第一篇:10天津大港污水处理厂供电系统设计
天津大港污水处理厂供电系统设计
摘要
本设计是天津大港污水处理厂供电系统,由于此污水处理厂的重要性和当地的供电条件,选择一个10kV电压等级的双回路提供电源。该污水处理厂的大多数设备为二级负荷,所以选择两台变压器给系统供电。通过计算和校验选用油浸式变压器。设计过程包括:方案论证、负荷计算、无功补偿、短路计算、设备选择及变配电所照明、防雷、接地的设计。厂区内设一个总降压变电所,因供电电源要求功率因数大于0.9,因此通过在低压侧并联电容进行补偿使之达到要求。通过负荷计算和对各短路点的电流计算选择设备和导线的截面积等,且所有设备均是经过校验和比较选择出来的。设计中的二次回路主要起到保护作用,其中有电源进线保护、变压器保护、电压互感器保护和联络柜的保护等。总之此设计基本上满足用户的要求。
关键词:电源;变压器;互感器;功率因数;
第二篇:天津污水处理厂
中国污水处理工程网
www.xiexiebang.com
天津污水处理厂
天津进一步加大污染减排力度,继续深入实施结构减排、管理减排、工程减排。开展重金属企业的专项检查与整治。加强全国重点行业企业环境风险与化学品检查、铅酸蓄电池生产企业后督察。继续推进企业污染减排治理设施建设,全面开展重点行业污染整治,加快天津污水处理厂的建设进度。
污水处理厂是从污染源排出的污(废)水,因含污染物总量或浓度较高,达不到排放标准要求或不适应环境容量要求,从而降低水环境质量和功能目标时,必需经过人工强化处理的场所。一般分为城市集中污水处理厂和各污染源分散污水处理厂,处理后排入水体或城市管道。有时为了回收循环利用废水资源,需要提高处理后出水水质时则需建设污水回用或循环利用污水处理厂。
处理厂的处理工艺流程是有各种常用或特殊的水处理方法优化组合而成的,包括各种物理法、化学法和生物法,要求技术先进,经济合理,费用最省。设计时必须贯彻当前国家的各项建设方针和政策。因此,从处理深度上,污水处理厂可能是一级、二级、三级或深度处理工艺。污水处理厂设计包括各种不同处理的构筑物,附属建筑物,管道的平面和高程设计并进行道路、绿化、管道综合、厂区给排水、污泥处置及处理系统管理自动化等设计,以保证污水处理厂达到处理效果稳定,满足设计要求,运行管理方便,技术先进,投资运行费用省等各种要求。
一、污水处理厂工程工艺流程
污水处理厂的处理工艺流程以及处理构筑物和设备型式的选定是污水处理厂设计的重要环节。确定污水处理工艺流程的主要依据是污水所需要达到的处理程度,而处理程度则取决于处理后出水的去向。处理后的出水如果排入水体,则污水的处理程度既要能够充分利用水体自净能力,又要防止水体遭到污染。不考虑水体自净能力,而任意采用高级处理方法是不经济的,但也不宜将水体自净能力耗尽,要留有余地。处理后污水如用于灌溉农田,污水水质应达到所要求的标准。处理后的出水如果回用于工业企业或城市建设,要考虑两种情况:直接回用;作某些补充处理后再行回用。污水处理厂一般是以去除 BOD(生化需氧量)物质作为主要目标。在大型污水处理厂中多采用以沉淀为中心的污水一级处理和以生物处理为中心的污水二级处理。有时为了去除氮、磷等物质,还在生物处理后,进行污水三级处理。
污水处理的产物──初级沉淀池产生的污泥,由污泥处理系统处理。污泥处理系统是污水处理厂的组成部分,污泥采用需氧消化和厌氧消化两种方法处理。需氧消化多用于服务人口在 5万以下的小型污水处理厂;而厌氧消化则普遍用于大中型污水处理厂。污泥处理的程序是:污泥浓缩、污泥厌氧消化、污泥干化、焚烧。工业废水处理工艺流程的确定较为复杂,应综合考虑各方面的因素,如去除的主要对象,对处理出水水质的要求,废水的水量、水质 中国污水处理工程网
www.xiexiebang.com 的变化等。对各种污染物可以采用的处理单元如表:处理工艺流程的排列顺序,是先简单后复杂;从去除对象考虑,则先去除悬浮的污染物,然后去除胶体物质和溶解性物质。
二、污水处理厂工程厂址的选定
污水处理厂址的选定是城市和工业区的总体规划的组成部分。厂址的选择同城市和工业区排水管道的布置、处理后污水出路密切相关,应进行深入的调查研究和技术经济比较,并应考虑以下原则:
1、厂址必须位于给水水源的下游;如果城镇、工业区和生活区位于河流附近,厂址必须在它们的下游,而且要在夏季主风向的下风向,并应同城镇、工业区、生活区以及农村居民点保持一定的距离,但又不宜太远,以免增加管道的长度。
2、厂址应尽可能与处理后出水的主要去向(如灌溉农田)或受纳水体靠近。
3、充分利用地形,选择有适当坡度的地区,以满足污水处理构筑物和设备高程布置的需要,节省能源和动力。
4、尽可能少占和不占农田,并考虑有发展的可能性。
三、污水处理厂设计 提升泵房的设计与运行
提升泵房的电耗一般占污水处理厂总电耗的10%~20%,是污水厂节能的重点。提升泵房的节能首先要从设计入手,尤其是水泵的选型要科学;在实际运行中也要使水泵常在高效区运行,科学合理地创造最佳运行工况。
1.1 污水提升泵的选型应以平均时低水位确定水泵的扬程
在常规设计中,一般取极限最低水位和最高水位作为确定水泵扬程的选型依据。这就造成除在最低水位以外的绝大多数工况下,实际扬程低于设计扬程,导致水泵的运行工况在平时大部分时间里都偏离水泵运行的高效区以外,从而水泵运行效率较低,造成能量的浪费。更有甚者,如果按最低水位和最高水位确定水泵扬程所选水泵的所配电机的运行功率随水泵实际流量的增大而升高的曲线时,由于在平时的运行中水泵的实际扬程比设计扬程小,固其实际流量增大,由此引起电机的实际运行功率上升而超负荷运行,从而导致电机的经常跳闸停机,这种频繁的启停对于电机和水泵造成极大的损坏。如图1所示,实线表示选定的型号及参数,箭头表示实际运行情况。
中国污水处理工程网
www.xiexiebang.com
所以必须采取科学的水泵选型方法,在设计和运行中总结出的经验如下:
(1)以平均时低水位作为确定水泵扬程的选择依据,再以极限最低水位对其校核,如此则能满足实际需求,且能保证水泵在其高效区范围内运行,节省能耗(一般污水处理厂的提升泵房后为沉砂池,其水位相对恒定,所以提升泵的扬程取决于提升泵房集水井的水位);
(2)选择功率曲线比较平缓的全扬程水泵,这样可以保证在实际扬程与设计扬程不符时电机仍能正常运行,避免频繁启停对电机和水泵的损害,并节省能耗(电机和水泵的启动电流远大于正常运行时的电流)。如图2所示,实线表示选定的型号及参数,箭头表示实际运行情况。
1.2 提升水泵应在高水位时启动以保证其在正常水位内高效运行
由于污水厂的进水流量变化较大,使水泵井的水位变化较大。如果在水泵井的水位达到水泵的设计运行水位时即启动,则由于污水从管道中来水的速度远小于水泵的抽水速度,这样水泵井的水位就会下降很快,当低于设计水位时,水泵就要停止运行以等待来水,到设计水位时再行启动。由此造成水泵和电机的频繁启停,对其造成严重损害,并增加了能耗。
通过在实际运行中总结的经验,提倡水泵要在水泵井处于高水位(可以达到最高水位)时方才启动,这样即使来水速度远小于抽水速度,由于在最高水位启动相当于储备了备用水量,这样就可以保证水泵在其正常水位内高效运行,节省能耗,并避免频繁的启停对水泵和电机的损害。同时由于在高水位下管道中为满流,提高了污水在管道中的流速,避免了管道淤积,减少了大量管道疏通的工作量。
中国污水处理工程网
www.xiexiebang.com 2 沉砂池的设计与运行
沉砂池的功能是去除比重较大(其相对密度约为2.65)、粒径大于0.2mm的无机颗粒如泥砂、煤渣等。沉砂池一般设于泵站、倒虹管前,以便减轻无机颗粒对水泵、管道的磨损;也可以设于初次沉淀池前,以减轻沉淀池负荷及改善污泥处理构筑物的处理条件。
沉砂池的效率对于后续处理效果有很大的影响,然而大多污水厂在建成后没有严格校核其沉砂效率,以至于运行后发现沉砂池的沉砂效果不佳,对后续的水泵及二级生化处理造成不良影响。如采用CAST工艺的污水处理厂,其旋流沉砂池的后续构筑物为曝气池,如果沉砂池沉砂效果不理想,则砂粒会在曝气池内逐渐累积,对活性污泥或生物膜的正常生长、繁殖及其对污染物的降解产生一定的破坏,影响曝气池的处理效果;另外,会造成沉淀污泥中无机颗粒比重超标,影响污泥的进一步处理效果,如脱水对污泥脱水机的损害或影响污泥堆肥的效果和污泥的肥力。
所以,污水处理厂建成后,在工艺调试的单机调试和设备联动调试阶段有必要对沉砂池的沉砂效果作严格的校核。以下根据实际经验对沉砂池沉砂效果的检测校核方法作一说明。
以采用CAST工艺的某污水处理厂的旋流沉砂池为例。旋流沉砂池是替代传统沉砂池及其刮砂设备的新型装置。旋流沉砂器通过水力旋流作用,并依靠机械搅拌辅助加强旋流而产生离心力,达到离心分离污水中固体颗粒的作用。其检测校核方法如下:
启动CAST池回流泵(利用清水试验后的曝气池中的清水回流入沉砂池)和搅拌机,使沉砂池处于工作状态。从沉砂池进水口处投入砂砾(细格栅后),并采取水样(沉砂池进口闸板后),测定进水中0.2mm的砂砾重量;在沉砂池出口处(巴氏槽处)采取水样,测定出水中0.2mm砂砾重量,以此计算沉砂池对粒径0.2mm以上的砂砾去除率。
计算方法为:P=(W1-W2)/W1×100%
其中:P——沉砂池对0.2mm以上的砂砾去除率;
W1——进水水样中0.2mm的砂砾重量;
W2——出水水样中0.2mm的砂砾重量。
当砂粒直径Φ≥0.30mm时,除砂效率P≥95%;
中国污水处理工程网
www.xiexiebang.com 当砂粒直径Φ≥0.20mm时,除砂效率P≥85%;
当砂粒直径Φ≥0.15mm时,除砂效率P≥60%。
一般情况下,沉砂池对于粒径0.2mm以上砂粒的去除率需要达到85%方能满足要求。在生物脱氮除磷工艺中优先选择A/O(+化学除磷)工艺
当前能够进行脱氮除磷的工艺很多,其中使用最为广泛的是A/O工艺(早期)、A2/O工艺(近期)。由于当前对氮和磷的指标必须兼顾,A/O工艺虽然在脱氮或除磷中有很好的效果,但是不能同时脱氮除磷,所以近年来能够同时进行生物脱氮除磷的A2/O工艺更是为大多设计者所采用,而A/O工艺应用越来越少。
按传统生物脱氮除磷机理,要达到同时脱氮除磷的效果,则必须创造相对独立的厌氧、缺氧和好氧环境,并让各反应必须具备的因素(一定量的细菌,反应物如氨氮、硝酸盐、作为碳源或能源的有机物,O2等)在该环境下实现。常规A2/O工艺(厌氧-缺氧-好氧)及其各种改良型工艺(增设预缺氧池的两点进水A2/O工艺和两点进泥A2/O工艺,缺氧池前置的倒置A2/O工艺,以UCT工艺为代表的其它工艺)的流程是设立三个独立的反应区以分别实现厌氧、缺氧和好氧环境,通过污泥回流和混合液的回流使各反应的细菌和对应的反应物在各环境下完成各自功能。
以下就A2/O工艺的缺陷及其各种改良型工艺的不足和A/O(+化学除磷)工艺的相对优势做一番有益的探讨:
(1)常规A2/O工艺的缺陷
1)污泥龄方面不可调和的矛盾。
硝化菌的世代周期较长,则脱氮必须具有较长的污泥龄;除磷是利用聚磷菌将磷贮存在体内然后通过排出剩余污泥的方式排出系统的,所以除磷要求较短的污泥龄。这是一对不可调和的矛盾,工艺中所能采取的一切措施皆只能在其间找到一个合适的平衡点,不能取得两者俱佳的效果。另外,硝化需要长泥龄以保证硝化菌的数量,而反硝化则需较短泥龄,以促进反硝化菌的更新并保持高活性。所以,在硝化和反硝化容量的配置间存在着泥龄的矛盾。
2)混合液回流方面的矛盾。
好氧池位于流程的末端,氨氮基本上完全氧化,出水中氮的主要形式是硝酸盐氮。从理论上说,好氧池混合液回流比越大,则出水硝酸盐氮越少,去除总氮的效果越好。但是过大的回流比会使硝酸盐混合液中携带的溶解氧对缺氧 中国污水处理工程网
www.xiexiebang.com 环境的破坏愈趋明显,而在有分子氧条件下,脱氮菌优先利用游离氧而不是硝酸盐氮作为电子受体,从而反硝化受到阻碍。在运行中有时要保持好氧池末端低溶解氧浓度以保证脱氮除磷的效果,但是这引起另一个问题:即较低的溶解氧浓度使二沉池容易处于厌氧状态,沉淀的污泥会重新将磷释放到水体中,而且会发生内源反硝化,造成高磷污泥上浮,影响出水水质,尤其是总磷。同时,高回流比使动力消耗增加,运行费用升高。
3)污泥回流方面的矛盾。
污泥回流是为了保证各反应池中有一定数量的完成各自功能的细菌。理论上说,参与释磷吸磷的聚磷菌越多,参与反硝化和和硝化的细菌越多,则除磷脱氮效果越好。但是,除磷是通过排出高磷污泥来实现的。这样剩余污泥的排放量就和污泥回流量发生了矛盾。并且,回流污泥中携带的硝酸盐氮会对厌氧释磷效率产生抑制,导致好氧吸磷动力不足,从而降低除磷效率。
4)在碳源竞争方面的矛盾。
碳是微生物生长需要要最大的营养元素。在脱氮除磷系统中,碳源大致上消耗于释磷、反硝化和异养菌正常代谢等方面。从上述脱氮除磷机理可以看出,释磷和反硝化的反应速率都与进水碳源中的易降解部分,尤其是挥发性有机脂肪酸(VFA)的数量关系很大。一般来说,城市污水中易降解碳源有机物的数量是十分有限的。以脱氮来说,只有当进水中C/N比达到8时,其中的易降解碳源有机物部分才能保证高反硝化效率所需的碳源是充足的。所以,在A2/O工艺中(尤其是进水C/N比较低时)的释磷和反硝化之间,存在着因碳源不足而引发的竞争性矛盾。
5)对水质、水量变化很敏感
(2)各种改良型A2/O工艺的不足之处
常规A2/O工艺中的缺陷在各种改良型A2/O工艺中仍然存在。除此之外,各种改良型A2/O工艺还存在如下问题:
1)两点进水改良型A2/O工艺在常规型的厌氧池前增设了预缺氧池,虽然可以消除回流污泥中的硝态氮对后续厌氧池聚磷菌释磷的影响,同时也能保证厌氧池严格的厌氧环境以提高释磷效率。然而,其增设预缺氧池要求两套配水系统,基建投资加大,运行管理趋于复杂;且使整体流程更长,水力停留时间增大,处理效率和运行费用提高。
中国污水处理工程网
www.xiexiebang.com 2)两点进泥改良型A2/O工艺也增设预缺氧池,并将大部分回流污泥回流至缺氧池,将少部分污泥回流至预缺氧池。这种方式只能减轻回流污泥中的硝态氮对厌氧释磷效率的影响,而且使参与厌氧释磷的污泥量减少,影响最终的除磷效率。
3)缺氧区前置的倒置A2/O工艺使回流混合液和回流污泥中的硝态氮优先利用进水中的有机物进行反硝化,保证很高的脱氮效率,同时也消除了硝态氮对厌氧释磷的影响,并使后续厌氧池能够形成严格厌氧环境。但是先进行反硝化将进水中易降解有机物消耗殆尽,使后续厌氧池中聚磷菌的厌氧释磷过程由于缺少碳源而释磷不充分甚至不释磷(只降解贮存的糖原获得能量),则后续的好氧吸磷动力严重不足,影响最终的除磷效率。
4)UCT工艺把常规A2/O工艺的缺氧区分为前后两个部分,将硝化混合液回流至缺氧区,再将缺氧区前部的混合液回流至厌氧区;回流污泥先进入缺氧区前部。这种作法实际上是划出一个小的缺氧区专门消耗回流污泥中的硝酸盐,故避免了回流污泥中的硝酸盐对厌氧区的冲击,改善了聚磷菌的释磷环境。但是,进入缺氧区前部的回流污泥只有一小部分进入厌氧池经历了释磷过程,其实际除磷效果因此显著降低。
(3)A/O(+化学除磷)工艺的相对优势
1)A/O(+化学除磷)工艺不必在生物脱氮除磷系统中同时兼顾脱氮和除磷二者都具有很高的去除率,只用考虑脱氮取得高去除率同时有一定的除磷效果(一般可以达到50%)即可,再通过设置化学除磷系统保证磷的去除率。所以在A2/O工艺及其各种改良型工艺中存在的缺陷和不足都可以得到很好的解决:脱氮和除磷的污泥龄方面的矛盾基本不存在,混合液回流和污泥回流中的硝态氮对聚磷菌释磷的影响可以通过化学除磷来解决,混合液回流中携带的溶解氧对缺氧环境的破坏可以通过降低好氧池末端的溶解氧达到降到最低,脱氮和除磷对碳源的竞争导致的碳源不足问题基本不存在。所以,A/O(+化学除磷)工艺在保证脱氮除磷效果的前提下,具有流程简单、占地少、运行管理方便、投资和运转费用较低的优点。
2)西方国家在生物脱氮除磷方面的理论研究比国内深入,运行经验比国内丰富。当氮、磷要求严格时,鉴于传统脱氮除磷理论下二者的矛盾,普遍采用生物脱氮+化学除磷的工艺。所以我们国内的污水处理厂在工艺的选择上不能不深入分析,能用工艺流程精简、能耗较低、运行管理比较方便的A/O(+化学除磷)工艺,就不用A2/O工艺及其各种改良型工艺。
3)当前在脱氮和除磷研究发面发现了很多新现象,由此产生了很多新理论如:短程反硝化(亚硝酸盐型反硝化)理论、厌氧氨氧化理论(氨氮和亚硝酸盐氮直接反应转化为氮气)、好氧反硝化(在好氧条件下,由异养型硝化菌 中国污水处理工程网
www.xiexiebang.com 和好氧反硝化菌同时完成硝化和反硝化)理论、DPB菌(反硝化除磷菌)在缺氧条件下的同时反硝化除磷理论。在这些新理论基础上开发出的新工艺表现出的共同点在于工艺流程精简,能耗较小,运行管理方便。所以采用A/O(+化学除磷)工艺在流程上更接近于新工艺,只需变换运行参数和适当变化即可,有利于新工艺应用后的改造或者扩建。
选择污水厂的处理工艺是一件复杂的事情,目前的各种处理工艺,都各有优缺点,只有最适合某个工程的工艺,并不存在最先进的工艺。设计者应该优先选择运行管理简单、运转费用低的工艺。
根据设计经验和对当前众多使用A2/O工艺及其各种改良型工艺的污水处理厂的实际运行情况的总结和研究,我们认为:A2/O工艺及其各种改良型工艺在理论上虽然可以达到很好的同时脱氮除磷的效果,但是其流程长,运行管理复杂,能耗大,运转费用高,且在实际运行中很难实现最佳运行条件,往往是脱氮与除磷的效果不能两全。而相比来说,A/O(+化学除磷)工艺流程精简、占地少,投资和运转费用较低,运行管理比较方便,并且便于在新理论基础上开发的工艺应用到工程实践后的改造。所以我们推荐使用A/O(+化学除磷)工艺。二沉池的设计与运行
二次沉淀池的主要功能是进行泥水分离以及污泥的贮存和浓缩,它处于整个生化处理系统的末端,其设计和运行的效果对出水水质具有直接而重大的影响。尤其是当前对总磷的排放标准愈趋严格的情况下,其设计和运行的效果对总磷指标影响很大。因为除磷是通过排出高磷剩余污泥实现的,若二沉池设计运行不善,则出水SS升高,而SS实际上是高磷污泥,严重影响出水总磷指标。所以,更应该深入研究实际情况,使二沉池的设计更科学。
活性污泥的特点是质轻,易被出水带走,并容易产生二次流和异重流。而进出水方式以及进水的布水均匀性和出水堰口负荷是影响二沉池运行效果的重要因素。根据我们的在设计和运行中的经验,我们推荐使用周边进水和周边出水的方式,进水要做到均匀布水,出水堰口负荷应尽可能小,当实际出水流量达不到设计出水流量时可以考虑多加几周出水堰的方式解决。阐述如下:
(1)进水出方式
图3为中心进水周边出水(A)和周边进水周边出水(B)的沉淀池示意图。可以看出,周边进水周边出水方式与中心进水周边出水方式相比,出水的流程更长,有更长的时间完成泥水分离的过程,且二次流、异重流的影响相对较小,沉淀效果更好。
中国污水处理工程网
www.xiexiebang.com
四、污水处理厂处理工艺举例
城市污水处理厂生物池好氧段中投加悬浮填料提升污水处理脱氮效果研究 主要考核目标
(1).优选适合该市污水处理厂A/A/O 工艺升级改造的悬浮填料,出水TN 稳定达到一级A 标准。
(2).确定悬浮填料添加后O 段水力停留时间、溶解氧、填料投配比等运行参数,为升级改造提供技术支持。
工作进展与结果
1.悬浮填料选型
污水处理厂提标改造的重点在于悬浮填料的选择,以实现低温条件下的出水COD及氨氮稳定达标。
在该试验中选用了两种悬浮填料,其中之一是德国LEVAPOR生物膜技术公司出品的LEVAPOR®悬浮填料。该悬浮填料是德国最新一代用于处理废水和废气的高效微生物载体,已在多个国家申请了专利保护。LEVAPOR®是表面活性的、有吸收能力的有孔泡沫物质。
通过将有表面活性能力的颜料涂层在泡沫物质上形成一种改性物质,从而拥有新的物理化学特性,主要表现为: 1)体积小,比表面积大,比表面积最大可达20000 m2/m3; 2)微孔和粗孔的发泡体有很强的表面吸附能力和吸水性; 3)具有可调节的密度、沉淀速度、带电负荷以及导电性; 4)和其他填料相比,流化床能耗明显降低。
LEVAPOR®在生物处理工艺中具有如下优势:
1)显著提高生物处理的处理量、速度和稳定性; 2)有效吸收有毒物质和抑制降解的物质,保护生物膜; 3)内部的空隙结构有效保护生物膜免受剪切力的影响; 4)多余污泥能从载体表面自动脱落;
5)易于挂膜,两个小时内微生物就能在载体内繁殖生长;
中国污水处理工程网
www.xiexiebang.com 6)使用寿命长达10年;
7)对已建设施的改扩建方便,节省空间; 8)显著提高废水废气处理能力,投资成本低; 9)剩余污泥量相对活性污泥法明显减少。
目前已在德国科隆市、乌博塔市、Nordhorn市、亚堔市以及中国黑龙江省宁安市用于市政污水处理厂的废水脱氮处理,效果优异。
此外还选择了一家国产的悬浮填料,该产品在国内污水处理厂的提标改造工程有过成功应用,该产品的比表面积在500-600 m2/m3。
2.试验水质确定
本课题的研究是针对该市市待升级的几个污水处理厂开展工作的。从工艺上讲,主要是将填料添加在生物处理单元的好氧池内。综合考虑微生物营养需求,试验装置所采用的进水水质指标为: COD=150-300mg/L,TN(NH3-N)=15-25mg/L,TP=10mg/L。
3.试验模型
本课题的试验模型分为两类。一为填料筛选模型,二为工况试验模型。
首先制作2 个填料选择模型,均为柱状。外接配水箱与高位水箱,采用穿孔管曝气,两个试验模型共用一台风机,用流量计加以控制,通气量为360 L/h。出水采用淹没出流。泥种取自污水处理厂二沉池排泥。混合液污泥浓度维持在3500 mg/L 左右。装置简图见图1,在器壁上贴上标尺以便体积读数。
中国污水处理工程网
www.xiexiebang.com
图1 填料筛选试验模型
4.静态试验
(1)挂膜
试验中,选择德国的LEVAPOR®悬浮填料、国产悬浮填料进行挂膜。起初两种填料均浮于水面,2 天之后很明显海绵状的LEVAPOR®填料开始悬浮于水中,而藕片状的国产悬浮填料依然浮于水面。第5 天后,LEVAPOR®悬浮填料已看得出有絮状物生长,而国产填料上也开始变了一点颜色。每天测定出水水质,装有填料LEVAPOR®的柱 中国污水处理工程网
www.xiexiebang.com 子第7 天后出水水质基本稳定。此时,藕片状的国产填料变化依然不大,25 天后,国产填料也开始具有肉眼能看清的结实的附着物,出水水质也趋于稳定。
因此,判定在水温较高时,LEVAPOR®悬浮填料的挂膜时间为7天,而国产悬浮填料的挂膜时间为25 天。(2)COD 去除试验
图2 COD 去除效果
(装置1:LEVAPOR®悬浮填料,装置2:国产悬浮填料)
挂膜成功后,在2 个试验柱内分别取样,测定其COD 值,见图2。
从图2 可以看出,挂膜成功后,连续5 天同一时间取样测定进、出水COD 值,结果表明,装置对COD 的去除效果稳定。
所以,当装置水力停留时间在2 小时,对COD 的去除可以达到一级A 标准。
(3)脱氮试验本实验主要是考虑氨氮的去除效果。模拟污水中,氨氮浓度即为总氮浓度。在挂膜成功后,连续10 天测定装置对氨氮的去除效果,结果见图3 和图4。
中国污水处理工程网
www.xiexiebang.com 图3 氨氮浓度变化曲线
(装置1:LEVAPOR®悬浮填料,装置2:国产悬浮填料)
从图3 可以看出,虽然装置每天的进水氨氮浓度有所变化,但出水氨氮浓度均比较稳定。连续7 天的监测结果显示,氨氮去除率也比较稳定。
实验表明,LEVAPOR®悬浮填料和国产悬浮填料对COD 和氨氮的去除效果稳定性均较好。
图4 氨氮去除率稳定性
(蓝线:LEVAPOR®悬浮填料,红线:国产悬浮填料)(4)最小HRT 试验
接着进行了停留时间对氨氮去除效果的影响实验,结果见图5所示。
图5 停留时间对氨氮去除效果的影响
可见在2 小时后氨氮出水浓度小于5mg/L,基本能达到一级A标准的要求。水力停留时间大于2 小时后,氨氮浓 中国污水处理工程网
www.xiexiebang.com 度依然降低,但速度变缓。因此,在后续试验中,测定了另外2 套装置在2 小时内的氨氮浓度,其变化趋势见图6 所示。
结果表明,对于装置2 与装置3,其氨氮度均在2 小时内被彻底降解。(5)最佳投配率试验
在填料初筛的基础上,进行了投配率试验。
试验中,LEVAPOR®悬浮填料的投配率最初采用20%,藕片状的国产悬浮填料投配率采用30%。起初,在同样通气量的状况下,LEVAPOR®悬浮填料只有部分处于流化状态,而国产悬浮填料流化状态一直很好。LEVAPOR 生物膜技术公司建议将投配率改为15%。因此在后续试验中,LEVAPOR®悬浮填料投配率为20%和15%两种。出水指标均能达标的前提下做了LEVAPOR®悬浮填料投配率降低为10%的破坏性试验,出水水质指标也能达标。试验中国产悬浮填料始终采用30%的投配率。
试验结果表明,两种填料在其最佳投配率下,COD 和氨氮的出水水质指标均能达到一级A 标准要求,但LEVAPOR®悬浮填料的COD 和氨氮去除率始终优于国产填料。
图7 中装置1 中LEVAPOR®悬浮填料的投配率为15%,装置2中国产悬浮填料的投配率为30%。
中国污水处理工程网
www.xiexiebang.com
为了了解氨氮去除效果的稳定性,在此基础上,进行了连续9天的监测,结果见图8。
数据显示,两种填料的氨氮去除效果均较稳定,且德国LEVAPOR®悬浮填料的去除效果明显优于国产悬浮填料,差别为8%左右。也表现出水温对氨氮的去除有一定影响。连续流试验
连续流氨氮去除效果试验
在前面试验中,COD 去除均能达到出水一级A 要求,连续流试验主要考察德国LEVAPOR®悬浮填料在水力停留时间为2 小时,投配率为15%时装置对氨氮的去除效果。结果见图9。
中国污水处理工程网
www.xiexiebang.com
图9 中数据显示,出水中氨氮浓度大部分在6mg/L 以下,绝大部分在5mg/L 以下,说明出水能满足一级A 排放标准。其中6-8 小时的氨氮浓度突然偏高,在11 小时后,出水氨氮恢复正常。分析原因可能是因为试验操作错误导致。
6.生物量检测
(1)SEM 电镜扫描检测
为了对比,选取了5 个样品进行生物膜SEM 电镜扫描检测。其中,样品1 为挂膜前的德国LEVAPOR®悬浮填料,样品2 为挂膜前的国产悬浮填料,样品3 为挂膜后的德国LEVAPOR®悬浮填料(投配率20%),样品4 为挂膜后的德国LEVAPOR®悬浮填料(投配率15%),样品5 为挂膜后的国产悬浮填料(投配率30%)。扫描结果 如下所示:
中国污水处理工程网
www.xiexiebang.com
中国污水处理工程网
www.xiexiebang.com
7.小结
所有试验结果表明,好氧段水力停留时间可缩短为2 小时。德国LEVAPOR®悬浮填料对COD 和氨氮的去除效果均优于国产悬浮填料。其投配率15%最佳,10%也能满足出水达到一级A 标准的要求。
第三篇:天津开发区污水处理厂
天津开发区污水处理厂
〔污水处理出水水质达标〕天津开发区污水处理厂(简称“污水处理厂”)于1999年建成投产,采用国际先进的序批式活性污泥法(SBR)DATIAT工艺,设计日处理污水能力10万吨,服务面积22平方公里,服务企业3800余家,占地6.71公顷,总投资1.7亿元,处理后污水达到国家二级排放标准。2006年,共处理污水1956.08万吨;有机物去除总量:BOD去除总量3401.6吨,COD去除总量6754.87吨,SS去除总量5231.96吨,处理合格率100%。
(刘永代)
〔再生水利用〕2003年5月,再生水生产工艺建成投产,以污水处理厂二级排放出水为再生水源,采用国际先进双膜法工艺,即连续微滤(CMF)+反渗透(RO),为我国污水深度处理回用首次应用。再生水现有生产能力:连续微滤3万吨,主要用于生态景观水体与生活杂用水;反渗透再生水1万吨/天,主要服务于工业正业用水。水质优质性得到用户肯定,自2003年投运以来供不应求。2006年,生产再生水CMF378.41万吨,RO143.19万吨。
(刘永代)
〔万吨级海水淡化项目建成〕天津泰达新水源公司承担万吨级海水淡化项目的建设任务。经过前期可行性研究,确定采用国际较为先进的热压蒸馏低温多效(MEDTCD)技术,确定以五号热源厂4.9公斤蒸汽为热源。其优质产品水(总含盐量TDS<5ppm)作为5号热源厂锅炉补给水第一水源,经专家评审获通过。取水预处理部分采用蓄水预沉与化学助凝相结合工艺,可提高供水安全性,降低运行成本。污水处理厂二级出水经深度处理后作为淡化装置冷却水源(每日最多约需5万吨),可节约取水与排水设施建设费用。提高新水源一厂冬季进水温度,提高其双膜法产水效率,实现资源综合利用。
按照国家发改委高新技术产业化示范工程项目要求,保证项目整体水平,确定项目关键设备6效蒸发器、冷凝器等在天津本土加工,由外方公司设计并指导监造。其设备由天津宝成锅炉集团制造,经现场调试后,各项指标均达国际先进水平,成为国内自行加工制造的最大一套同类单体设备。
(李会元)
〔电镀废水处理水质达标〕2006年,污水处理厂电镀废水处理中心为长威科技有限公司处理电镀锡铅漂洗废水24998立方米。其中,镀前漂洗废水7284立方米,镀后漂洗废水17714立方米;为精工制版有限公司以化学法处理镀铜/镀镍漂洗废水59立方米、处理镀铬漂洗废水79立方米;为科汉森公司以化学法处理酸碱废水20立方米;为诺唯信公司处理高浓度废水7立方米。有毒有害物质去除率均逾97%,达到国家规定排放标准。
天津三环乐喜新材料有限公司在化学工业区建设电镀加工中心,建立一套完整的电镀废水处理系统。电镀加工中心电镀种类繁多,电镀工艺复杂,对废水处理要求高,大部分废水处理后须达到回用水标准。电镀废水处理中心承担废水处理系统总包任务(包括基建、设备自控系统、工艺布局、处理工艺等等)。经反复进行处理工艺试验,采用化学法、沉淀、过滤、膜法等处理工艺技术,并根据业主总体方案改变随时更改设计方案。项目于11月完成全部土建和设备安装工程,并开始设备单体试车。
(万宁)
〔863课题通过国家验收〕2006年2月19日,国家高技术研究发展计划(863计划)资源环境技术领域办公室,在天津召开“天津市滨海新区城市水环境质量改善技术与综合示范”(2003AA601030)课题验收会。课题针对滨海新区缺水严重、水质与水环境条件较差等问题,研究以水循环利用为核心的城市水环境质量改善关键技术,形成将水资源综合利用、水质净化、水生态修复相融合的城市水环境质量改善技术方案;研究高含盐再生水景观利用技术、再生水用于景观水体安全评价技术和复合生物——生态强化水面流湿地净化技术,开发再生水景观河道生态修复与水质净化集成技术;建立开发区再生水景观河道和人工湖水质保护两项示范工程。课题主要技术成果在开发区景观水系建设中得到应用,规划理念在其他项目和区域规划中被采纳。课题已申请国家发明专利3项,所取得成果具有较好应用前景。验收专家组一致同意通过课题验收。
(张惠源)
〔污水深度处理科技攻关项目结题验收〕2006年3月,召开天津市科委科技攻关项目“污水深度处理关键技术设备国产化”结题验收会。此课题针对开发区污水水质特点,结合本地具体情况,打破传统观念和传统工艺路线,跟踪国际前沿水处理技术,研制开发具有自主知识产权国产化污水膜处理关键设备,创新性集成污水脱盐处理、双膜法水处理成套技术。在国内首先实施污水脱盐深度处理试验研究和工程示范建设。此项目为外来项目入驻开发区提供更多用水选择,方便用户实现不同工艺与不同水质需求的对接。验收专家同意此项目通过验收。
(张惠源)
〔新水源一厂新增2万吨生产能力〕2005年10月,新水源一厂扩建工程开工,2006年末完工。新增5000吨/日反渗透设备4台及相关辅助设施。新增系统采用全自控手段监控运行,减轻员工工作强度。扩建工程项目可增加2万吨/日生产能力,使新水源一厂反渗透总生产能力达到3万吨/日。
(关代宇)
〔西区污水处理厂投入运营〕开发区新水源科技开发有限公司受管委会委托,按照国际惯例,采用BOT模式建设、运营西区污水处理厂。
西区污水处理厂位于西区东北组团,中心庄路以东、杨北公路以南、铁路东南环线以北。污水处理服务范围主要包括西区东北组团中心庄路两侧、杨北公路以南、唐津高速以西、京津塘高速以北区域。建设规模为日处理污水1.25万吨。
项目由天津市政工程设计研究院设计,中铁十八局第三工程公司施工,主要建设内容包括细格栅间、旋流沉砂池、巴氏计量槽、HYBAS生化池、生化池出水收集槽、终沉池、污泥收集槽、加氯槽、加氯间及氯瓶储存间、风机房、配电中心、污泥浓缩脱水车间、泥库、综合楼及相关生产运行设备。
2005年11月开工,2006年8月竣工。年内,完成投资2270万元。2006年9月28日举行通水仪式。至2006年末,累计处理污水约5万吨。
(刘振江)
第四篇:污水处理厂设计
第一章 设计资料
一、自然条件
1、气候:该城镇气候为亚热带海洋季风性季风气候,常年主导风向为东南风。
2、水文:最高潮水位
6.48m(罗零高程,下同)
高潮常水位
5.28m
低潮常水位
2.72m
二、城市污水排放现状
1、污水水量
(1)生活污水按人均生活污水排放量300L/人.d;(2)生产废水量按近期1.5万m3/d,远期2.4万m3/d;(3)公用建筑废水量排放系数按近期0.15,远期0.20考虑;(4)处理厂处理系数按近期0.80,远期0.90考虑。
2、污水水质
(1)生活污水水质指标为 CODcr
60g/人.d BOD5
30g/人.d(2)工业污染源参照沿海开发区指标,拟定为: CODcr
300mg/L;
BOD5
170mg/L(3)
氨氮根据经验确定为30md/L。
三、污水处理厂建设规模与处理目标
1、建设规模
该污水处理厂服务面积为10.09km2,近期(2000年)规划人口为6.0万人,远期(2020年)规划人口为10.0万人。处理水量近期3.0万m3/d,远期6.0万m3/d。
2、处理目标
根据该城镇环保规划,污水处理厂出水进入的水体水质按国家3类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为
CODcr≤100mg/L;
BOD5≤30mg/L;
SS≤30mg/L ; NH3-N≤10mg/L
四、建设原则
污水处理工程建设过程中应遵从下列原则:污水处理工艺技术方案,在达到治理要求的前提下应优先选择基建投资和运行费用少、运行管理简便的先进的工艺;所用污水、污泥处理技术和其他技术不仅要求先进,更要求成熟可靠;和污水处理厂配套的厂外工程应同时建设,以使污水处理厂尽快完全发挥效益;污水处理厂出水应尽可能回用,以缓解城市严重缺水问题;污泥及浮渣处理应尽量完善,消除二次污染;尽量减少工程占地。第二章 污水处理工艺方案选择
一、工艺方案分析
本项目污水以有机污染为主,BOD/COD=0.54 可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标,针对这些特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。由于将来可能要求出水回用,处理工艺尚应硝化。
根据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用“普通活性污泥法”或“氧化沟”法。
普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计运行经验,处理效果可靠,如设计合理,运行得当,出水BOD5可达10-20mg/L,它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理困难,运行费用高。氧化沟处理技术是20世纪50年代有荷兰人首创。60年代以来,这项技术在国外已被广泛采用,工艺及构筑物有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点的逐步深入认识,目前已成为普遍采用的一项污水处理技术。
氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实行脱氮,成为A/O工艺,由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。
氧化沟污水处理技术已被公认为一种成功的革新的活性污泥法工艺,与传统活性污泥系统相比较,它在技术、经济等方面具有一系列独特的优点。
1、工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气和空气扩散器,不建厌氧硝化系统,运行管理方便。
2、处理效果稳定,出水水质好。
3、基建投资省,运行费用低。
4、污泥量少,污泥性质稳定。
5、具有一定承受水量、水质冲击负荷的能力。
6、占地面积少。
污水处理厂的基建投资和运行费用与各厂的污水浓度和建设条件有关,但在同等条件下的中、小型污水厂,氧化沟比其他方法低,据国内众多已建成的氧化沟污水处理厂的资料分析,当进水BOD5在120-180mg/L时,单方基建投资约为700-900元/(m3.d),运行成本为0.15-0.30元/m3污水。
由以上资料,经过简单的分析比较,氧化沟工艺具有明显优势,故采用氧化沟工艺。
二、工艺流程确定:(如图所示)说明:由于不采用池底空气扩散器形成曝气,故格栅的截污主要对水泵起保护作用,拟采用中格栅,而提升水泵房选用螺旋泵,为敞开式提升泵。为减少栅渣量,格栅栅条间隙已拟定为25.00mm。
曝气沉砂池可以克服普通平流沉砂池的缺点:在其截流的沉砂中夹杂着一些有机物,对被有机物包裹的沙粒,截流效果也不高,沉砂易于腐化发臭,难于处置。故采用曝气沉砂池。
本设计不采用初沉池,原则上应根据进水的水质情况来确定是否采用初沉池。但考虑到后面的二级处理采用生物处理,即氧化沟工艺。初沉池会除去部分有机物,会影响到后面生物处理的营养成分,即造成C/N比不足。因此不予考虑。拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准,故污泥负荷和污泥泥龄分别低于0.15kgBOD/kgss*d和高于20.0d。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
为了使沉淀池内水流更稳定(如避免横向错流、异重流对沉淀的影响、出水束流等)、进出水更均匀、存泥更方便,常采用圆形辐流式二沉池。向心式辐流沉淀池采用中心进水,周边出水,多年来的实际和理论分析,认为此种形式的辐流沉淀池,容积利用率高,出水水质好。设计流量 Q=2.85万m3/d=1208.3 m3/h,回流比 R=0.7。
第三章
污水处理工艺设计计算
一、水质水量的确定 1.水量的确定
近期水量:生活废水Q生活=6.0×104×300L/人•天=1.8×104m3/d
工业废水Q工业=1.5×104m3/d
公用建筑废水Q公用=1.8×104×0.15=0.27×104m3/d 所以近期产生的废水量为Q Q=Q生活+Q工业+Q公用=(1.8+1.5+0.27)×104 =3.57×104m3/d近期的处理系数为0.8,故近期污水处理厂的处理量 Qp=3.57×104×0.8=2.856×104m3/d
远期水量:生活废水Q生活=10.0×104×300L/人•天=3.0×104m3/d
工业废水Q工业=2.4×104m3/d
公用建筑废水Q公用=3.0×104×0.2=0.6×104m3/d 所以远期产生的废水量为Q Q=Q生活+Q工业+Q公用=(3.0+2.4+0.6)×104 =6.0×104m3/d 远期的处理系数为0.9,故远期污水处理厂的处理量
Qp=6.0×104×0.9=5.4×104m3/d 通常设计污水处理厂时远期的设计处理量为近期的两倍,综合考虑近期和远期的处理水量,取近期的设计处理水量Qp=3.0×104m3/d,远期的设计处理水量Qp=6.0×104m3/d。2.水质的确定近期COD:
COD = =242mg/L近期BOD5: BOD5= =129mg/L 远期COD: COD= =240 mg/L 远期BOD5:
BOD5= =128mg/L NH3-N按规定取为30 mg/L 所以处理厂的处理水质确定为COD=242mg/L,BOD5=129mg/L,NH3-N=30 mg/L
二、曝气沉砂池设计计算说明书
沉砂池的作用是从污水中去除砂子、煤渣等比重比较大的无机颗粒,以免这些杂质影响后续构筑物的正常运行。常用的沉砂池有平流式沉砂池、曝气沉砂池、竖流沉砂池和多尔沉砂池等。平流式沉砂池构造简单,处理效果较好,工作稳定,但沉砂中夹杂一些有机物,易于腐化散发臭味,难以处置,并且对有机物包裹的砂粒去除效果不好。曝气沉砂池在曝气的作用下颗粒之间产生摩擦,将包裹在颗粒表面的有机物除掉,产生洁净的沉砂,通常在沉砂中的有机物含量低于5%,同时提高颗粒的去除效率。多尔沉砂池设置了一个洗砂槽,可产生洁净的沉砂。涡流式沉砂池依靠电动机机械转盘和斜坡式叶片,利用离心力将砂粒甩向池壁去除,并将有机物脱除。后3种沉砂池在一定程度上克服了平流式沉砂池的缺点,但构造比平流式沉砂池复杂。
和其它形式的沉砂池相比,曝气沉砂池的特点是:
一、可通过曝气来实现对水流的调节,而其它沉砂池池内流速是通过结构尺寸确定的,在实际运行中几乎不能进行调解;
二、通过曝气可以有助于有机物和砂子的分离。如果沉砂的最终处置是填埋或者再利用(制作建筑材料),则要求得到较干净的沉砂,此时采用曝气沉砂池较好,而且最好在曝气沉砂池后同时设置沉砂分选设备。通过分选一方面可减少有机物产生的气味,另一方面有助于沉砂的脱水。同时,污水中的油脂类物质在空气的气浮作用下能形成浮渣从而得以被去除,还可起到预曝气的作用。只要旋流速度保持在0.25~0.35m/s范围内,即可获得良好的除砂效果。尽管水平流速因进水流量的波动差别很大,但只要上升流速保持不变,其旋流速度可维持在合适的范围之内。曝气沉砂池的这一特点,使得其具有良好的耐冲击性,对于流量波动较大的污水厂较为适用,其对0.2mm颗粒的截流效率为85%。由于此次设计所处理的主要是生活污水水中的有机物含量较高,因此采用曝气沉砂池较为合适。
曝气沉砂池的设计参数:
(1)旋流速度应保持0.25—0.3m/s;(2)水平流速为0.08—0.12 m/s;(3)最大流量时停留时间为1—3min;
(4)有效水深为2—3m,宽深比一般采用1~1.5;
(5)长宽比可达5,当池长比池宽大得多时,应考虑设置横向挡板;(6)1 污水的曝气量为0.2 空气;
(7)空气扩散装置设在池的一侧,距池底约0.6~0.9m,送气管应设置调节气量的阀门;
(8)池子的形状应尽可能不产生偏流或死角,在集砂槽附近可安装纵向挡板;(9)池子的进口和出口布置,应防止发生短路,进水方向应与池中旋流方向一致,出水方向应与进水方向垂直,并考虑设置挡板;(10)池内应考虑设置消泡装置。
一、曝气沉砂池的设计与计算 1.最大设计流量Qmax Qmax=Kz×Qp 式中的Kz为变化系数,Kz=1.42
Qmax=1.42×0.347=0.493 m3/s
2.池子的有效容积
V=60Qmaxt 式中 V——沉砂池有效容积,m3;
Qmax——最大设计流量,m3/s;
t——最大设计流量时的流动时间,min,设计时取1~3min。所以
V=60×0.493×1.5=44.37m3 3.水流断面面积
A=
式中 A——水流断面面积,m2
Qmax——最大设计流量,m3/s;
V——水流水平流速,m/s。所以
A=4.11m2 取
A=4.2m2 4.池宽B B=
h——沉砂池的有效水深,m。取h=2m。所以B= =2.1m B/h=1.05,满足要求。5. 池长
L= = m,取L=10.5m 此时L/B=5满足要求 6.流速校核
Vmin= m/s,在0.8~1.2m/s之间,满足要求 7.曝气沉砂池所需空气量的确定
设每立方米污水所需空气量
d=0.2m3空气/m3污水
8.沉砂槽的设计
若设吸砂机工作周期为t=1d=24h,沉砂槽所需容积
式中Qp的单位为m3/h 设沉砂槽底宽0.5m,上口宽为0.7,沉砂槽斜壁与水平面夹角60°,沉砂槽高度为
h1= 沉砂槽容积为
9.沉沙池总高
设池底坡度为0.3,坡向沉砂槽,池底斜坡部分的高度为
h2=0.3×0.7=0.21m 设超高 ,沉沙池水面离池底的高
m 10.曝气系统的设计
采用鼓风曝气系统,罗茨鼓风机供风,穿孔管曝气
(1)干管直径d1:由于设置两座曝气沉砂池,可将空气管供应两座的气量,即主管最大气量为q1=0.0694×2=0.1388m3/s,取干管气速v=12m/s,干管截面积A= = =0.0116m2 d1= = m=120mm,因为没有120mm的管径,所以采用接近的管径100mm。
回算气速v=17.7m/s 虽然超过15 m/s,但若取150的管气速又过小,所以还是选择管径100mm。
(2)支管直径d2:由于闸板阀控制的间距要在5m以内,而曝气的池长为10.5米,所以每个池子设置三根竖管,设支管气速为v=5m/s,支管面积
A= m2 d2= = mm,取整管径d2=80mm 校核气速v=4.6m/s(满足3—5m/s)(3)穿孔管:采用管径为6mm的穿孔管,孔出口气速为设5m/s,孔口直径取为5mm(在2~6mm之间)
一个孔的平均出气量 q= =9.81×10-5m3/s 孔数:n= 个
孔间隔
为,在10~15mm之间,符合要求。
穿孔管布置:在每格曝气沉砂池池长一侧设置1根穿孔管曝气管,共两根。
二、细格栅的选型和计算
选用XG1000型细格栅,参数如下
设备宽B:1000mm
有效栅宽B1:850㎜
有效栅隙:5㎜
耙线速度:2 m/min
电机功率:1.1kw
安装角度:60°
渠宽B3:1050㎜
栅前水深h2:1.0m/s
流体流速:0.5~1.0m/s 栅条宽度s=0.01m 1. 栅前后的水头损失 水流断面面积 m2 栅前流速
在0.4~0.9m/s范围内,复合要求 设过栅流速为v=0.6m/s 设栅条断面为锐边矩形断面,取k=3 ,则通过格栅的水头损失为:
。3. 栅槽总长度
栅前的渠道超高设为0.45m,所以渠道高度为1.45m 因为安装高度是取60°,所以格栅所占的渠道长为1.45×ctg =1.45×ctg60°=0.84m 栅后长1米。所以渠道的总长度 L=0.5+0.84+1=2.34m
三、水面标高
根据经验值污水每经过一个障碍物水面标高下降3~5cm,根据曝气沉砂池的有效水深以及砂斗的高度可推算出各个构筑物的水面标高,本次设计以经过一个障碍物水位下降5cm来计算,以曝气沉砂池的砂槽底为0米进行计算。曝气沉砂池的水面标高:2.38m 细格栅与曝气沉砂池之间的配水井的水面标高:
2.43m 细格栅栅后水面标高:
2.48m 细格栅栅前水面标高:2.48+0.29=2.77m 配水井外套桶水面标高: 2.82m 配水井内套桶水面标高: 2.88 设配水井超高为0.35m 则整个曝气沉砂池系统的最高标高为3.23m 则曝气沉砂池的超高为h1=3.23-2.38=0.85m
四、配水井的计算
设配水井的平均停留时间为T=1.5min,Qp=0.347 m3/s,假设配水井水柱高为5.03米。配水井面积为
配水井直径为
因为进水管径为1000,管离底为200mm。所以覆土厚度为1.28m。
五、砂水分离器和吸砂机的选择
(1)选用直径LSSF型螺旋式砂水分离器
(2)根据池宽选用LF-W-CS型沉砂池吸砂机,其主要参数为: 潜污泵型号:AV14-4(潜水无堵塞泵)
潜水泵特性 扬程:2m,流量:54m3/h,功率:1.4kw 行车速度为2-5m/min,提耙装置功率
0.55kw
驱动装置功率: 0.37×2kw
钢轨型号
15kg/mGB11264-89
轨道预埋件断面尺寸(mm)(b1-20)60 10(b1:沉砂池墙体壁厚)轨道预埋件间距
1000mm
四、氧化沟
1、设计说明
拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准。采用卡式氧化沟的优点:立式表曝机单机功率大,调节性能好,节能效果显著;有极强的混合搅拌与耐冲击负荷能力;曝气功率密度大,平均传氧效率达到至少2.1kg/(kW*h);氧化沟沟深加大,可达到5.0以上,是氧化沟占地面积减小,土建费用降低。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
2、设计计算(1).设计参数:
qv=30000m3/d(设计采用双池,则单池流量=15000 m3/d),设计温度15℃,最高温度25℃,进水水质:近期:CODCr=242mg/L,BOD5=129.4mg/L,NH3-N=30mg/L,远期:CODCr=240mg/L,BOD5=128mg/L,NH3-N=30mg/L,出水水质:CODCr=100mg/L,BOD5=30mg/L,SS=30mg/L,NH3-N=10mg/L(2).确定采用的有关参数:
取MLSS=3500mg/L,假定其70%是挥发性的,DO=3.0mg/L,k=0.05,Cs(20)=9.07mg/L y=0.6mgVSS/mgBOD5,Kd=0.05d-1,qD,20=0.05kgNH3-N/kgMLVSS•d,CS(20)=9.07mg/L,α=0.90,β=0.94,剩余碱度:100mg/L(以CaCO3),所需碱度7.14mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原,硝化安全系数:3。(3).设计泥龄: 确定硝化速率μN
μN=0.47e0.098(T-15)*N/KN+N*DO/ Ko+DO=0.47*e0.098*(15-15)*30/(100.051*15-1.158+30)*2/(1.3+2)
=0.22d-1 θcm=1/=1/0.22=4.5d,设计泥龄θc=3*4.5=13.5d 为了保证污泥稳定,应选择泥龄为30d(4).设计池体体积:
①确定出水中溶解性BOD5的量:
出水中悬浮固体BOD5=1.4*0.68*30*70%=20mg/L
出水中溶解性BOD5的量=30-20=10mg/L ②好氧区容积计算:
V1=y*qv*(So-Se)*θc/MLVSS*(1+Kd*θc)=0.6*30000*(129.4-10)*30/(0.7*3500*(1+0.05*30))=9278m3 水力停留时间t1= V1/ qv =9278/30000=0.31d=7.4h
③脱氮计算:
产生污泥量=y*qv*(So-Se)/(1+Kd*θc)=0.6*30000*(129.4-10)/(1000*(1+0.05*30))=860kg/d 假设污泥中大约含12.4%的氮,这些氮用于细胞合成,用于合成的氮=0.124*860=106.6kg/d,转化为:106.6*1000/30000=3.55mg/L 故脱氮量=30-10-3.55=16.45mg/L。④碱度计算:
剩余碱度=300-7.14*20+3.0*16.45+0.1(129.4-10)=218.5mg/L(以CaCO3)大于100mg/L,可以满足pH>7.2 ⑤缺氧区容积计算:
qD=qD,20*1.08T-20=0.05*1.0815-20=0.032 kgNH3-N/kgMLVSS•d V2=qv*△N/qD/MLVSS=30000*16.45/0.032/0.7/3500=6295m3 水力停留时间t2=V2/qv=6295/30000=0.21d=5h ⑥总池容积计算
V=V1+V2=9278+6295=15573m3,t=t1+t2=7.4+5=12.4h(5).曝气量计算 ①计算需氧气量
R=(So-Se)qv*/(1-e-kt)-1.42Px+4.6*qv*△N-2.6*qv*NO3-0.56Px =30000*(129.4-10)/(1-e-kt)/1000-1.42*856.8+4.6*30000*20/1000-2.6*30000*16.45/1000-0.56*856.8=5049kg/d=211 kg/h ②实际需氧量
Ro’=1.2*R=1.2*211=253.2kg/d 校核:Ro=R*Cs(20)/α/(β*Cs(T)-C)/1.024T-20=253.2*9.07/0.9/(0.94*8.24-3)/1.024 25-20
=477.6kg/h
(在400-500之间
符合)6.沟型尺寸设计及曝气设备选型 采用卡式氧化沟(两座并联):
取有效水深H=3.5m,单沟的宽度b=7.8m,进水量15000 m3/d, 则单沟长=[V/2-0.5π(2b)2 h-2*0.5πb2 h]/4Hb=53m, 单沟好氧区总长度=单沟长*4* V1 /V=126m 单沟厌氧区总长度=单沟长*4* V2 /V=76m 采用四沟道,两台55kW的立式表曝气机(单池)曝气设备:PSB3250:D=3.25m,P=132kW,n=30r/min,清水充氧量:252kg/h,7.配水井设计
污水在配水井的停留时间最少不低于3min(不计回流污泥的量),设截面中半圆的半径为r,矩形的宽度为r,长度为2r,设计的有效水深为4.0m(2*r*r+0.5πr2)*4=30000*3/24/60 r=2.7m 8.其它附属构筑物的设计
工程设计中墙的厚度为250mm;氧化沟体表面设置走道板的宽度为800mm;;倒流墙的设计半径为3.9m;配水井的进水管道采用的规格为DN900,污泥回流管道采用的规格为DN500;出水井的设计尺寸为3000mm*1000mm*1000mm,出水堰高为100mm,堰孔直径为40mm,出水管采用的规格为DN700。
五、辐流式二沉池 1.设计说明 1.1二沉池的类型
二沉池的类型有:平流式二沉池、竖流式二沉池、辐流式二沉池、斜流式二沉池。其中,辐流式二沉池又分为:中进周出式、周进周出式、中进中出式。1.2选择辐流式(中进周出)二沉池的原因
由于平流式二沉池占地面积大;竖流式二沉池多用于小型废水中絮凝性悬浮固体的分离;斜流式二沉池较多时候,在曝气池出口污泥浓度高,而且没有设置专门的排泥设备,容易造成阻塞。因此选择辐流式二沉池。从出水水质和排泥的方面考虑,理论上是周进周出效果最好。但是,实际上,考虑异重流,是中进周出的效果最好。因此,选择了选择辐流式(中进周出)二沉池。2.设计计算 2.1污泥回流比:
2.2沉淀部分水面面积:
流量:
;
最大流量(设计流量):
单个池子的设计流量:
污泥负荷q取1.1m3/(m2.h),池子数n为2。
沉淀部分水面面积:
2.3校核固体负荷:
因为142<150,符合要求。2.4池子直径
池子直径:
根据选型取池子直径为35.0m。2.5沉淀部分的有效水深
沉淀时间t为2.5s
有效水深:
2.6沉淀池总高
2.7校核径深比: 径深比为
符合要求。2.8进水管的设计 单体设计污水流量:
进水管设计流量:
取管径D=700mm,流速为
因为,0.697>0.6符合要求,所以进水管直径为D=700mm。2.9稳流筒
进水井的流速为0.8m/s,则过水面积为
过水面积和泥管面积的总和:
由过水面积和泥管面积的总和求出直径为
筒壁厚为250mm,取管径为900mm。
进行校核:过水面积为
流速为。
筒上有8个小孔,孔面积为S2=,所以。
二沉池采用的是ZBX型周边传动吸泥机,稳流筒的直径为3880mm。
取稳流筒出流速度为0.1m/s,则过水面积为
稳流筒下部与池底距离为
所以稳流筒下部与池底距离大于0.2m,即符合要求。2.10配水井
配水井设计为马蹄形,在外围加宽700mm为污泥井。
时间取3分钟
流量为
取配水井直径为D=3000mm
则配水井高度
其中,设计水深为7.0m,超高为0.6m。2.11出水部分单池设计流量:
出水溢流堰设计
(1)堰上水头 H=0.05mH2O(2)每个三角堰的流量0.783L/s(3)三角堰个数
因此取n=223(个)2.12排泥部分
回流污泥量为 剩余污泥量为
因为剩余污泥量小,所以忽略不计,即总污泥量为0.188m3/s。取流速为0.8(m/s)
直径为
取直径为D=400mm
校核:流速为
0.6<0.75<0.9 因此符合要求。
综上,二沉池采用的是ZBX型周边传动吸泥机
池径为35000mm.
第五篇:污水处理厂设计
青 岛 科 技 大 学
青岛市某污水处理厂工程初步设计 题 目 __________________________________
指导教师______________________
刘立东 学生姓名_____________________
0909020108 学生学号__________________________
张书武
环境与安全工程 学院(部)环境工程___________________________________________________________专业
091 ________________
2012年1月08日班