第一篇:从一道高考题谈多元函数最值得求法
龙源期刊网 http://.cn
从一道高考题谈多元函数最值得求法 作者:李忠贵 李歆
来源:《新高考·高一数学》2012年第05期
第二篇:一类二元函数最值的求法
龙源期刊网 http://.cn
一类二元函数最值的求法
作者:高海燕
来源:《数理化学习·高三版》2013年第05期
点评:解法1和解法2中都用了配方法,但由于配方的目的不同.
第三篇:从一道几何证明题谈面积法
龙源期刊网 http://.cn
从一道几何证明题谈面积法
作者:李小龙
来源:《理科考试研究·初中》2014年第01期
如图,已知在△ABC中,AB=AC,P是BC上任一点,PD⊥AB于D,PE⊥AC于E,CF⊥AB于F求证:CF=PD+PE
对于该题,一般同学会想到截长法与补短法
如图2,过点P作P⊥CF于,则四边形PFD是矩形,则PD=F易证△PC≌△CPE,则C=PE于是CF=F+C=PD+PE这种方法叫做截长法
如图3,过点C作CN⊥DP交DP的延长线于点N,则四边形NCFD是矩形,则CF=DN易证△CPN≌△CPE,则PN=PE于是CF=DN=PD+PN=PD+PE这种方法叫做补短法
无论是截长法还是补短法,都需要证明三角形全等,比较麻烦如果能够注意到已知条件中的垂直条件,联想到三角形的面积公式,于是便有如下简捷证法:
如图4,连结AP,则S△ABC=S△ABP+S△ACP
由PD⊥AB,PE⊥AC,CF⊥AB,得
这样我们仅根据图形面积间的关系,利用三角形的面积公式便轻而易举地完成证明这种证明几何命题的方法叫做“面积法”巧用“面积法”证明几何命题,往往能收到出奇制胜、简捷明快之效
说明平行线具有“传递面积”的功能也就是说,如果两条直线互相平行,那么在其中一条直线上取两定点,以这两个定点和另一条直线上的任意一点构成的三角形的面积都相等
第四篇:人教版高一数学《函数最值求法及运用》教案
人教版高一数学《函数最值求法及运用》
教案
函数最值求法及运用
一经验系统梳理:)问题思考的角度:1几何角度;2代数角度
2)问题解决的优化策略:
Ⅰ、优化策略代数角度:
消元
2换元
3代换
4放缩
①经验放缩,②公式放缩③条放缩]
Ⅱ、几何角度:
经验特征策略分析问题的几何背景线性规划、斜率、距离等
3)核心思想方法:
划归转化思想;等价转化思想
若
,则
二、体验训练:
线性规划问题
已知双曲线方程为求的最小值
2斜率问题
已知函数的定义域为,且
为的导函数,函数的图像如图所示若两正数满足,则的取值范围是
.
3距离问题
3、由直线上的一点向圆引切线,则切线长的最小值为
.
练习1已知点是直线上动点,、是圆 的两条切线,、是切点,若四边形的最小面积是,则
.
练习2已知实数满足不等式组,则的最小值为
;
4消元法
已知函数,若且则的取值范围为
练习:设函数,若且则的取值范围为
换元法
求下列函数的最大值或最小值:
(1)
;
(2)
;
(3)若函数的最大值是正整数,则=_______
解:(1)
,由得,∴当时,函数取最小值,当时函数取最大值.
(2)令,则,∴,当,即时取等号,∴函数取最大值,无最小值.
2已知,且夹角为如图点在以为圆心的圆弧上动若则求的最大值
6代换法
设为正实数,满足,则的最小值是
【解析】本小题考查二元基本不等式的运用.由得,代入得,当且仅当=3
时取“=”.
设正实数满足则的最大值为
▲1
.
7公式放缩法
函数,的最小值为:_________
错解:∵
∴,又为定值故利用基本不等式得
即的最小值为4
点评:利用基本不等式必须满足三个条:即“一正、二定、三等”,而本题只满足前两个条,不满足第三个条,即不成立。
设为实数,若则的最大值是。
8放缩法、换元法
已知二次函数的值域是那么的最小值是
.
9综合探讨:
满足条的三角形的面积的最大值
【解析】本小题考查三角形面积公式、余弦定理以及函数思想.设B=,则A=
,根据面积公式得=,根据余弦定理得
,代入上式得
=
由三角形三边关系有解得,故当时取得最大值
解析2:若,则的最大值。
【解析】本小题考查三角形面积公式及函数思想。
因为AB=2(定长),可以以AB所在的直线为轴,其中垂线为轴建立直角坐标系,则,设,由可得,化简得,即在以(3,0)为圆心,为半径的圆上运动。又。
答案
7、设,则函数
时,;
(3)=
设
则
由于,所以
在内单调递减,于是当时时
的最大值米
答:当或时所铺设的管道最短,为米
第五篇:函数的值域与最值的求法一教案
函数的值域与最值的求法一(2课时)
2011年2月14号 星期一
重难点:函数值域与最值的求法
口诀:分式分,单调单,抛物找轴最关键;绝对脱,根式换,化为二次方程判;
x213x1、观察法: 例题: ①y=2;②y=x
x23
12、配方法:y=a(f(x))2+bf(x)+c(a≠0)例题:①求y=-x2+2x+5,x ∈[2,3]的值域;②y=4-32xx2;③y= 3x2-x+2;④y=x26x5
3、代数换元法:y=ax+b±cxd
例题:①y=2x+12x;②y=x+41x;③y=x+2x1;④y=2x-5+154x;⑤y=2x-4x13 ⑥y=2x-1x⑦y=x-12x
4、中间变量法(定义域为R)
x21例题:y=2
x
25、三角函数的有界性法(几何意义法:斜率公式)
3x21x例题:①y=②y=
54x2x5, ]或设x=cos22θ, θ∈[0,Л] 题中出现1x2可设x=tanθ, θ∈(-,)或设x=cosθ,22θ∈(0,Л)axba7、分离常量法:y=(结果规律:y≠)
cxdc6、三角函数换元法:题中出现1x2可设x=sinθ, θ∈[-axb3x21x10x10x8、反函数法:y=例题:①y=②y= ③y=x
cxd54x2x51010xa1x2b1xc19、判别式法:y=(定义域为R)即分子或分母中含有二次三项式a2x2b2xc2的分式函数 3xx2x32x2x2x22x2例题:①y=2;②y=2;③y=2④y=2⑤x4xx1xx1xx12xx2x2x2xy=2⑥y=2 ⑦y=2 xx1x4x3xx1kx2
310、均值不等式法y=f(x)+(f(x)>0,k>0)y=
2f(x)x
211、单调性法(对勾函数y=ax+
12、数形结合法(分段函数)
b(a,b>0))x例题:设函数g(x)x22(xR),(x)x4,xg(x),f(x){gg(x)x,xg(x).则f(x)的值域是()
999(A),0(1,)(B)[0,)(C)[,)(D),0(2,)
444
13、导数法
课堂练习题:
1、求下列函数的值域:
x2x(1)y=2 解法一:配方法;解法二:判别式法
xx1(2)y=x-12x 解法一:换元法;解法二:单调性法(3)y=-xx2x22换元法
10x10x(4)y=x x1010 反函数法
(5)f(x)=(x-1)3x2在[-1,1]上的最值。
2五、课下练习作业:练习册P121