第一篇:大学生数学竞赛魅力何在
大学生数学竞赛魅力何在?
《中国教育报》2006年1月13日第3版
2005年,近800所高校的2.5万名选手参加了全国大学生数学建模竞赛,作为目前全国高校中规模最大的大学生课外科技活动——大学生数学建模竞赛魅力何在。
尤成超沉浸在数学建模的宫殿里,他正利用寒假留在学校里研究数学建模中用到的一些算法。他对记者说,这个春节他只能在四川老家呆大概一个星期,大年初二就要回校准备参加2006年2月初举行的国际性的美国大学生数学建模竞赛。这个春节将是他上大学后回家最短的一个春节。
尤成超是北京交通大学理学院信息与计算科学专业的学生。两年前还在上大一的他第一次接触数学建模比赛。那次只是校内比赛,因为一无所知而茫然不知所措,最后抱了个鼓励性质的“成功参赛奖”。那次“惨痛”的经历却使他从此产生了对数学建模的浓厚兴趣,此后他多次参加各种类型的数模竞赛。在2005年全国大学生数学建模竞赛上,他和他两名队友齐心协力,勇夺全国一等奖。这项和数学密切相关,却并非纯数学知识的竞赛,每年吸引着像尤成超这样的数以万计的大学生的踊跃参与。由教育部高教司等单位主办的全国大学生数学建模竞赛,已成为目前全国高校中规模最大的大学生课外科技活动。
学生热爱的竞赛 规模以年增长25%的速度发展
提到数学竞赛,人们脑海里马上会浮现出在严肃安静的考场,选手冥思苦想、孤身奋战的情景。而数学建模竞赛全然不是如此。它没有固定的考场,选手们翻书查资料、上网下载、激烈争论,到处跑来跑去也没人管,俨然就像一个科研课题组在突击完成一项任务。
全国大学生数学建模竞赛是从1994年开始举行的,每年一次,十几年来这项竞赛的规模以平均年增长25%以上的速度发展。从一组数据中可以看出它的蓬勃发展之势:从1994年196个学校的867支参赛队,到2000年517个学校的3210支参赛队,再到2005年795个学校的8492支参赛队,参赛队壮大了近10倍,2005年竞赛的选手达到25000多名。
数模竞赛何以这么受欢迎?到底有什么魅力?记者采访了全国大学生数学建模竞赛组委会秘书长、清华大学数学科学系教授姜启源。他说,数模竞赛对青年学生非常有吸引力,它的题目由工程技术、经济管理、社会生活等领域中的实际问题简化加工而成,没有事先设定的标准答案,但留有充分余地供参赛者发挥其聪明才智和创造精神。
赛题的设置非常具有实用性和挑战性。如,2003年的“SARS的传播”、“露天矿生产的车辆安排”、“抢渡长江”;2004年的“奥运会临时超市网点设计”、“电力市场的输电阻塞管理”、“饮酒驾车”、“公务员招聘”;2005年的“长江水质的评价和预测”、“DVD在线租赁”、“雨量预报方法的评价”——每一道题都紧扣当前社会热点,很有时代意义。
竞赛以通讯形式进行,三名学生组成一队,在三天时间内可以自由地收集资料、调查研究,使用计算机、软件和互联网,但不得与队外任何人包括指导教师讨论。每个队要完成一篇包括模型的假设、建立和求解,计算方法的设计和计算机实现,结果的分析和检验,模型的改进等方面的论文。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。终生受益的竞赛 培养创新能力的极好载体
姜启源说,建立数模来解决实际问题,是学生在走上工作岗位后常常要做的工作。做这样的事情,所需要的远不只是数学知识和解数学题的能力,而需要多方面的综合知识和能力。社会对具有这种能力的人的需求,比对数学专门人才的需求要多得多。“数模竞赛是大学阶段除毕业设计外难得的一次‘真刀真枪’的训练。”姜启源说,它相当程度上模拟了学生毕业后工作时的情况,既丰富、活跃了广大学生的课外生活,也为优秀学生脱颖而出创造了条件。
随着赛事的开展,越来越多的人认识到,数模竞赛是培养创新能力的一个极好载体,而且能充分考验学生的洞察能力、创造能力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代科技最新成果的能力,等等。学生们同舟共济的团队精神和协调组织能力,以及诚信意识和自律精神的塑造,都能得到很好地培养。
姜启源说,很多学生用“一次参赛,终生受益”来描述他们的感受。许多参加过竞赛的学生的自主学习和科研能力显著提高,在毕业设计和研究生阶段的学习中表现出明显的优势,得到用人单位和研究生导师的普遍认可。
尤成超说,比赛提高了他主动寻找问题、思考问题、解决问题的能力,而这些是他参赛之前特别缺乏的。同样获得全国数模竞赛一等奖的清华大学数学科学系大四学生申孟宜说,竞赛增强了他用数学解决实际问题的能力,而且坚定了他在学科方面不断钻研的信心。他现在准备出国深造,而他的队友一个已保送读研,另一个正在全力考研。
推动教改的竞赛 将数学建模引入教育过程
“数学教育本质上是一种素质教育。数学的教学不能完全和外部世界隔离开来。”姜启源说,关起门来在数学的概念、方法和理论中打圈子,处于自我封闭状态,以致学生在学了许多据说是非常重要、十分有用的数学知识以后,却不怎么会应用或无法应用。高等教育要在高度信息化的时代培养具有创新能力的高科技人才,将数学建模引入教育过程已是大势所趋。
据了解,十几年来在竞赛的推动下,许多高校相继开设了数学建模课程以及与此密切相关的数学实验课程,一些教师正在进行将数学建模的思想和方法融入数学主干课程的研究和试验。无疑,这是对数学教学体系和内容改革的一个有益的尝试。
四川理工学院学生赵金东认为,把建模融入到数学主干课程中,能将数学与现实更紧密地联系在一起,更“通俗”化。这真正体现了数学是生活中密不可分的工具的深刻意义。
十几年来,全国数以千计的数学教师在从事数学建模教学和指导竞赛的过程中,知识面拓宽了,知识结构改善了,利用数学工具和计算机技术解决实际问题的意识和能力提高了,也培养了热爱学生、不计名利、献身祖国教育事业的精神,这对一支新型的数学教师队伍的全面成长起着越来越大的作用。
姜启源说,尽管数学建模、数学实验教学在很多学校才起步不久,并且在数学教学中所占课时不多,但是却取得了傲人的成绩——2001年、2005年,高校国家级教学成果一、二等奖中,以数学建模、数学实验为主要内容的有11项,占整个数学类的38%;在2003年、2004年、2005年高校国家精品课程中,数学建模、数学实验有5项,占整个数学类的17%。
国际效应的竞赛 在美国发芽、中国开花结果
大学生数学建模竞赛在我国开展得如火如荼,谁能想到它其实并不是我国的“原创”。姜启源介绍说,它1985年首先在美国出现,1989年我国大学生开始参加美国的竞赛。此后,我国学生参加美国大学生数学建模竞赛的积极性越来越高,近几年中国参赛校数、队数占到参赛总数相当大比例。复旦大学、中国科技大学、华东理工大学、清华大学、浙江大学、国防科技大学、北京大学、东南大学、东华大学、电子科技大学等高校,相继获得最高奖。
“可以说,数学建模竞赛是在美国发芽、而在中国开花、结果的。”姜启源这样评价。
在谈到数学建模对教育改革的意义时,全国大学生数学建模竞赛组委会主任、中国科学院院士李大潜指出,数学教育质量的优劣决定了一批人在知识经济中的竞争能力,而他们的能力缺失直接影响到国家的整体竞争力。由此,数学教育不能仅仅是按部就班的静态传授,它更应该注重对学科精神的领会,只有这样,学生在生动活泼的现实面前才不会束手无策,才能创新与发现。数学建模竞赛就是为适应这一社会要求采取的探索性措施。
2001年,第10届国际数学建模教学和应用会议在北京成功举办,这是此系列会议第一次在亚洲举行。会上,我国数学建模教学和竞赛的发展情况,把数学建模的思想和方法融入到大学的主干数学课程中去的进展情况,受到了国际同行们的关注和好评。美国及欧洲一些国家的专家表示,他们正在研究和评估我国的大学生数学建模竞赛及其对教学改革的推动作用。
正因为建模竞赛的特殊作用,在高校教学评估中,学生积极参加包括数学建模竞赛在内的各项课外科技活动的情况,已被列为评估指标之一。数模竞赛对我国高校教育改革的意义正越来越凸显。
【相关链接】
■什么是数学建模?
随着社会的发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。
社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人,善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益。要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型,建立数学模型的这个过程就称为数学建模。
■建模竞赛怎样开始的?
大学生数学建模竞赛最早是1985年在美国出现的,1989年我国大学生(北京大学、清华大学、北京理工大学共4个队)开始参加美国的竞赛。经过两三年的参与,大家认为竞赛是推动数学建模教学在高校迅速发展的好形式,1992年由中国工业与应用数学学会数学模型专业委员会组织举办了我国10城市的大学生数学模型联赛。
教育部领导及时发现、并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一次。十几年来这项竞赛的规模以平均年增长25%以上的速度发展。
第二篇:中国大学生数学竞赛
中国大学生数学竞赛
报名时间:每年九月(2011-9-20~30)
预赛时间:每年十月(2011-10-29)
决赛时间:次年三月(2012年3月份的第三周周六上午)
http://baike.baidu.com/view/2904171.htm#3百度资料
http:///中国大学生数学竞赛网
2009年,中国大学生数学竞赛(通称为“全国大学生数学竞赛”)开始举办。作为一项面向本科生的全国性高水平学科竞赛,全国大学生数学竞赛为青年学子提供了一个展示数学基本功和数学思维的舞台,为发现和选拔优秀数学人才并进一步促进高等学校数学课程建设的改革和发展积累了调研素材。
(1)参赛对象:大学本科二年级或二年级以上的在校大学生。竞赛分为非数学专业组和数学专业组(含数学与应用数学、信息与计算科学专业的学生)。数学专业学生不得参加非数学专业组的竞赛。(2)竞赛内容:非数学专业组竞赛内容为本科高等数学内容(高等数学内容为理工科本科教学大纲规定的高等数学的教学内容)。数学专业组竞赛内容含数学分析、高等代数和解析几何(均为数学专业本科教学大纲规定的教学内容),所占比重分别为50%、35%及15%左右。
第三篇:数学建模及大学生数学建模竞赛
数学建模及大学生数学建模竞赛
近几十年来,随着科学技术的进步,特别是电子计算机的诞生和不断完善,数学的应用已不再局限于物理学等传统领域,生态学、环境科学、医学、经济学、信息科学、社会科学及一些交叉学科都提出大量有待解决的实际研究课题。要用定量分析的方法解决这些实际问题,十分关键而又十分困难的一步就是要建立恰当的数学模型。建立数学模型的过程需要把错综复杂的实际问题抽象为简单合理的数学结构,要做到这一点,既需要丰富的想象力,又需要去寻找较合适的数学工具,从某种意义上讲,它是能力与知识的综合运用。
一、什么是数学建模
数学建模(Mathematical Modeling)简单地说就是建立数学模型的过程。
二、数学建模的起源
数学建模并不是新东西(尽管过去很长时间这一术语用得很少),可以说有了数学并要用数学去解决实际问题就一定要用数学的语言、方法去近似地刻划实际问题,而这种刻划的数学表述就是一个数学模型,其过程就数学建模过程。
三、数学建模的教学与数学素质的培养
众所周知人才培养是关键,数学模型方法已成为科学技术中常用的非常重要的方法,它是数学和其他科学技术之间的媒介和桥梁。同时数学建模的研究有了长足的进步,又有得心应手、强有力的计算机作为工具,因而必然会有人考虑到数学教育中一个不可缺少的内容应该是数学建模等数学的应用的内容。数学建模教学要求对学生以下几个方面的能力进行培养。
四、大学生数学建模竞赛
我国在高校中开设数学建模课程始于1982年,但当时只有少数重点院校作为选修课程来开设,可以说是自发的、民间,因而数学建模课程并未受到人们的重视。数学建模课程真正被许多高校融入主干课程,被国家教委、国家教育部重视,却是得益于大学生数学建模竞赛。可以说数学建模竞赛是目前我国设立的最成功的一项竞赛,它促进了各高校数学建模教学和数学建模活动的逢勃发展。
第四篇:网络春节晚会的魅力何在
网络春节晚会的魅力何在?
作者:日照广播电视台裴 冰
摘要:网络春节晚会从2006年开始出现在公众的视野,以网络的形式来演绎我们传统的节日盛宴,把新兴的网络和传统的节日内容结合起来,表现了网络媒体独有的互动性、平民化、娱乐性。正是它独有的这些特点得到了广大网民的喜爱。
关键词:网络春晚互动性平民化娱乐性
2006年由新浪网、中国网、大河网、中国图库主办的首届全球华人网络春节晚会,以一种全新的方式诠释了春节晚会,赢得了众多网友的喜爱。2007年的网络春晚以更强的实力、更强大的明星阵容展示了其独有的魅力。从2006年三个小时的网络春晚到2007年长达五个半小时的网络春晚,无不说明了举办网络春晚的巨大潜力。那么与传统的春节晚会相比,网络春晚有何特殊之处呢?它又有什么独特的魅力呢?
首先表现在两者依托的媒体不同。传统的春节晚会是依托电视媒体,而网络春晚依托网络媒体。电视媒体在刚出现时给观众带来了巨大的喜悦,它既有报纸的文字和图片,又有广播的声音,还有电影的活动,集声音、画面于一体,有着强大的视觉冲击力,带给观众强大的现场感,且传播速度较快。但与网络媒体相比,它有诸多限制,首先是时间上的限制,电视媒体具有瞬间性的特点,不易保存。电视节目安排按照时间顺序进行,受众必须按照节目表安排在固定时间接收固定频道的节目,无法在同一时间自由灵活地选择节目或内容。受众
①只能被动等待电视节目的播出,受到电视节目的信息轰炸,而不能做出及时的应变。再次
是空间上的限制,观众不一定能收看到自己喜欢的频道,即使现在观众能够看到很多频道,但由于各种原因,观众还是不能够看到他们想看到的所有节目,电视节目的审查制度还是相当的严格。其次是观众只能观看,而不能实现互动。传播的5w模式中的最后一个环节是反馈,只有实现很好的反馈,传播的过程和效果才算得上完整,而电视媒体是一种单一的传播媒体,它向观众传播着大量的信息,引导大众的趣味,但观众对节目的参与和反馈的机会却微乎其微,造成了传者和受者之间地位的不平等,使得电视有一种居高临下的优越感。这种情况下就使得观众成为了被动的受众,不能发挥其主动性。而网络媒体不受时间和空间的束缚,网民可以在任何时间观看节目,只要点击相关视频或下载,随时都能看到想看的节目,而不受特定时间的限制。网络的传播范围更广,只要是互联网的用户,都可以看到网上的所有节目,整个世界成了一个小小的“地球村”,空间变得越来越狭小。还有就是网络媒体有着巨大的互动性,网络春晚从节目的产生到在线观看都体现着较强的互动性和参与性,“网络春晚,网民做主”是其口号,它面对所有的网友征集节目,原创性的节目经过审查后即可采用,这大大提高了网民参与的积极性,也加强了网友对节目的关注。在观看节目的过程中,可以即时点播,也可以和网友进行交流,还可以跟网络明星进行交流,这些特有的优势吸引了年轻一代的网民。全球华人都能在网络上欣赏到春节晚会,感受节日的气氛,送上自己的春节祝福,网络春晚还通过设置奖项来吸引网民参与其中,开设节目征集奖、节目采用奖、网友评比奖,网友建议奖和热心网友奖,只要是对节目作出贡献的人都能得到节目组的尊重和物质的奖励,极大得提高了网民参与的积极性,也保障了节目的多样化和原创性。
其次表现在晚会主持人和演员上的不同。传统的春节晚会是精英的聚会,主持人都来自
1中央电视台,主持风格多了庄重,少了诙谐,少了一种自然之态。整个晚会的气氛自然也就多了郑重,少了轻松。主持人的风格其实也反映了节目的特色,传统的春节晚会注重稳重,讲究平和,因此在挑选主持人方面也考虑到这些因素,使得主持人的风格趋同。在演员方面,最终能够进入春晚的都是著名的演员和歌唱家,在全国都具有相当的知名度,这些明星平时就会经常出现在各种媒体上,报纸、电视、网络经常会出现关于他们的信息,他们一般都拥有众多的“粉丝”,使得他们对于观众来说少了神秘感,且每年演员都缺少变化,演唱的歌曲一般都是他们经常唱的,使人有一种审美疲劳;而网络春晚是“草根”的聚会,“草根”是与精英相对的,来自民间的力量,更具平民性。网络春晚的主持人很多,既有搞娱乐节目的主持人,也有网络红人,比如手机小强,呈现多样化和多风格,且更具有娱乐性,在主持的过程中,就会有很多搞笑的动作和语言,而不会像传统春晚那么庄重和严肃。在演员方面,很多演员是从网络上“火”起来的,像网络小胖,天仙mm,非常真人。还有很多的网络歌手,他们的歌都是从网络上唱红的,而本人不见得就是家喻户晓的明星,比起央视春晚的演员,那绝对是平民。正是这样一种平民性,使得它更乐于被广大的网民接受,在心理上有一种亲切感。另一方面,网络歌手一般在公众媒体上并不常见,而真人现场演唱网络歌曲会给网民带来与众不同的感觉,揭开网络歌手的庐山真面目。众多网络明星会聚一堂,轻松搞笑的晚会气氛使得除夕夜过得更“过瘾”,正是依托了网络这种媒体,才积聚了众多的网络明星和广大网民的热情参与。
再次表现在节目内容上的不同。传统的春节晚会节目分相声、小品、歌舞、杂技。网络春晚也有这些节目,与此同时,网络春晚会有游戏环节和主持人之间的娱乐,这些环节的设置使得节目充满了更强烈的娱乐性,游戏使得节目的气氛更热烈,更能引起观众的兴趣,吸引观众继续关注下面的节目,主持人之间经常有一些“插科打诨”,给人一种亲切感,使节目更有娱乐性,给观众一种轻松感。在节目内容上,网络春晚的节目内容更新颖,更贴近现实生活,更具针对性,是对一年来重要事件的影射,具有现实的意义,且不乏娱乐性。如小品《后厕训练班》、《狗仔队的一天》、《大片狂想曲》、《韩剧杀手锏》,这些小品都是对现实生活的反映,反映人们对社会现象、娱乐圈、韩剧的看法,且态度明晰,使人一看就知道要表现的是什么主题,还有歌曲类《我爱人民币》、《上线狂欢》、《今年春节不回家》,主题明确,充满感情、真情、亲切,唱出大多数人的心声,更能引起听者的共鸣。因为网络作为一种新媒体,更加自由一些,那么节目的审查,涉及到的节目的素材都会更宽泛,一些节目不会因重重的审查而被毙,使得更多更好的节目能够跟广大的网友见面,这是传统的媒体做不到的。游戏能够活跃气氛,尤其是请网络红人来做游戏,更能吸引观众的视线,在歌舞之间穿插着游戏,能够缓解观众的疲劳,使观众自始至终都能够关注节目内容。
网络春晚只有两年的历史,在很多方面还存在着不足,但它以广泛的传播范围,强大的互动功能,新颖的节目内容赢得了广大网民的喜爱,给我们带来与众不同的春节盛宴。随着网络春晚的日益成熟,必然会吸引更多的网友关注网络春晚,参与网络春晚。
注释:① 时宇石《电视媒体的现状及其发展趋势》,辽宁工学院学报,2005年12月第7卷第6期
第五篇:2014全国大学生数学建模竞赛
嫦娥三号软着陆轨道设计与控制策略
摘要
随着月球探测任务的发展,未来月球探测考察目标将主要是 复杂地形特性的高科学价值区域。为了能够安全地在这些遍布岩石、的区域内完成高精度软着陆,这就要求导航和控制系统具有较强的自主性和实时性。本文针对最终着陆段安全、精确的需求,对月球软着陆导航与控制方法进行较深入研究,主要内容包括:
首先,提出一种基于单帧图像信息的障碍检测方法。该方法根据着陆区内障碍成像的特点,通过匹配相应的阴影区与光照区完成对岩石、弹坑的检测,利用图像灰度方差对粗糙区域进行提取:在检测出故障信息的基础上,选取安全着陆点以保证软着陆任务的成功。
其次,给出一种基于矢量观测信息的自主光学导航方法。该方法利用光学相机和激光测距仪测量值构建着陆点相对着陆器的矢量信息,结合着陆器的姿态信息确定着陆器的位置。为了消除测量噪声带来的干扰,利用扩展Kalman滤波理论设计了导航滤波器。
再次,提出一种李雅普诺夫函数障碍规避制导方法。该方法通过对状态函数、危险地形势函数的设计,以满足平移过程中减低障碍威胁与精确定点着陆器,设计PWPF(调频调宽)调节器实现定推理等效变推力控制效果。
最后,针对采用变推力主发动机的月球着陆器,提出一种垂直软着陆控制方法。该方法采用标称控制与闭环控制相结合的方式,规划标称轨迹以保证着陆器到达着陆点时其下降速度、加速度亦为零,设计闭环控制器产生附加控制量消除初始偏差、着陆器质量变化的干扰,以保证着陆器沿标称轨迹到达着陆点。
本文分别对所提出的最终着陆段导航与控制方法进行数学仿真以验证个方法的可行性。仿真结果表明,本文多给出导航方法能够达到较高的性能指标,满足在危险区域实现高精度软着陆的需要。
关键词: 月球软着陆;自主导航与控制;障碍检测;规避制导;适量测量
一、问题重述
嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机是目前中国航天器上最大推力的发动机,能够产生1500N到7500N的可调节推力,进而对嫦娥三号实现精准控制。其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m。嫦娥三号将在近月点15公里处以抛物线下降,相对速度从每秒1.7公里逐渐降为零。整个过程大概需要十几分钟的时间。在距月面100米处时,嫦娥三号要进行短暂的悬停,扫描月面地形,避开障碍物,寻找着陆点。之后,嫦娥三号在反推火箭的作用下继续慢慢下降,直到离月面4米高时再度悬停。此时,关掉反冲发动机,探测器自由下落。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段,分别为着陆准备轨道、主减速段、快速调整段、粗避障段、精避障段、缓速下降阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:
(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
二、问题分析
对于问题一:
嫦娥三号从15公里左右的高度下降到月球表面,在这一过程中不考虑月球表面太阳风的影响,忽略月球的自转速度引起的科氏力的影响,由于下降时间比较短也不考虑太阳、地球对嫦娥三号的摄动影响,嫦娥三号水平速度要从1.692km/s降为0m/s由于3000m处时嫦娥三号已经基本位于着陆点上方,所以此时假设在3000m处的速度只存在竖直向下的速度而不存在水平分速度,因为降落减速时间比较短只有垂直于月面的方向运动才能实现,所以在确定着陆点位置和着陆轨迹时应当考虑燃料最优情况下推力最大,方向自由的方法即取F7500N建立主减速段动力学模型。
三、符号说明
四、模型假设
对于问题一:
忽略月球的自传和太阳、地球对嫦娥三号卫星的引力摄动 月球近似为一个质量均匀的标准球体 将嫦娥三号是为一个质点
主减速忽略动作调整所产生的燃料消耗段不考虑太阳风的影响
五、模型建立与求解
5.1问题一的建模与求解 解法一: 假设嫦娥三号在t时刻在远月点开始缓慢下降,在n时刻到达近月点,整个过程遵循开普勒第三定律,即
v00
在t时刻有:v12R1 R0R0R1r0 R0r1r2 其中v1:远月点速度
v2:近月点速度
R0:远月点月心距
R1:近月点月心距(已知月球的半径为1738千米)
R017381001838km
R11738151753km 在t1时刻处v2 k2R1 R0R0R1R00.512k0.488 R0R1利用能量平衡式求得近地点速度为
20.51249012()1.692km/s(沿切线方向)v2,比当地的环境速度17531.672km/s大vk0.0196km/s,径向速度vk0。
1同理解得v11.6139km/s(沿切线方向)
vri0
解得主减速段动力学模型的建立:
根据题意,在横向飞行的水平距离远远小于月球半径的平均值,所以可以将整个减速段过程简化为水平和竖直方向运动方程,根据牛顿第二定律、速度计算公式有:
axTx maytTymTxta
1.692km/s m0Qdt0Tyadt57m/s t0mQdt0tT22xTy27500N
v22atS
运用matlab编程解得S451810.4m; 其中 ax:水平方向加速度
ay:竖直方面加速度
a:月球表面重力加速度a Tx:推力的水平方向分力
Ty:推力的竖直方向分力
t:主减速段时间
S:嫦娥三号主减速段水平位移
Q:嫦娥三号发动机燃料秒消耗率
根据已知资料得到嫦娥三号着陆过程中纬度改变,经度基本不变,月球赤纬和地球纬度一样也分为南北各90个分度,又因为月球极区半径为1735.843km,所以每一个纬度的竖直高度差为19.2871
4g 6千米。即近月点位置坐标为19.0464W,28.9989N海拔15km,远月点位置坐标为160.9536E,28.9989S海拔100km。
解法2:轨迹方程法。
众所周知,太阳系中的八大行星都在按照各自的椭圆轨道绕太阳进行公转,太阳位于椭圆的一个焦点上,行星的运动遵循开普勒三定律,笔者发现,在各类物理竞赛中,常会涉及到天体运动速度的计算,本文拟从能量和行星运动的轨迹方程两个不同的角度来探索行星在近日点和远日点的速度。
该解法的指导思想是对椭圆的轨迹方程求导,并结合一般曲线的曲率半径通式求出近日点和远日点的曲率半径表达式,然后利用万有引力提供向心力列方程求解。如图1所示,椭圆的轨迹方程为
x2y221 5 2ba将5式变形为
a2x2b2y2a2b2 6
根据隐函数的求导法则将6式对x求导有
2a2x2b2yy0 7 即
a2xy2 8
by将7式再次对x求导得
2a22b2(yyyy)0 9 将8、9两式联立得
a2b2y2a4x2 10 y-43by根据曲率半径公式有 r(1y)11 y122 将8、10、11式联立并将A点坐标A(0,a)代入可得A点的曲率半径为
b2RA 12
a根据椭圆的对称性,远日点B的曲率半径为
b2RBRA 13
a 由于在A、B两点行星运行速度方向与万有引力方向垂直,万有引力只改变速度方向,并不改变速度大小,故分别根据万有引力提供向心力得
GMmmvA 14 (ac)2RAGMmmvB 15 2(ac)RB将13至15式联立可得 22vAbGMbGM,vB acaaca
5.2问题二的建模与求解 模型一:动力学模型
典型的月球软着陆任务中,探测器一般首先发射到100km的环月停泊轨道,然后根据所选定的着陆位置,在合适的时间给着陆器一个有限脉冲,使得着陆器转入近月点(在着落位置附近)为15km,远月点为100km的月球椭圆轨道,这一阶段称为霍曼转移段。当着陆器运行到近月点时,制动发动机开始工作,其主要任务是抵消着陆器的初始动能和势能,使着陆器接触地面时,相对月面速度为零,即实现所谓的软着陆,这一阶段称为动力下降段。着陆器的大部分燃料都是消耗在此阶段,所以月球软着陆轨迹优化主要是针对动力下降段这一阶段。由于月球表面附近没有大气,所以在飞行器的动力学模型中没有大气阻力项。而且从15km左右的轨道高度软着陆到月球表面的时间比较短,一般在几百秒的范围内,所以诸如月球引力非球项、日月引力摄动等影响因素均可忽略不计,所以这一过程可以在二体模型下描述。其示意图如图1所示,其中o为月球质心,x轴方向为由月心指向着陆器的初始位置,y轴方向为初始位置着陆器速度方向。
图 1 月球软着陆极坐标系
其动力学方程如下: rv
v(F/m)sin/rr
22 ((F/m)cos2v)/r
mF/ISP
在上式中r为着陆器与月心距离,v为着陆器径向速度,为着陆器极角,为着陆器极角角速度,为月球引力常数,F着陆器制动发动机推力,m为着陆器质量,为制动发动机推力方向角,其定义为F与当地水平方向夹角,ISP为制动发动机比冲。根据动力下降段的起点位置可以确定动力学方程初始条件,由于起点处于霍曼转移轨道的近地点,故其初始条件为: r0rp
00
v00 01rprp(2ra)rarp其中rp和ra分别为霍曼转移段的近地点半径和远地点半径。
终端条件为实现软着陆, 即
rfR
vf0
f0
其中R为月球半径,终端条件中对终端极角f及终端时间tf无约束。
优化变量为制动发动机推力方向角(t)。
优化的性能指标为在满足上述初始条件和终端条件的前提下, 使着陆过程中燃料消耗最少,即
Jm(t)dt
t0f设计主减速段制导控制律 2动力下降段燃料最优精确着陆问题描述 2.1 燃料最优精确着陆问题
着陆器运动方程:考虑采用变推力发动机情况,有
rv
.vga
(1)
aTmmaT..其中r[rhrxry]T,v[vhvxvy]T分别表示着陆器相对期望着陆点的位置和速度矢量;T为推力器提供的推力矢量,幅值为 T,对应控制加速度矢量 a;g为火星的重力加速度矢量,此处认为是常值;m为着陆器质量,对应推力器质量排除系数。指标函数:考虑燃料消耗
min(m0mf)min0fTdt
(2)边界条件:即初始条件和终端条件
r(0)r0,v(0)v0,m(0)m0,r(tf)v(tf)[000]
(3)控制约束:考虑发动机一旦启动不能关闭,存在最大和最小推力约束
0T1TT
2(4)状态约束:为避免在着陆前撞击到火星地表,需确保整个下降段位于火星地平面以上,即
rh0
(5)进一步地,若着陆区域附近表面崎岖不平,仅仅确保地表约束不能满足需求时,可以考虑下降倾角约束,即将着陆器下降轨线约束到以着陆点为顶点的圆锥体内
2.2 等效后燃料最优精确着陆问题 定义等效变换变量
Ttrx2ry2rhtanalt
(6)
uaT
m
(7)
Tmzlnm等效着陆器运动方程: .r0I3..
yv00.00z其中p[uT0r0vI030z07*70ug0AcyBc(pg4)
(8)],g4[gTT0]T
t指标函数:
min0f(t)dt
(9)
边界条件:同式(3)。
控制约束:由文献[10]可知,控制约束(4)可等效表示为
u1T1ez0[1(zz0)(zz0)2]T2ez0[1(zz0)]
(10)(11)
2状态约束:地表约束同式(5),倾角约束(6)可等效表示为
T
Sycy0
(12)
其中
0100000S
0010000ctanalt
T000000
3.燃料最优精确着陆问题的离散化及变换 3.1 等效燃料最优精确着陆问题的离散化
首先将整个飞行时间均分成 n 段(对应 n +1 个点),每段步长为t,离散化后的着陆器运动方程为:yk1AykB(pkg4)
其中AR77,BR74分别为离散系统的系统矩阵和输入矩阵
12AetAcI3tActAc
2tt112BetsAcBcdsesAcdsBctBctBct2Bc
0026其中I3为三阶单位阵。
有系统性质可知,整个控制时域内系统状态满足 y3Ay2Bp2g4A3y0A2Bp0g4ABp1g4Bp2g4ynAyn1Bpn1g4Any0An1Bp0g4ABpn2g4Bpn1g4y1Ay0Bp0g4y2Ay1Bp1g4A2y0ABp0g4Bpn2g4Bp1g4
为表达方便,令
y0p00A0yp1111A ,pp2,2A2 Yy2nyn7n11pn4n11nA7n1700B1AB223ABn1An则(15)可等价于
000B012ABBB0002 ABB003AABB0n1AABBA2BABBn7n14n1000000Yy0pg4
分别定义如下常值矩阵:
最终可得离散化后的燃料最优化问题如下: 指标函数:式(9)可表示为
边界条件:式(3)可表示为
控制约束:式(10)和式(11)分别可表示为
状态约束:式(5)和式(12)分别可表示为
含有 p个线性约束和 q个二阶锥约束的最优化问题的标准形式为 指标函数
min(Tx)满足约束
DTxf0AxcibdinTiTi
(k=1,,n)
n*pp其中xR为待优化向量,R,线性约束参数DR,fR,二阶锥约束参数维数n(Ai,bi,ci,di)由相应约束确定
则式(17)~式(23)可最终转换为如下最优化问题: 指标函数:min(vpp)满足:
初值约束:MxΨ0pMx(Ψ0y0)A0g4r0末值约束:MxΨ0pMx(Ψ0y0)A0g4控制约束:Murkpvrkp 控制上限:(vzΨkTTTTv0T0
0
T1vr)p1vTz(Φky0Akg4)z0,z0 z0kT2e 控制下限:
4数值仿真结果与分析本节以某火星着陆器为例,计算了典型初始条件下满足各种约束的燃料最优精确着陆轨迹。其中探测器各参数分别取为:m02000kg,g[3.711400]ms2,c2kms,T11.3kN,T213kN.。着陆器初始位置矢量r0= [1500,-600, 800] m,初始速度矢量v0= [-30, 10, 40]m/s,倾角alt=86°。二阶锥优化问题可以通过大量免费的优化工具求解,如 CSDP、DSDP、OpenOpt、SeDuMi、SDPA、SDPLR等。本文选用 SDPT3 进行计算,通过执行线性搜索确定燃料最优下降时间tf为 43s,图 1 给出了相应的最优着陆轨迹、下降速度、加速度、控制推力、推力幅值以及探测器质量变化曲线。
由优化结果可以看出,探测器在给定时间飞行并软着陆到指定位置,且在整个下降过程始终与火星地表保持一定的安全距离,验证了下降倾角约束的有效性。其推力幅值曲线呈现“最大-最小-最大”的最优控制形式,不过为了保持发动机始终处于点火状态,在中间段对应最小推力约束,这与文献中的分析结论一致。此外,通过利用如 TOMLAB 等商业最优控制软件进行复核计算,也验证了此计算结果的燃料最优性能。
*
图 1 给定初始条件下火星着陆器动力下降段燃料最优计算结果
需要注意到,此燃料最优轨迹的获取对着陆器的实时在线计算性能提出了较高的要求,经测试,无论使用何种优化工具,计算给定飞行任务时间的最优轨迹均需数秒,而全局最优则需要数十秒甚至更长,这在实际任务中是不允许的。因此,可行的方案是通过在地面计算大量的燃料最优轨迹,并寻找规律,选取关键路径点状态存储到着陆器计算机中,通过在线查表或者在利用对计算量要求较小的反馈制导律完成安全着陆任务。
因此,为了研究探测器燃料最优轨迹特性,选取相同的探测器参数,暂不考虑推力器最小幅值约束和倾斜角约束(但考虑地表约束),固定初始高度为 1500m,初始位置水平方向从-8000m 到 8000m 内取值,分别选取各种不同的初始速度,可得燃料最优精确着陆轨迹簇如图 2 所示。
图 2 各种不同初始速度对应的火星着陆器动力下降段燃料最优轨迹簇
1)对任意探测器初始位置,特定初始速度对应的燃料最优着陆轨迹在末端必然收敛到一个固定的近似圆锥体内。
2)取决于探测器初始位置和速度的关系,燃料最优轨迹有两种形式:S 型和 C 型,其中 S 型主要对应于期望着陆点位置水平距离较大情况。3)当探测器初始水平速度为零时,圆锥体轴线垂直于火星地表,所有最优轨线关于该轴线中心对称。4)初始速度的大小也直接影响到任务的可靠性,因此需要在超声速进入段和降落伞减速段将着陆器速度下降到合理范围内。
上述结论对上注探测器关键点的选取有着较强的指导意义,比如基于最优轨线的斜率对路径点合并、基于最优轨线簇的对称性对上注轨线进行等效延伸、或者尝试仅将 S 型和 C 型的转折点作为路径点等,这样可以大大降低探测器自主存储与计算需求,进而有效提升任务的可靠性。重力转弯软着陆过程
对于最终着陆点,假设探测器的下降轨迹在一平面内,且月球引力场为垂直于月面XY的均匀引力场,引力加速度g沿-Z,如图1所示,制动推力方向沿探测器的本体轴z。重力转弯软着陆过程中探测器质心动力学方程可表示为
上式中各变量的物理意义如图1中所示,其中m>0为探测器质量;k>0为制动发动机比冲;u表示制动发动机的秒耗量
可通过一定的机构加以调节,故作为软着陆问题的控制变量。假定制动发动机的最大推力与初始质量比大于月面引力加速度,并且制动推进系统能够在一定的初始条件下将探测器停止月面上。
重力转弯过程中,探测器的高度、速度和姿态角度可由雷达高度表、多普勒雷达及惯性仪表测得。令软着陆初始条件探测器到达月面时速度减小到给定的值,故终端条件自由。软着陆燃耗最优问题的描述 对于最终着陆段,可假设
为一小角度。由此可将系统方程(1)化简为
要设计制导律实现软着陆,就是使
着陆时间
对于月球软着陆的燃耗最优控制问题,其性能指标可表示为
对于系统(2)的软着陆过程,燃耗最优问题等价于着陆时间最优问题,性能指标为
在月球重力转弯软着陆过程中,如果存在一个推力控制程序将探测器从初始条件转移到终端条件,并使性能指标(3)或(4)式最大,则称这个推力程序为软着陆燃耗最优或时间最优制导律。根据pontryagin极大值原理,系统的哈密顿函数及其对u的偏导数为
使哈密顿函数(5)式达到极大地控制输入u就是最优控制,科表示为。
如果存在一个有限区间
则最优控制u(t)取值不能由哈密顿函数确定。此时如果最优解存在,则称为奇异解,(8)式称为奇异条件。
最优制导问题的性质:1)对于自治系统(2)的时间最优控制问题,沿最优轨迹其哈密顿函数满足
将其对时间求导并将(2c)和(6c)式代入,得
另外,由于自由,根据横截条件有3)根据(6a)式。又由(9)式可得T(t)=0,4)根据极大值原理,系统的状态变量和共轭变量都是时间的连续可微函数,将切换函数对时间求导,利用(2),(6)式和性质2)得 软着陆最优控制中奇异条件的分析
对于月球重力转弯软着陆问题,最优制导律具有两个很好的性质。
定理一。月球重力转弯软着陆系统(2)的燃耗最优制导或时间最优制导问题不存在奇异条件。证明。用反证法,假设存在奇异条件,则在某个闭区间设,并由(5)式得
。根据反正假将(10)式两边对时间求导,并将(2)和(6)式代入化简得性质2),并考虑到或者情形1.得
下面证明这两种情形均与反证假设矛盾。根据式
及性质2)可知,由性质3)必有
根据
是时间t的斜率非零的线性函数,m和情形2.1)若定,根据横截条件有在区间内为常数。这与反证假设矛盾。
。下面再分三种情况进行分析。
又因为
不与此时由(6b)式有反证假设矛盾。2)若盾。3),与反证假设矛又
因
为
因此有成立,这与
此时(10)式在上根据定理一,重力转弯软着陆的最优制导律是一种开关(Bang-Bang)控制,只须控制发动机开关,不需要调节推力的大小。
定理2.对于月球重力转弯软着陆过程,其开关控制器的最优推力程序(7)最多进行一次切换。
证明。只要证明最多只在一个时间点成立即可。软着陆系统(2)在最优推力控制程序(7)的作用下,按最后轨迹降落。由性质3)知,为常数。根据性质4),若严格单调,因而在上至多有一个零点,即至多进行一次切换;若,则上为常数。由定理1,5 软着陆最优开关制导律
不可能在任何区间上成立,故必有既没有切换点。
对于最优推力控制程序(7),其切换函数中含有共轭变量,它是一个关于状态变量的稳式表达式。为实现实时制导,需求出关于状态变量的切换函数来。
根据定理一和定理二,重力转弯软着陆最优控制程序没有奇异值状态,并且在着陆过程中最多切换一次,其工作方式有4种:1)全开;2)全关;3)先开有关;4)先关后开。对于方式1)软着陆起始点即是开机点;方式2),3)不能实现软着陆;最后一种是通常情况下的最优着陆方式,即探测器先做无制动下降,然后打开发动机软着陆到月面。设开机时刻为到发动机工作时间为
式,在区间
内积分,并考虑
将(11)式中的对数按泰勒展开,忽略
并令
消掉T得到切换函数为
由切换函数(12)式可以看出,速度、位置的误差和制动发动机推动的将直接影响着陆的效果。一种方法是将终端高度从到达月面时实现软着陆设置为离月面还有几米时实现软着陆。另一种方法是考虑制动过程由一个主发动机和一组小推力发动机共同完成,通过调整开启的小发动机的数量,来实现变推力降落。具体地,令切换函数为
式中各符号的含义如图2所示
关机点可取为2m,可取为20m,可取为1m/s。为实现着陆的最优性,减速度
取为
其中T如(12)式中所示,m0为探测器的初始质量。
图三为最优着陆过程与其改进方法按图2降落的次优着陆过程的对比图。由此图中可看出,改进方法提高了着陆的安全性,当探测器的初始质量mo=350kg,发动机着陆过程多消耗燃料2.2kg。
时,改进方法比最优
(a)
(b)
问题三 协方差分析方法的基本原理 对于如下非线性函数关系
yfx1,x2xn(1)
可以使用一阶泰勒级数展开对其进行线性化,有
yyfffx1xnx1xn(2)x1xn其中,x1xn为x1xn的高阶项。从而得到线性化方程
yfxi(3)i1xin或表示为
YPX(4)
这里 P 是偏导数矩阵: Pif(5)xi若自变量x1xn是随机变量,则线性化方程的函数y的协方差矩阵为:
EYYTEPXXTPTPEXXTPT(6)即 CyPCXPT(7)式中Cx是自变量的协方差矩阵;Cy是函数Y的协方差矩阵。
协方差矩阵中对角线元素是方差,非对角线元素为协方差。显然,只要求出传递矩阵 P ,便可确定源误差与欲求量误差之间的关系。若给定各种源误差,如发动机安装误差、敏感器测量误差或发动机推力和点火时间等误差时,便可以分析其对目标轨道误差的影响以及对控制系统精度的影响,进一步对各系统及元部件提出适当的精度要求。计算向月飞行轨道误差的协方差迭代方程
考虑到轨道参数的误差之相对于轨道参数的标称值是小量,因此可以将轨道运动方程进行线性化,从而得到能够反映轨道参数偏差量的传播关系的误差方程。在应用双二体模型且在地球影响球范围内时,对轨道运动产生摄动影响的各项,如月球引力摄动、太阳引力摄动、大气阻力摄动和太阳光压摄动等对误差方程的影响很小,因此在误差方程中将它们忽略掉。反映轨道位置和速度误差的线性化方程如下:
vrg(8)vrrTur,其中u为地球引力常数。式中 gr3rrrx2ry2rz2(9)
写成状态方程形式:
0Irr(10)vG0vg式中 GT
r0Ir令FG0,Xv(11)
则式(9)变为
FX(12)X下面推导矩阵 F 的表达式:
guGTT3rrrruurrT33Trrrruuuur3333I3rrrrryzrxr(13)
式中 r x,r y 和 r z 是探测器在地心惯性坐标系里的轨道位置坐标。则Gu3T(Irr)(14)332rrrx2rxryrxT2rrryrxryrzryrxryrrzrxrzryzrxrzryrz(15)2rz
将式(15)、(14)代入(10),得: 0002-urx(132)Fr3r3urxryr5v3urxrzr5
积分式(11),得到: 0003urxryr520003urxrzr53urzryr5210000ry-u(13)32rr3urzryr5-urz(13)0r3r200100100(16)
0000
XteFtX0
(17)式中
(Ft)2(Ft)3(Ft)4(Ft)neIFt2!3!4!n!
(18)iNtFi.()i!i0Ft取前 6 阶截断,即:
eFttiFi!
(19)i06i
得到计算误差方程的迭代方程:
XtiteFtXti
(20)
eFt相当于式(4)中的 P 阵,由于误差方程是时变方程,因此每一步迭代都需要重新计算 P 阵,计算 P 阵需要利用标称轨道参数数据。
进一步根据式(7),得到协方差矩阵的迭代方程:
T
Ci1PCPiii
(21)向月飞行轨道误差的协方差分析
引起轨道误差的误差源主要是导航误差,包括位 置 误 差 和 速 度 误 差。其 中 : 位 置 误 差 :rrx,ry,rz,rx,ry,rz分别为在地心惯性坐标系中 X 轴、Y 轴、Z 轴的分量。速度误差:vvx,vy,vz,vx,vy,vz分别是在地心惯性坐标系 X 轴、Y 轴、Z 轴的分量。向月飞行轨道的初始轨道位置和速度误差由运载火箭的发射入轨精度决定,若探测器在飞行途中进行轨道修正,则经过轨道修正以后的轨道位置误差将由导航误差决定,速度误差将由姿态误差和制导误差决定。
上述误差决定了轨道误差协方差分析的计算初始条件,表 1 给出了在不进行中途轨道修正情况下,在地心惯性坐标系里,初始轨道位置误差和初始速度误差对轨道终点的位置和速度误差的影响。图 1 和图 2 给出了在算例三中探测器从近地轨道入轨点开始至进入月球轨道为止轨道位置的相应的轨道位置和速度总误差(3σ)的时间历程。
表 1 初始轨道位置和速度误差
对轨道终点误差的影响
图 1 轨道位置总误差时间历程(3σ)
图 2 速度总误差时间历程(3σ)基于敏感系数矩阵的制导误差分析
在月球软着陆主制动段,影响制导精度的误差源主要有偏离标准飞行轨迹的初始条件误差和导航与控制传感器误差。初始条件误差由主制动段以前的任务决定,传感器误差则由导航系统和传感器本身决定。此外,影响制导精度的因素还包括月球自转、月球不规则摄动等误差,对它们的研究可单独进行,这里暂不做介绍。2.1 误差模型建立
2.1.1 初始状态误差模型
记着陆器的实际初始状态为Xi,标准初始状态为Xn,则定义初始状态偏差xi为
xiXiXn
(7)对于主制动段这一特定的飞行过程,这些偏差都是确定的;而针对整个月球探测任务,这些偏差就变得具有随机性。在本文中,假定xi 的所有元素均服从零均值高斯分布,相互不独立,其相关性取决于前一阶段任务的特性。2.1.2 传感器误差模型
由于只研究误差对制导律的影响,所以这里假设需要测量的量均可由导航系统直接测得,误差大小
均考虑为典型误差值。由上一目设计的制导律可以看出,需要由导航与控制传感器测量的量主要为着陆器相对于着陆场坐标系的位置、速度和加速度。定义待测量量Q为
QX其估计值记为Q,则传感器误差定义为 YZUVWA
T
qQQ
(8)那么,单个测量量的估计误差模型可用误差向量 q的第j(j =1,2„7)个元素qj 来表示。由参考文献[5]可知,第 j个观测量的总估计误差qj 由以下四部分组成
~~-~qjbsqjnstqtqQtqtQjt
(9)jjbcjnc
j100100~~~~~针对主制动这一特定操作阶段,上述四部分误差具有如下特性:
qjbc—第 j 个观测量的测量误差,恒为常值,其分布服从零均值高斯分布; qjbs—第 j 个观测量的刻度因素误差系数,恒为常值,其分布服从零均值高斯分布; qjnc—第 j 个观测量的随机误差,其为一高斯白噪声;
qjns
—第 j 个观测量的刻度因素随机误差系数,其为一高斯白噪声。
2.2 制导误差分析
由于采用闭环制导,制导控制系统对随机误差具有一定鲁棒性,所以本文将着重对初始偏差和类似于qjbc和qjbs这样的传感器常值误差进行仿真研究,分析它们对制导精度的影响。2.2.1 误差分析系统建立
误差分析系统框图如图 1 所示,下面将对其结构进行分析。~~~~~~
图 1 误差分析系统结构图
图中所示初始状态偏差实际上是加在相应积分器中。
由前面的分析可知,观测量的实际输出值受到初始状态偏差、传感器测量误差以及传感器刻度因素误差的影响,故误差分析系统模拟程序的实际输入应包含以下几部分(以 X通道为例):
XXxixbc~xbsX
(10)100~~
其中,X为观测量的实际输出值,X 为标准值,xi 为初始状态偏差(只在初始时刻存在),xbc 为传感器测量偏差,xbs为传感器刻度因素误差系数。由图 1 可以看出,为了更准确地表示传感器误差模型,这里考虑了传感器的动态性能,其传递函数设为一阶惯性环节11Ts,其中,T 为传感器时间常数,因传感器的不同而取不同值。
由误差分析系统结构框图可以看出,其输入量主要包括:标准初始状态向量、初始状态偏差、传感器测量误差、传感器刻度因素误差系数、传感器时间常数、期望终端状态;输出量为加入误差前后的仿真终端状态向量。2.2.2 误差敏感系数矩阵求取
在有形如(7)式误差输入的情况下,首先根据图 1 生成一个模拟整个闭环制导控制系统的数字仿真程序,然后运行该程序,对比程序输出即可得到误差敏感系数矩阵。具体运行过程如下:
第一步:将传感器误差设置为零,初始状态设置为标准值,运行模拟程序。这一步称为标准运行。第二步: 将其中一个传感器误差设置为非零输入或者设置一个非标准初始状态,然后进行一系列运行。
第三步: 将第二步运行的系统输出和标准运行的系统输出进行比较即可确定各误差源的影响。如X 通道标准初始偏差为xi,输入该误差前后,X 通道终端状态分别为X0 和X1,则 X 通道对标准初始偏差xi的敏感性可用(X1X0)/xi来反映。
通过这种方法,可得到一组反映月球软着陆主制动段终端总误差向量pf和两个传感器误差向量~~~qbc、qbs以及初始状态偏差向量pi之间关系的误差敏感系数矩阵。由参考文献[6]可知,其相互关系可表示为
~~pfS1piS2qbcS3qbs(11)
其中,S1、S2和S3分别表示相对于pi、qbc和qbs的误差敏感系数矩阵。
终端误差向量能用这种形式表示的假设条件是动力学的线性化必须在标准轨迹区域内。验证该假设条件的方法有两种: 扩大输入误差仿真法和复合仿真法,这里略去其验证过程。2.2.3 误差分析
假设导航系统采用常规惯性测量单元,表 1 列出了其典型误差值,其中,位置误差能保持在10数量级,速度在10数量级,加速度为 10g 数量级。1-52~~
运用上述方法得到的敏感系数矩阵给出如下:
5.50210-3-4-3.850101.69210-3S1-38.36210-5.86010-4-3-2.57510-2.08010-4-1.05010-31.41810-11.40110-57.30110-5-1.00110-26.41110-53.24010-4-4.40710-2-2.57010-4-1.86210-3-5.58010-11.41010-57.90210-51.31210-55.71010-4-1.15710-38.10010-53.93610-21.73210-2-2.7431017.74610-1-4.02410-2-8.93910-23.21010-34.03010-31.23910-21.83310-2-2-18.742101.41410-1.19610-2-9.90110-3-2-2-2.69010-4.57710-6.81210-1-8.69510-2-5.2031002.11010-14.23510-16.17010-3-3.2811008.20210-2-5.76010-35.63310-1-3.4891022.4431014.401102-9.8331026.86410123.02010-9.85910-1-1.15410-3-40-3.13010-1.00010-1.37910-33.56010-4S2-2-3-5.402101.540101.04510-31.86410-3-34.77010-44.598109.99910-13.408100-7.21010-43.5041005.00010-55.64310-3-1.52710-19.36810-1-6.72110-1-1.30610-1-5.6314100-28.479103.73010-1S30-8.924104.61910-102.03310-5.49410-1-3.53310-1-2.8101001.60010-31.69210-16.75510-18.99610-1-209510-12.47310-21.66410-1-1.0271007.16510-23.344100-1.1121008.61310-17.8521003.246100-1.6181003.54010-14.98210-17.67010-1-1.122100-2.397100-2.38010-1-3.650100-2.5631002.55610-1-4.29110-23.401100-1.88810-1-5.103100-3.23010-13.56610-12.25610-10-1-7.005109.93010A1、A3:12.7592,30.1297j2.1329 A2:11.5522,30.6761j1.8978
由于数值仿真的起始点选为(1,0,-1),靠近平衡点(1.5,0,-1.05),仿真实验中混沌系统的基频w0=2.1329,基周期为为T0202.9443S。由前面的数值仿真实验知要使 Chua’s混沌系统保持其类随机性,仿真步长选在(0.0001,0.7)较为合适,用基周期来表达即为129940T015T0 ,15T0内,综观三个连续混沌系统仿真步长的理论计算,我们可以统一选取15000T0这样即可以提高仿真运算速度,又可以使混沌吸引子的形状和类随机性不发生变化,这个选择范围也与通常连续混沌系统数值仿真步长的经验取值相吻合六、模型结果及分析
七、结果分析
八、模型评价与改进方向
九、参考文献