第一篇:《华罗庚学校思维训练导引》三年级第二节
《华罗庚学校思维训练导引》三年级第二节
1、有20人修筑一条公路,计划15天完成,动工3天后抽出5人植树,留下的人继续修路。如果每人工作效率不变,那么修完这段公路实际用多少天?
答案:19天
分析:此题因中途抽出5人植树,修路的总人数发生变化。但前3天并未变化。我们并不需知道每人每天的工作量,不妨把它设为“1”,那么这条路的工作总量就是20×15=300,3天后已经完成的工作量是20×3=60,还剩下300-60=240的工作量由剩下的15人完成 详解:根据分析可以得到:我们假设每人每天的工作量为1,那么这条路的工作总量就是15×20=300;
3天后已经完成的工作量是20×3=60,3天后还剩下的工作量为300-60=240; 接下来时间里每天的工作人数为15人,所以还需要240÷15=16天
16+3=19天
评注:解此种类型的题目时,要抓住工作的总量的变化关系,找准需要设的单位1。需要提醒的是:此题不要忘了加上前3天。
2、2个篮球的价钱可以买6个排球,6个足球的价钱可以买3个篮球。买排球、足球、网球各1个的价钱可以买1个篮球。那么,买一个篮球的价钱可以买多少个网球? 答案:6个
分析:此种题目只是一个思维的过程。可以拿字母或符号来代表各种不同类型的球的价钱。但在这里我们只介绍“口算法”,题目条件给得比较?嗦,口算要求对其中的关系必须非常清楚,那么,我们就要从表示方式上简化。
∵2篮=6排3篮=6足
∴ 1排+1足+1网=1篮==〉6排+6足+6网=6篮
带入6排=2篮6足= 3篮
∴2篮+3篮+6网=6篮
==〉1篮=6网
∴买1个篮球的价钱可以买6个网球
详解:根据分析可以得到(略)。
评注:这种类型的题目我们通常采用简单的式子来表示复杂的关系。这样容易清楚地看到它们之间的联系。从而达到简化、节约时间的目的。
3、三年级一斑选举班长,每人投票从甲、乙、丙三个候选人中选一人。已知全班共有52人,并且在计票过程中的某一时刻,甲得到17票,乙得到16票,丙得到11票。如果得票比其他两人都多的候选人将成为班长,甲最少再得多少张票就能够保证当选? 答案:4张
分析:此题隐含的一个条件是:“每人只能投一张票”知道这个条件后,这道题就能轻易破解了。先求出目前已投的票数(17+16+11=44张),再求出还剩的票数(52-44=8张),甲想当班长,考虑最坏的情况:剩下的8张票全落在甲、乙手中,甲必须得到多少才比乙多呢?甲只要比乙多一票即可,目前17>16,所以剩下的8票,甲至少要得到4票才能保证比乙多。17+4>16+4
如果甲得到3票,就有可能和乙竞选成平手(17+3=16+5)。
所以当甲再获得4张选票时,将能够保证当选班长。
详解:剩下票数=52-17-16-11=8票,所以甲乙最多共得票=17+16+8=41
所以甲至少要得到(41+1)/2=21张票,而甲已经有17张票,那么甲最少再得21-17=4张票就能够保证当选。
4.甲乙两队共同挖一条长8250米得水渠,乙队每天比甲队多挖150米。已知先由甲队挖4天后,余下的由两队共同挖了7天,便完成了任务。那么甲队每天挖多少米?
答案:400
详解1:设甲队每天挖X米,乙队每天挖(X+150)米;根据水渠全长8250米得 4X+7X+7(X+150)=8250
18X=7200
X=400
∴甲队每天挖400米
详解2:
分析:“已知先有甲对挖4天后,余下的由两对共挖7天”的意思就是:甲做11天+乙独做7天。而这句话又可以换一种理解:总的工作量的=甲做11天+(甲做7天+150*7)(8250-150*7)/(11+7)
=7200/18
=400(米)
评注:理解一句话的方式不同,很有可能会带来几种不同的效果.5、某单位举行迎春茶话会,买来4箱同样重的苹果,从每箱取出24千克后,结果各箱所剩的苹果重量的和,恰好等于原来一箱的重量。那么原来每箱苹果重多少千克?
答案:32千克
分析:4箱同样重的苹果,从每箱取出24千克后,一共取走24*4=96(千克);
结果各箱所剩的苹果重量的和,恰好等于原来一箱的重量说明取走的96千克相当于原来4-1=3箱,故原来每箱96/3=32千克。
详解:24×4÷3
=32(千克)
6、甲有桌子若干张,乙有椅子若干把。如果乙用全部椅子换回数量同样多的桌子,则需补给甲320元;如果乙不补钱,就要少换回5张桌子,已知3张桌子比5把椅子的价钱少48元,那么乙原有椅子多少把?
答案:20把
分析:通过:“则需补给甲320元;如果乙不补钱,就要少换回5张桌子”说明5张桌子价值320元,可以求出每张桌子的价钱。再通过这句话:“已知3张桌子比5把椅子的价钱少48元”可以求出椅子的价钱。同时320元还是每张桌子比每把椅子多的钱数乘以乙原有椅子的把数的积。所以,只需用320除以桌子的钱数减椅子钱数的差就能求出乙原有椅子多少把了。
详解:根据分析可知,每张桌子的价钱:320/5=64(元)故每张桌子64元
(64×3+48)÷5=48(元)故每把椅子48元
320/(64-48)=20(把)乙原有椅子20把
评注:此题之关键在于320这个数,320包含了两个不同的含义,正是这两个不同的含义,使我们找到了解此题的。这也正是巧妙之处。
7、实验室里有一只特别的钟,一圈共有20格,每过7分钟,指针跳一次,每跳一次就要跳过9个格。今天早上8时的时候,指针恰好从0跳到9,问昨天晚上8时整的时候指针指着几?
答案:2
分析:大家不要被题目所迷糊,此题并非很难,只是叙述复杂,难以理解。这段话的意思就是:一个钟有20个格,每过7分钟,跳9个格。在第6分59秒前,并不跳。所以,只要求出一共12小时跳多少格,再除以这个钟的格数(20)就可以了。
详解:从昨晚8时到今天早上8时,共12个小时60×12=720(分)
720÷7=102(次)„„6(分)
102×7=714(分)
所以在714分钟前(即昨晚8:06)一共跳了102次
减去今天早上8时那一次,即101次
又因为指针每跳20次就回到原处
所以101/20=5(次)„„1(次)
所以在昨晚8:06时,指针跳到11处
所以昨天晚上8时整的时候指针还没有跳,指针指着11-9=2。
三年级上学期第03讲,应用题第2讲和差倍问题之一(偶数题)
2.三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
分析:要点:先把一,二小组看成一个整体!把第三小组看成一个整体,我们把这种方法叫“化三为二”即把三个问题转换成二个问题,先求出第一,二小组的人数,再求出第一小组的人数。这也是一个和差问题。
解:(180+20)÷2=100(人)――第一,二小组的人数
(100-2)÷2=49(人)――第一小组的人数
综合:[(180+20)÷2-2]÷2=49(人)――第一小组的人数
答:第一小组的人数是49人。
4.在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?
分析:这是一个和倍问题。减数是差的3倍,那么被减数就是差的4倍,所以被减数、减数与差的和就是差的8倍,应该等于120,所以差=120÷8=15。
解:120÷(1+3+1+2)=15答:差等于15。
6.有50名学生参加联欢会,第一个到会的女同学同全部男生握过手,第二个到会的女生只差一个男生没握过手,第三个到会的女生只差2个男生没握过手,以此类推,最后一个到会的女生同7个男生握过手。问这些学生中有多少名男生?
分析:这是和差问题。我们可以这样想:如果这个班再多6个女生的话,最后一个女生就应该只与1个男生握手,这时,男生和女生一样多了,所以原来男生比女生多(7-1)6个人!男生人数就是:
解:(50+6)÷2=28(人)。答:男生人数是2 8人。注:还有一种解法,7+6+5+4+3+2+1=28(人)
我的分析方法还不能说得很清楚。请大家指正。
8.甲、乙、丙共有100本课外书。甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,余数也都是1。那么乙有多少本书?
分析:这是和倍问题。看懂题后可以这样理解,“甲、乙、丙3个数是100,甲是乙的5倍多1,丙是甲的5倍多1,求甲、乙、丙各是几?”。即:乙是1倍;甲是乙的5倍多1;丙是乙的(5×5)倍多(1×5+1)6。那么100减去(1+6)的差对应(1+5+5×5)倍,这样可求出乙是多少。
解:[100-1-(1×5+1)]÷(1+1×5+1×5×5)=91÷31=3(本)答:乙有3本书。
10.有货物108件,分成四堆存放在仓库时,第一堆件数的2倍等于第二堆件数的一半,比第三堆的件数少2,比第四堆的件数多2.问每堆各存放多少件?
分析:如果我们把第一堆看成1倍,那么可以算出第二堆就是(2×2)4倍,第三堆是2倍多2件,第四堆是2倍少2件,那么一共就刚好是1+4+2+2=9倍(第三堆和第四堆刚好一个多2件一个少2件正好抵消),那么1倍就是108÷9=12件,第二堆就是12×4=48件,第三堆就是12×2+2=26件,第四堆就是12×2-2=22件。
解:(108+2-2)÷(1+2×2+2+2)=108÷9=12(件)――第一堆
12×2×2=48(件)――第二堆; 12×2+2=26(件)――第三堆; 12×2-2=22(件)――第四堆;
答:每堆各有12件、48件、26件、22件。
12.用中国象棋的车,马,炮分别表示不同的自然数。如果:车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?
分析:这是一个差倍问题。依题有,马是1倍,车是马的2倍,炮是车的4倍,所以炮与马的倍数差是(2×4-1)7倍,而炮与马的两数差是56,根据差倍问题的公式就可分别求出车、马、炮的值。
解:56÷(8-1)=8――马;
8×2=16――车
16×4=64――炮
8+16+64=88――车+马+炮答:车、马、炮的和是88
14.甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原计划每天自学多少分钟?
分析:差倍问题。原来时间相同,现甲多半小时,乙少半小时,现在的两数差是(30+30)60分钟,现在的差数差是(6-1)5倍,这样可求出现乙每天自学的时间,加上30分钟,可得原计划每天自学时间。
解:(30+30)÷(6-1)+30=12+30=42(分钟)答:原计划每天自学42分钟。
第二篇:三年级思维训练
三年级思维训练
姓名()
1、找规律:
(1)1,3,4,7,11,(),();(2)1,2,3,6,11,20,(),();(3)7,3,10,3,13,3,(),()(4)1,2,5,13,34,89,(),()
2、运动场上有一条长45米的跑道,两端已插了二面彩旗,体育老师要求在这条跑道上每5米隔再插一面彩旗,还需要彩旗()面。
3、一条毛毛虫长到成虫,每天长一倍,10天能长到10厘米,长到20厘米时要()天。
4、从午夜零时到中午12时,时针和分针共重叠()次。
5、王勤同学的储蓄箱内有2分和5分的硬币20个,总计人民币7角6分,其中2分硬币有()个。
6、一个钥匙开一把锁,现在有8把钥匙和8把锁被搞乱了,要把它们重新配对,最多试()次,最少()次。
7、哥哥5年前的年龄和妹妹3年后的年龄相等,当哥哥()岁时,正好是妹妹年龄的3倍。
8、一根木头长24分米,要锯成4分米长的木棍,每锯一次要3分,锯完一段休息2分,全部锯完需要()分。
9、王冬有存款50元,张华有存款30元,张华想赶上王冬。王冬每月存5元,张华每月存9元,()个月后才能赶上王冬。
10、三年级有164名学生,参加美术兴趣小组的共有28人,参加音乐兴趣小组的人数是美术小组人数的2倍,参加体育兴趣小组的是音乐小组的2倍,如果每人至少参加一项兴趣小组,最多只能参加两项兴趣小组活动,那么参加两项至少有()人。
11、张
三、李
四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他。它们三人中有一个说了真话,做好事的是()。
12、一本故事书,李明12天可以看完,而王芳要比李明多2天看完,李明每天比王芳多看4页。这本故事书有()页。13、186576×199911-199912×186575=()。
14、找规律填数: ①11,12,14,18,26()。
②1,2,2,4,8,32()。
15、连续的六个自然数,前三个数的和是60,那么后三个数的和是()。
16、甲、乙、丙三数之和是116,甲数除以乙数,丙数除以甲数,都是商2余1,那么,乙数是()。
17、某商店规定可以用3个空汽水瓶换一瓶汽水,小明买了8瓶汽水,喝完后用空汽水瓶去换汽水,他一共可以喝()瓶汽水
18、光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主席台,需要()分钟。
19、现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵中共有松树和柏树()棵。
20、甲、乙两个粮库原来共存大米320吨,后来从甲粮库运出40吨,给乙库运进20吨,这时甲库存的大米是乙库的2倍,甲粮库原来存大米()吨,乙粮库原来存大米()吨。
21、有一圆形跑道长690米,甲乙两人同时从起点出发,甲每分钟行60米,乙每分钟行55米,()小时后甲第一次追上乙。
22、一座大桥2400米,一列火车通过大桥时每分钟行900米,从车头开上桥到车尾离开桥共需要3分钟。这列火车长()米。
23、口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各10个。一次最少摸出()个球,才能保证至少有4个颜色相同。
24、有50个同学去公园划船,每条大船可以坐6人,租金10元;每条船小船可以坐4人,租金8元。那么多种不同的租船方案中()方案最省钱。
25、A、B、C、D、E五人参加乒乓球比赛,每两人都要赛一场,并且只赛一场,规定胜者得2分,负者不得分,已知比赛结果如下:(1)A与E并列第一名;(2)B是第三名;(3)C与D并列第四名,那么B得()分。
26、15个同学排成一列横队,从左边数起,小林是第11个;从右边数起,小刚是第10个。小小刚之间隔()个同学。
27、黑母鸡下1个蛋歇2天,白母鸡下1个蛋歇1天,两只鸡共下10个蛋,最少需要多少天?
28、一筐萝卜共重56千克,先卖出一半萝卜,再卖出剩下的一半,这时连筐共重17千克,问原来这筐萝卜重()千克。筐重()千克。
29、小强、小亮和小军练习投篮球,一共投了150次,共有64次没投进。已知小强和小亮一共投进了48次,小亮和小军一共投进了69次,小亮投进了()次。
30、鸡和兔共有100只,兔的脚数比鸡的脚数多28只,问,鸡、兔各几只?
31、甲、乙两队共有96人,如果从甲队调8人到乙队,乙队再给丙队36人,那么甲队人数就是乙队的2倍,甲队原来有()人、乙队原来有()人。
32、在1、2、3、……、132这些数中,数字“1”共出现了()次。
33、小明一家三口人,妈妈比爸爸小2岁,今年全家人的年龄加起来刚好是70岁,而7年前,全家人的年龄加起来刚好是50岁。现在,小明家每个人的年龄各是多少岁? 爸爸()岁,妈妈()岁,小明()岁。
34、学校第一次买了4个篮球和5个足球,共用去520元;第二次买了同样的5个篮球和4个足球,共用去533元。篮球单价()元,足球单价()元。
35、一个圆形花圃周长36米,每隔3米放一盆花,一共放了()盆花?
36、一筐鸡蛋第一次买出全部的一半多2个,第二次买出余下的一半少2个,这时还剩28个,这筐鸡蛋一共有()个
37、一个正方形,被分成5个相等的长方形,每个长方形的周长是60厘米,正方形的周长是()厘米。
38、小芳和小华共有红花45朵,小芳比小华少3朵。那么,小华有()朵。
39、10元钱买6角邮票和8角邮票共14张,那么6角邮票()张,8角邮票()张。
40、同学们做游戏,50人围成一圈,老师给每个人都编成了一个号码,从1—50号。老师让大家从1号开始“
一、二”报数,凡是报到“一”的同学离开圆圈,剩下的同学接着重新报数。新的报“一”的同学又离开了。这样继续下去,想一想,最后离开的是()号同学.最后留下的一个是()号同学.41、甲筐苹果重40千克,从甲筐取出3千克放入乙筐,则乙筐还比甲筐少2千克。原来乙筐有苹果()千克。
42、在一块正方形场地四周种树,每边都种25棵,并且四个顶点都种有1棵树,问这个场地四周共种树()棵?
43、小强从一楼爬到三楼要用24秒,照这样计算,小强从五楼爬到十楼要用()秒。
4、粮库内有一批面粉,第一次运出总数的一半多3吨,第二次运出剩下的一半又7 吨,还剩下4吨。问粮库里原有面粉()吨。
5、从第一堆西瓜里拿出一半放到第二堆里,再拿35个放到第三堆里,又拿出剩下的一半放到第四堆里。最后第一堆还有15个。第一堆原有()个西瓜。
6、买一把椅子和一张桌子共196元,一张桌子的价钱是一把椅子的3倍,一把椅子的价钱是()元。47、10、父亲今年50岁,儿子今年14岁,()年后父亲的年龄是儿子的3倍。
48、有252本笔记本,分装在4个大盒和9个小盒内,已知1个大盒与3个小盒的本子一样多。每个大盒装()本,每个小盒装()本。
49、如果有5只猫,同时吃5条鱼,需要5分钟时间才能吃完。按同样的速度,100只猫同时吃掉100条鱼,需要()分钟时间50、14、在括号内填上1、2、3、4、5、6、7、8、9九个数字,使等式成立,数字不得重复。()÷()×()=()()()+()-()=()
第三篇:三年级创新思维训练
三年级创新思维训练②
一、用“坚”组成不同的词,再为它们找座位。
1.赵州桥不仅(),而且美观。
2.宋庆龄()地说:“我昨天和小珍约好了„„我不能失信啊!”
3.我靠着()的意志爬上了天都峰。
二、为黑体词找反义词。
1.谦虚使人进步,()使人落后。
2.()是成功之母。
3.我们要时时把()记在心上,防止危险情况发生。
三、将下列词语补充完整。
姹()紫()胸()成()生机()()翩翩()()
郑()其()争()斗()自言()()垂头()()
四、玩个“变相”魔术吧,按要求改写句子。
1.孔子把老子拜为师。
改为“被”字句:
2.聪明的科利亚果然找到了四年前埋的木匣子。
缩写句子:
3.高尔基配合小男孩照相。
把句子扩写得更具体生动:
五、阅读短文,完成练习。
北川女孩收到温总理亲笔回信
2008年7月24日,北川小姑娘刘小桦收到了一封弥足珍贵的来信——温家宝总理在百忙之中抽空亲笔给她用毛笔书写的手写体回信。
这一天,像往常一样,上午九点刘小桦准时到绵阳市少年宫排练表演节目。惊喜突然降临——几位叔叔把一封用宣纸和毛笔写的信件送到她手上,告诉她,温爷爷给她回信了!小桦颤抖着伸出双手接过信,看到是温爷爷的回信,激动万分的小桦一口气就把信读完了。
有记者问她,收到温爷爷的回信心里感觉如何,仍然沉浸在惊喜中的小桦用稚嫩的童声却像大人般地回答道:“我很高兴能收到温爷爷的回信,我要好好活着,好好学习,长大后报效社会和祖国!”话刚落音,又有记者问到温爷爷到九州体育馆看她时的感受,小家伙不假思索:“当时在我没有亲人的情况下,温爷爷来安慰我,感觉就像亲人在身边一样!”
刘小桦是北川羌族自治县白什羌族藏族乡的一位小姑娘,地震后,和家人失去了联系,被安置在绵阳九洲体育馆受灾群众临时安置点。5月13日,温总理来到九洲体育馆孤儿室,看到哭泣不止的小桦,便亲切地安慰她:“政府管你们生活,管你们学习,你们一定会像在自己家里一样。”6月份,小桦把震后的情况用书信报告给了温总理,没想到总理竟亲笔回信:“我希望你们在灾难中懂得人生的艰难,也看到未来的光明,从而更加努力学习,艰苦奋斗,长大和灾区人民一道把家乡建设得更加美好。”
小桦签收信后,爱不释手,连排练歌曲时也拿在手上。她表示,要把温爷爷的回信裱起来挂在家里的墙上。
1.联系上下文理解,“弥足珍贵”是什么意思?
2.从哪里可以看出小桦非常惊喜?
3.小桦得到总理关怀,有什么感受?
4.小桦为什么要把温爷爷的回信裱起来挂在家里的墙上?
5.文章重点写了温总理的两件事,一是,二是,表现了温总理对人民的。
第四篇:三年级数学思维训练
三年级数学思维训练
1、有48个学生参加三项体育比赛,但参加的每项活动的人数不一样,而人数都有一个数字 “6”,参加三项体育比赛的各有几人?
2、龙龙和亮亮去公园玩,想买门票,但钱都不够,龙龙缺4元8角,亮亮缺1分,两人钱加起 来仍不够买一张门票,公园门票多少钱?
3、三个人同时吃3个西红柿,用3分钟吃完,六个人同时吃6个西红柿要几分钟?
4、有10张卡片,正面朝上,每次翻动6张卡片,经过若干次翻动,卡片能否都反面朝上?
5、小张买了24瓶汽水,每4个空瓶可以换1瓶汽水,小张共能喝到几瓶汽水? 6、4×4×……×4(25个4),积的个位数是几? 24个2相乘,积末尾数字是几?
7、有一列数***3579……前48个数之和是多少? 8、2004年国庆节是星期五,问2004年12月1日星期几?
9、桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币。问:最后一个是多少钱的?第十四个是多少钱的?
10、小刚摆放围棋子,每两个黑棋子之间摆5个白棋子,共84个棋子,如果第一个摆的是黑 棋子,一共摆了多少个白棋子?
/ 8
11、三、四年级共植树108棵,四年级比三年级多植树22棵,求三、四年级各植树多少棵?
12、丽丽在一次测验中,数学和语文共得192分,数学比语文多6分,丽丽的数学、语文各 得多少分?
13、甲、乙两生产组共有车床136台,如果甲组给乙组12台,则两组的台数相等,问两组车 床各有多少台?
14、甲、乙两箱共有水果50千克,若从甲箱中取出6千克放到乙箱中,这时甲箱还比乙箱多 2千克,求两箱原来各有多少千克?
15、两个工程队共有工人230人。后来由于工作需要,从甲队调走30人,从乙队调走10人,这时两个工程队剩下的人数同样多。原来两队各有多少人?
16、两根铁丝共长51米。若从第一根剪去3米,从第二根剪去4米,这时第一根比第二根多2 米。原来两根铁丝各有多少米?
17、把一块长42米的木料锯成3段,要求第一段比第二段长12米,第二段比第三段长6米,求三段各长多少米?
/ 8
18、甲乙丙三人共有储蓄存款2950元。其中甲比乙多150元,丙比乙多250元。甲、乙、丙 三人各存款多少元?
19、四个人年龄之和是77岁,年龄最小的10岁,年龄最大与最小的人年龄之和比另外两个 人的年龄之和大7岁,问年龄最大的人多少岁?
20、爸爸在过50岁生日时,弟弟说:“等我长到哥哥现在的年龄时,我和哥哥的年龄之和等 于那时爸爸的年龄”,那么哥哥今年多少岁?
/ 8
21、甲、乙、丙平均年龄42岁,如果甲的年龄增加7岁,乙的年龄增加一倍,丙的年龄缩小一半,则三人岁数相等,问甲多少岁?
22、在一个家庭里,现在所有成员的年龄加在一起是73岁.家庭成员中有父亲、母亲、一个女儿和一个儿子.父亲比母亲大3岁,女儿比儿子大2岁.四年前家庭里所有的人的年龄总和是58岁.现在家里的每个成员各是多少岁? 23、10年前吴昊的年龄是他儿子年龄的7倍。15年后,吴昊的年龄是他儿子的2倍.现在父子俩人的年龄各是多少岁?
24、一条毛毛虫由幼虫长到成虫,每天长一倍,16 天能长到 16 厘米。问长到 4 厘米时要用多少天?
25、一个数减 16 加上 240,再除以 7 得 40,求这个数是多少?
26、小丽在做一道加法计算题时,由于粗心,把个位上的 4 看作 7,十位上的 8 看作 2,结果和是 306。正确的答案应该是多少?
27、一根铁丝剪去一半,再减去余下的一半,还剩 14 分米,这根铁丝原来长多少分米?
28、小红、小丽、小华三人分苹果,小红得的比总数的一半多 1 个,小丽得的比剩下的一半多 1 个,小华得 10个。原来有多少个苹果?
29、三只笼子里共养 24 只兔子,如果从第一只笼子里取出 4 只放到第二只笼里,再从第二只笼里取出 3 只放到第三只笼里,那么三只笼里的兔子就一样多。原来三只笼里各养了多少只兔子?
30、有种水草每天能长一倍,8 天能长满一池塘。长满半池塘要几天?
/ 8
31、一个数的 5 倍加上 6 减去 10 再除以 9,得 4。这个数是多少?
32、小马虎在做一道减法题时,把减数十位上的 8 错看成 5,个位上的 7 错看成 1,结果求出的错误的差是 236。正确的差是多少?
33、某人乘火车从甲地到乙地,行了全程的一半时开始睡觉,当他醒来时发现火车又行了睡时剩下路程的一半,这时离乙地还有 100 千米。甲乙两地相距多少千米?
34、妈妈从副食店买回一些鸡蛋。第一天吃了全部的一半又一个,第二天吃了余下的一半又 2 个,第三天吃了 3 个,恰好吃完。妈妈买回多少个鸡蛋?
35、有甲、乙、丙、丁四篮苹果,如果从甲篮拿出 10 个给乙篮,从乙篮拿出 12 个给丙篮,从丙篮拿出 20 个给丁篮,从丁篮拿出 14 个甲篮后,四篮苹果的个数相等,已知四篮共有苹果 120 个。原来四篮各有多少个苹果?
36、聪聪住的这幢楼共有 6 层,每层楼梯 20 级,她家住在五楼,聪聪每次回家要走多少级台阶才能到自己住的那一层?
37、小红家住六楼,她从底楼走到二楼用 1 分钟,那么她从底楼走到六楼要用多少分钟?
38、把一根粗细均匀的木料锯成 5 段,每锯一次要用 3 分钟,一共要用多少分钟?
39、时钟 3 点钟敲 3 下,6 秒钟敲完;6 点钟敲 6 下,几秒钟敲完?
40、六一儿童节同学们参加队列表演,有 32 人参加,每 4 人一行,前后两行间隔 2 米,这个队列全长多少米?
41、某工厂厂庆,在一条长 40 米的大路两侧插彩旗,从起点到终点共插了 22 面,相邻两面彩旗之间的距离相等,相邻两面彩旗之间相距多少米?
42、小玲家养了 46 只鸭子,24 只鸡,养的鸡和鹅的总只数比养的鸭多 5 只。小玲家养了多少只
/ 8
鹅?
43、一个筐里装着 52 个苹果,另一个筐里装着一些梨。如果从梨筐里取走 18 个梨,那么梨就比苹果少 12 个。原来梨筐里有多少个梨?
44、某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。已知水果糖比小白兔软糖多 15 块,巧克力糖比水果糖多 28 块。又知巧克力糖的块数恰好是小白兔软糖块数的 2 倍。三年级一班共买了多少块糖果?
45、一口枯井深 230 厘米,一只蜗牛要从井底爬到井口处。它每天白天向上爬 110 厘米,而夜晚却要向下滑 70 厘米。这只蜗牛哪一个白天才能爬出井口?
46、食堂运来一批大米,吃掉 24 袋,剩下的袋数是吃掉的 2 倍。食堂运来大米多少袋?
47、甲、乙、丙三人原各有桃子若干个。甲给乙 2 个,乙给丙 3 个,丙又给甲 5 个后,三人都有桃子 9 个。甲、乙、丙三人原来各有桃子多少个?
48、三座桥,第一座长 287 米,第二座比第一座长 85 米,第三座比第一座与第二座的总长短 142 米。第三座桥长多少米?
49、(1)幼儿园小班有巧克力糖 40 块,还有一些奶糖。分给小朋友奶糖 24 块后,奶糖就比巧克力糖少了 10 块。原有奶糖多少块?
(2)幼儿园中班有巧克力糖 48 块,还有一些奶糖。分给小朋友奶糖 26 块后,奶糖就只比巧克力糖多 18 块。原有奶糖多少块?
50、一桶柴油连桶称重 120 千克,用去一半柴油后,连桶称还重 65 千克。这桶里有多少千克柴油?空桶重多少?
51、一只蜗牛从一个枯水井底面向井口处爬,白天向上爬 110 厘米,而夜晚向下滑 40 厘米,第 5 天白天结束时,蜗牛到达井口处。这个枯水井有多深?若第 5 天白天爬到井口处,这口井至少有多少厘米深?(厘米以下的长度不计)
/ 8
52、在一条直线上,A 点在 B 点的左边 20 毫米处,C 点在 D 点左边 50 毫米处,D 点在 B 点右边 40 毫米处。写出这四点从左到右的次序。
53、(1)五个不同的数的和为 172,这些数中最小的数为 32,最大的数可以是多少?
(2)六个不同的数的和为 356,这些数中,最大的是 68,最小的数可以是多少?
54、有甲乙两人,甲收藏图书有 600 本,乙收藏的图书本数是甲的 3 倍。甲乙两人收藏的图书相差多少本?
55、学校饲养小组养了 18 只黑兔,养的灰兔的只数是黑兔的 3 倍,养的白兔的只数比灰兔多 12 只,学校饲养小组养了多少只白兔?
56、商店里有红气球 54 个,黄气球 24 个,花气球和黄气球的总数比红气球少 8 个。有花气球多少个?
57、文峰超市运来雪碧 80 箱,运来可乐的箱数是雪碧的 3 倍,运来芬达 180 箱。三种饮料共运来多少箱?
58、强强去外婆家,如果他来回都步行要用 90 分钟。如果他去时步行,回来时乘车一共 用了 58 分。他回来时乘车要用多少分钟?
59、在学雷锋活动,三年级同学做好事 73 件,五年级同学做好事的件数是三年级的 3 倍。两个年级共做好事多少件?
60、爸爸今年 30 岁,是小明年龄的 5 倍,爸爸今年比小明大多少岁?
61、花圃里有 48 盆鸡冠花,是郁金香的 4 倍,郁金香的盆数比月季花少 18 盆,花圃里有多少盆月季花?
62、书架上摆数三层图书,第一层有 32 本,第二层有 28 本,第二层和第三层的总本数是 第一层的 2 倍,第三层有多少本图书?
/ 8
63、学校体育器材室足球 84 只,是排球只数的 2 倍,篮球有 56 只,三种球一共有多少只?
64、李老师上班时坐车,下班时步行,在路上共用 50 分钟,如果往返都步行要用 80 分钟。如果往返都坐车,只需多少分钟?
65、爸爸共买回 56 个鸡蛋,过了几天后,吃掉的鸡蛋是还剩的 6 倍,还剩多少个鸡蛋?
/ 8
第五篇:华数思维训练导引 盈亏与比较
华数思维训练导引——盈亏与比较
1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。问参加栽树的有多少名同学?原有树苗多少棵?
分析:当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。通过这一句话,我们可以知道参加种树的同学一共有12+8=20人,加上再拿来的8棵,一共有20*10=200棵。所以,原有树苗=200-8=192棵。
解答:有同学12+8=20名,原有树苗20*10-8=192棵。
2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员?共挖了多少树坑?
分析:这是一个典型的盈亏问题,关键在于要将第二句话“如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑”统一一下。即:应该统一成每人挖6个树坑,形成统一的标准。那么它就相当于每人挖6个树坑,就要差(6-4)*2=4个树坑。这样,盈亏总数就是3+4=7,所以,有少先队员7/(6-5)=7名,共挖了5*7+3=38个坑。
解答:盈亏总数等于3+(6-4)*2=7,少先队员有7/(6-5)=7名,共挖了5*7+3=38个树坑。
3、学校安排学生到会议室听报告。如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。问听报告的学生有多少人?
分析:典型盈亏问题。盈亏总数48+5*2=58,所以,长椅的数量就等于58/(5-3)=29条。那么,听报告的人数等于29*3+48=135人。
解答:长椅有(48+5*2)/(5-3)=29条,听报告的学生有29*3+48=135人。
4、钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。问小明带了多少钱? 分析:在盈亏问题中,我们得到的计算公式是指同一对象的。而现在分别是圆珠笔和钢笔两种东西。因此,我们要利用盈亏问题的公式计算就必须将它转化成为同一对象--钢笔或者圆珠笔。
小明带的钱买5支钢笔差1元5角,我们可以将它转化成买5支圆珠笔,因为我们知道钢笔与圆珠笔每支相差1元2角,把买5支钢笔改买5支圆珠笔,就要省下6元钱,也就是比原来差1元5角,反而可以多出6元-1元5角=4元5角。这样我们就将原来的问题转化成了:小明带的钱买5支圆珠笔多4元5角,买8支圆珠笔多6角。问小明带了多少钱?那么,盈亏总数=4元5角-6角=3元9角,每支圆珠笔价钱=3元9角/(8-5)=1元3角。所以,小明共有8*1元3角+6角=11元。
解答:买5支钢笔差1元5角,相当于买5支圆珠笔多4元5角,每支圆珠笔的价钱=(4元5角-6角)/8-5)=1元3角。小明带了8*1元3角+6角=11元。
5、幼儿园将一筐苹果分给小朋友。如果分给大班的小朋友每人5个则余10个;如果分给小班的小朋友每人8个则缺2个。已知大班比小班多3个小朋友,问这筐苹果共有多少个?
分析:与上一题类似,需要转化成两次对同一对象。
解答:分给大班的小朋友每人5个则余10个,大班比小班多3个小朋友,相当于分给小班的小朋友每人5个则余10+3*5=25个,盈亏总数=25+2=27,小班人数=27/(8-5)=9人,苹果有9*5+25=70个。
6、某校到了一批新生,如果每个寝室安排8个人,要用33个寝室;如果每个寝室少安排2个人,寝室就要增加10个,问这批学生可能有多少人?
分析:如果每个寝室安排8个人,要用33个寝室,那么人数肯定多于32*8=256人,但不超过33*8=264人;如果每个寝室少安排2个人,寝室就要增加10个,即如果每个寝室安排6个人,要用43个寝室,那么人数肯定多于42*6=252人,但不超过43*6=258人;两次比较,人数应该多于256人,不超过258人。所以,这批学生可能有257或258人。
解答:8*32=256,6*42=252,256>252,人数超过256人;8*33=264,6*43=258,258<264,人数不超过258人。这批学生可能有257或258人。
7、幼儿园老师给小朋友分糖果。若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块。那么糖果最多有多少块? 分析:最后一人分不到9块,那么最多可以分到8块,即若每人分9块,还差1块。根据盈亏计算公式,人数有(1+10)/(9-8)=11人,糖果最多有9*11-1=98块;最后一人分不到9块,但至少可分到一块,即最少是最后一人差8块,根据盈亏计算公式,人数有(8+10)/(9-8)=18人,糖果最多有9*18-8=154块;所以,这批糖果最多有154块。
解答:9-1=8,人数最多有(10+8)/(9-8)=18人,糖果最多18*9-8=154快。
8、有48本书分给两组小朋友,已知第二组比第一组多5人。如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够。如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。问第二组有多少人?
分析:如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够。说明第一组人数少于48/4=12人,多于48/5=9......3,即9人;如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。说明第二组人数少于48/3=16人,多于48/4=12人;因为已知第二组比第一组多5人,所以,第一组只能是10人,第二组15人。
解答:48/4=12,48/5=9......5,48/3=16,第一组少于12人,多于9人;第二组少于16人,多于12人。因为已知第二组比第一组多5人,所以,第二组有15人。
9、在若干盒卡片,每盒中卡片数一样多。把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。现在把所有卡片都分完,每人都分到60张,而且还多出4张。问共有小朋友多少人?
分析:60/7=8......4,60/8=7......4,说明卡片的盒数是8盒,“若都分8张则还缺少5张”,即如果我们在每盒中加5张(8盒共加40张),每人就可以得到8*8=64张,现在实际每人得到60张,即每人需要退出4张,其中要有4张是每人60张后多下来的,还有40张是我们一开始借来的要还出去,即要退出44张,4/4==11,说明有11人。
解答:60/7=8......4,60/8=7......4,卡片有8盒,小朋友人数有(4+5*8)/4=11人。
10、用绳测井深,把绳三折,井外余2米,把绳四折,还差1米不到井口,那么井深多少米?绳长多少米? 分析:典型盈亏问题。盈亏总数=3*2+4*1=10米。
解答:井深=(3*2+4*1)/(4-3)=10米,绳长=(10+2)*3=36米。
11、有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。原来每根绳子长多少米?
分析:第一根剪成的每段比第二根剪成的每段长2米。那么,如果同样是5段的话,第二种就要比第一种少5*2=10米,现在第二种7段和第一种5段一样长,说明第二种的两段长是10米,也就是说每一段为10/2=5米。所以,绳子长为5*7=35米。
解答:原来每根绳子长为7*(2*5/2)=35米。
12、有一个班的同学去划船。他们算了一下,如果增加1条船,正好每条船坐6人;如果减少1条船,正好每条船坐9个人。问:这个班共有多少名同学?
分析:增加一条和减少一条,前后相差2条,也就是说,每条船坐6人正好,每条船坐9人则空出两条船。这样就是一个盈亏问题的标准形式了。
解答:增加一条船后的船数=9*2/(9-6)=6条,这个班共有6*6=36名同学。
13、张宇上午7时20分从家里出发到校上课。如果每分钟走50步,离上课还有7分钟;如果每分钟走35步,就要迟到5分钟。求学校的上课时间。
分析:这种盈亏问题的另一种比较常见的类型。主要是在计算盈亏总数时必须注意量的单位的统一。这里,盈亏总数不是7+5=12分,而是7*50+5*35=525步。所以,准点到校用时为525/(50-35)=35分钟。所以,上课时间是7点55分。
解答:准点到校的用时=(7*50+5*35)/(50-35)=35分钟,学校上课时间为7点55分。
14、“六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等。花球原价1元钱2个,白球原价1元钱3个。因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球? 分析:花球原价1元钱2个,白球原价1元钱3个。即花球原价10元钱20个,白球原价10元钱30个。那么,同样买花球和白球各30个,花球要比白球多花10/2=5元,共需要30/2+30/3=25元。现在两种球的售价都是2元钱5个,花球和白球各买30个需要(30/5)*2*2=24元,说明花球和白球各买30个能省下25-24=1元。现在共省了4元,说明花球和白球各有30*4=120个,共买了120*2=240个。
解答:花球和白球各买30个时,可比原来省下=(30/2+30/3)-(30/5)*2*2=1元,省下4元,花球和白球各买30*4=120个。所以,小明共买了240个球。
15、苹果和梨各有若干只。如果5只苹果和3只梨装一袋,苹果还多4只,梨恰好装完;如果7只苹果和3只梨装一袋,苹果恰好装完,梨还多12只。那么苹果和梨共有多少只?
分析:7只苹果和3只梨装一袋比5只苹果和3只梨装一袋多了2只苹果,梨从刚好到多12只,相当于把原来装好的袋拿出了12/3=4袋,抽出其中的苹果(4*5=20只)和原来剩下的4只(共20+4=24只)苹果,添加到其余原来装好的袋子中去。每袋添加2只,添加了24/2=12袋刚好装完。所以,原来装了12+4=16袋,苹果有16*5+4=84只,梨有16*3=48只,合起来有84+48=132只。
解答:(12/3)*5+4=24,5只苹果和3只梨装一袋,共装了24/2+4=16袋,所以,苹果和梨共有=16*(3+5)=4=132只。