杆塔上。此外,供电部门还应对不合理的线路进行整改,将高压电线路与低压电线路设定合理的距离,保证二者互补干扰;
(5)在线路日常运行中,倒杆、导线断线等现象时有发生,一旦设备老化或外力干扰都有可能造成倒杆或导线断线,因此供电公司应制定明确的计划方案,对老旧线路进行改造,要社里专门的巡视组对没有改造的老旧线路加强巡防、检查和维修,要以高标准、高质量来落实反事故措施;
(6)在故障因素分析中,?式瓷瓶扎线故障也是引起接地故障的重要因素,在针对瓷瓶扎线故障的防范中,要对电力建设员工加强培训,提高针式瓷瓶绑扎质量。还要结合当地气候环境特征,适当的调整线路档距。此外,电力供公司还应按周期对线路进行登杆巡视,发现绑扎缺陷及时处理;
(7)对跳线问题的防范,应校核跳线对杆塔、横担的净空距离,充分考虑风偏、热胀冷缩的影响,确保跳线对地的安全距离,跳线连接的可靠。
参考文献
[1] 罗小东.10kV配电线路接地故障的原因和解决办法探究[J].中国新技术新产品.2015.10.[2] 孔军.有关10kV配电线路接地故障原因及预防策略的分析[J].中国科技信息.2013.7.[3] 黄峻玮.10kV线路接地故障对设备造成的重要影响及措施[J].山东工业技术.2016.2.[4] 陈远周.浅谈10kV配电线路接地故障的查找和处理方法[J].科技创新与应用.2013.3.[5] 田飞龙.10kV配电线路接地故障原因及有效预防措施[J].通讯世界.2013.7.
第四篇:10kV配电线路接地故障分析
10kV配电线路接地故障分析
摘要:随着经济的增长和生活水平的提高,使得人们对电力更加依赖,对供电质量提出了更为严格的要求。10kV配电线路作为农网主要供电线路之一,对人们的正常用电具有不可或缺的作用。近年来电网的改造促使10kV配电线路的性能有所提高,主要表现在线路跳闸少、线路损耗低、供电方式有所优化等。但是在实际的运行过程中,10kV配电线路出现了诸多问题,配电线路接地就是常见的故障之一,极大的影响了供电的安全性和可靠性。
关键词:10kV配电线路接地故障原因与措施分析概述
近年来,我国供电可靠性和安全性备受全社会的关注。但是由于配电线路具有面广、点多、线长、设备质量差等特点,再加上地理和气候条件影响比较大,对配电线路的安全运行造成了严重的影响。对于10kV配电线路来讲,接地故障复杂多变,较为常见,也难以根治,对配电设备和配电系统的安全、可靠、经济运行十分不利。笔者结合自身的工作经验,对10kV配电线路接地的常见故障进行分析,并提出了有针对性的预防措施。10kV配电线路接地故障的原因
在实际运行过程中,10kV配电线路接地故障往往为单相接地故障,配电线路某一相中某一点失去了对地的绝缘性能,使得电流经过此点进入大地,引发接地故障。如果在气候、地址条件比较恶劣的环境下,接地故障发生频率会越高,对配电设备、电网系统、变电设备、人畜安全造成不同程度的影响。10kV配电线路接地故障主要的原因有以下几个方面:
2.1 自身设备引起的接地故障。如果低电压和弱电线因同杆架设不能达到安全的距离,使得10kV配电线路发生较大的弧垂变化,从而造成放电接地。另外,配电线路所使用的悬瓶质量差、安装不稳定、容易发生松脱,且长期运行出现了老化等现象,导致绝缘被击穿、炸裂,引发接地故障。再者,变压器、避雷针、线路开关等器件被击穿、炸裂也会引发接地。这些接地故障对电力系统的正常运行造成了很大的影响。
2.2 自然原因造成的接地故障。①环境树木对线路造成的影响。目前我国很多配电线路都是建设在山地绿化区或者植被比较丰富的地区,这就使得对10kV配电线路的设计带来了一定的困难。在这样的环境下,线路周围的树木经过长期的生长,可能会超出线路的高度,树木的树枝和树干对线路造成一定程度的压迫。在大风或者雷雨天气,树木不断摇晃对线路造成较为严重的破坏;当然,雷雨天气树木容易受到雷击的可能,引发接地故障。②恶劣的天气造成线路接地。我国10kV配电线路大多数都是采用架设线路的方法,线路长、半径大,且一般电路都处于户外空旷的地区。在雨季或者雷电易发季节容易对线路的运行造成威胁。一旦发生大风雷雨天气,有时会击穿避雷针,烧坏变压器。另外,线路复杂多变,负荷较大,在雷雨天气容易造成线路的接地故障。
2.3 人为因素造成线路接地故障。①不法分子的偷盗行为。有的不法分子为了一己私利,不顾国家的法律法规,偷盗国家电缆,给电力系统的安全运行带来了不利影响,同时对国家和人民群众的安全带来了严重的危害。我们应该严厉打击这种偷盗行为,保障我们的用电安全。②车辆对电线杆造成破坏。随着交通运输事业不断发展,车辆发生道路安全事故的频率越来越高。由于部分人员在行驶车辆时不遵守交通规则,对路边的电线杆造成了破坏,影响了线路的运行。我们大多数电线杆都采用钢筋水泥结构,并不是特别结实,也没有相应的保护措施,车辆的不正确行驶非常容易对线路造成一定的影响,威胁着国家和人民群众的安全。10kV配电线路接地故障的预防措施
3.1 采用先进的技术材料。电力企业应该在10kV配电线路中引入先进的技术、设备和材料,避免因自身设备对线路造成接地故障。一般情况下,应该对负荷过大或者比较重要的线路,配备绝缘性比较好的导线和配套的耐张线夹;对容易出现故障的接头位置,用接触良好、可与不同导线进行连接的穿刺线夹进行固定,有效的控制和避免接地故障的发生。为了有效的避免故障扩大,可以通过快速、精确的自动选择设备选择电流较小的接地装置应用于变电站中,确保供电的质量和安全。
3.2 优化设备部署。在10kV配电线路设计中,应该根据布线的要求和周围的地理、气候因素对“三线”进行合理的整改和部署,保证高低压线路的实际距离在安全距离之上。同时,相关的电力技术人员应该认真按照国家相关的技术标准与规定,对配电线路进行必要的整改,降低或者消除断线等安全事故。另外,应该定期对线路进行严格的巡检,及时更换老化、劣质、破损的瓷瓶,并对其进行高质量的捆扎;对老化、破损比较严重的柱上开关、变压器、避雷针等装置,必要时可以进行更换,以降低线路接地故障,确保线路正常运行、性能可靠、功能齐全。
3.3 对自然原因破坏的预防措施。大风、大雨、雷电天气等自然因素是我们无法预知也不能改变的,只能采取相应的预防措施。在线路施工前,应该对设备进行加厚处理,以此提高线路的稳定性。在制造过程中,严格按照相关的规定,对设备安装避雷针、变压器等装置,提高设备在户外空旷地区的预防灾害的抵抗力。同时,在施工前,相关技术人员应该深入施工现场,对周围的建筑、树木进行了解,最大限度的避开树木集中区域,对线路进行最科学合理的规划,保证架空线路的安全。
3.4 对人为因素破坏的预防措施。在线路施工过程中,不能一味的追求速度,赶工期,必须重视项目工程的质量,保护好地下电缆不受损害。同时,严厉打击那些偷盗国家电缆的不法分子,加大监督巡逻力度打击犯罪活动,保护线路的稳定性。另一方面,应该增强驾车司机遵守交通规则的意识,安全驾驶,文明行车,降低因交通事故对电线杆的破坏,减少人为因素引发的线路接地故障,进一步保证国家和人民群众的生命财产安全。总结
10kV配电线路接地故障复杂多样,发生频率高,影响范围大。为了确保国家和人民群众的用电安全,在实际工作中应该不断总结实践经验,在10kV配电线路中引入先进的技术、设备和材料,优化设备部署,对不可消除的自然因素和人为因素造成的故障做好预防措施,从而保证10kV配电线路的供电质量和安全,促进10kV线路更好的服务于国家和人民。
参考文献:
[1]徐峰.10kV配电线路单相接地故障分析[J].科技与企业,2011,08:259-260.[2]柯俊杰.10kV配电线路接地故障查找及分析[J].无线互联科技,2011,05:30-31+34.[3]戴剑汉.10kV配电线路接地故障查找及分析[J].科技风,2012,14:157+163.[4]田飞龙.10kV配电线路接地故障原因及有效预防措施[J].通讯世界,2013,13:119-120.
第五篇:10kV配电线路接地故障的措施探析
10kV配电线路接地故障的措施探析
摘 要:简要分析了10 kV配电线路接地故障的原因,阐述了应对接地故障的有效措施,以期为日后的相关工作提供参考和借鉴。
关键词:10 kV配电线路;接地故障;变压器;避雷器
中图分类号:TM862+.3 文献标识码:A DOI:10.15913/j.cnki.kjycx.2015.05.155
原因分析
1.1 非线路设备故障
出现非线路设备故障导致假接地故障的原因有两方面,一方面,在变电站空投10 kV母线时,电压互感器导致铁磁谐振,形成假接地;另一方面,当电压互感器二次侧或一次侧熔断器熔断一相时,熔断相接地电压表指示为零,但是,其他两相都指示正常或者稍微偏低,进而导致出现接地假象。
1.2 线路交叉跨越施工
线路交叉跨越施工引发的事故导致接地故障。在10 kV配电线路交叉施工的过程中,由于出现了一些事故,使得带电线路通过机具、线路接地。这种状况通常是在临近带电作业或者带电作业过程中出现的,其引发的后果非常严重。
1.3 相关设备故障
跌落保险设备、避雷器、开关、变压器等故障引发接地故障。跌落保险某相瓷柱炸裂、避雷器某相被击穿、柱上开关某相绝缘被击穿和变压器某相击穿等,都会导致线路出现接地故障。
1.4 针式瓷瓶扎线松动
针式瓷瓶扎线松动会使得导线掉落在其他设备上,进而导致其接地。扎线松动脱落的原因有很多,例如,瓷瓶的绑扎工艺差、质量低,导致导线长期处于风荷载作用下,使线间应力传递到扎线上,长此以往,就会导致扎线松脱;重冰区线路、高山大档距等区域,扎线承受的拉应力相对较大,很容易导致扎线松脱;长时间使用,使得线路出现老化的现象,导致扎线松脱。
1.5 导线断线、倒杆
导线断线或者倒杆,都会使导线落地。导线受到外力作用或者倒杆,使得线路掉落在地上,进而接地,这种接地故障通常发生在线路老化情况比较严重的地方。
1.6 瓷瓶老化或被击穿
瓷瓶老化或者劣质瓷瓶绝缘被击穿或炸裂,都会导致线路接地。10 kV配电线路在天气晴好、电压正常的状况下发生绝缘炸裂或者击穿故障,都是由于瓷瓶老化或瓷瓶质量差导致的。
1.7 雷电闪络
雷击闪络引发接地故障。10 kV配电线路在受到雷击的情况下,会发生瓷瓶闪络,导线通过横担或者电弧接地。除了瓷瓶炸裂导致的接地故障为永久性的外,通常状况下,由于雷击瞬间单相接地线路会自动恢复绝缘,三相或者两相雷击闪络会使线路出现跳闸的情况。
1.8 外力破坏
由于外力引发的接地故障的原因有3点:①蛇类等爬行动物和鸟类在爬行或飞行的过程中,碰触到了变压器引发接地故障;②非法人员盗窃电力设备导致线路出现接地故障;③树木自然生长导致线路接地,或因为私自砍伐树枝,使其掉落砸断线路,进而发生接地故障。处理故障的有效措施
2.1 准确判别非线路设备故障的假接地
单相接地故障包括以下3种状况:①当发生弧光接地故障时,非故障相电压可能会升至额定电压的2~3倍;②当发生金属性接地故障时,非故障相电压升高,接地相电压为零或接近零;③当发生间歇性接地故障时,非故障相电压时减时增时正常,接地相电压时减时增。当变电站的值班人员发现上述3种现象时,应该根据当时的具体状况穿上绝缘靴,仔细、全面地检查变电站的10 kV设备,然后再考虑线路接地问题,并采用相应的措施处理故障。
2.2 线路交叉跨越施工的防治措施
在平行假设线路、交叉跨越线路、同杆假设线路等施工过程中,尽可能不带电作业。特殊情况下,如果必须带电作业,要采取特殊的安全保护措施,防止出现接地故障,同时,要保证施工人员的安全。
2.3 设备故障防治措施
针对此故障,要加强对避雷器、柱上开关、变压器等设备的日常巡视和维护,定期进行预防性试验,保证所有设备始终处于最佳的运行状态。同时,要及时更换老化的跌落保险,在改造或者新建的工程中,要尽可能地选择质量好的跌落保险。另外,要选择合适的避雷器,保证电压参数的正确性,有效防止发生接地故障。
2.4 针式瓷瓶扎线松动的防治措施
加强对线路施工人员的技术培训,保证针式瓷瓶扎线的绑扎质量。对于重冰区,应该选择耐张力强的电线,然后尽可能地缩小档距,这样才能够有效改善扎线的受力状况,避免出现扎线松动的问题。此外,线路维护人员要定期登杆检查线路,发现扎线松动时,要及时采取相应的处理措施。
2.5 断线或倒杆的防治措施
对于已经老化的线路,应该及时投入资金来改造。在改造之前,要加强对线路的巡视、检查、检修和维护等,从而保证线路的安全、稳定运行。对于改造或者新建的线路,各项技术指标都要满足相关规范的要求,防止断线、倒杆等问题的出现。
2.6 瓷瓶炸裂、绝缘击穿的防治措施
在10 kV配电线路施工的过程中,要选择质量好的瓷瓶,及时更换质量差的瓷瓶,从而加强线路绝缘。
2.7 雷击闪络的防治措施
对于重雷区的10 kV架空配电线路,要加强防雷治理,例如,架设避雷线,对于长度超过50 m的电缆,应该在两端安装保护间隙或者氧化锌避雷器。另外,在多雷区,要采用高电压等级的绝缘子,这样能够降低断线事故和雷击跳闸事故发生的概率。
2.8 外力破坏的防治措施
针对外力破坏,要加强安全用电和对电力设施的保护宣传,加强对10 kV配电线路的社会监督,防止盗窃、破坏电力线路和设备的情况发生。对于飞行动物和爬行动物,要采取技防措施,或者有效改造线路,防止动物与导线接触。结束语
总而言之,导致10 kV配电线路出现接地故障的原因有很多,为了保证配电线路的安全、稳定运行,提高其运行的经济效益和社会效益,要加强对10 kV配电线路的检修和维护,针对不同的接地故障采取相应的处理措施。
参考文献
[1]曾希萍.试析农网10 kV配电线路的接地故障与防范对策[J].中国新技术新产品,2012(10):131-132.[2]孔军.有关l0 kV配电线路接地故障原因及预防策略的分析[J].中国科技信息,2013(14):128.[3]彭干忠.l0 kV配电线路接地故障及防治措施[J].民营科技,2012(10):203-204.〔编辑:白洁〕
Abstract: This paper analyzes the distribution line ground fault reasons 10 kV,elaborated effective measures to deal with a ground fault in order to provide reference for future related work.Key words: 10 kV distribution line; ground fault; transformer; arrester