立体几何中不等式问题的证明方法

时间:2019-05-15 14:10:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《立体几何中不等式问题的证明方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《立体几何中不等式问题的证明方法》。

第一篇:立体几何中不等式问题的证明方法

例谈立体几何中不等式问题的证明方法

立体几何中的不等式问题具有很强的综合性,解决这类问题既要有较强的空间想象能力,又要有严密的逻辑思维能力,因此有一定的难度.下面我们介绍几种有关的解题方法.

1.利用最小角定理

例1.在直二面角l中,A,B,点A,B不全在棱l上,直线AB与平面,所成的角分别为,,求证:90.

证:如图1,当AB与,都不垂直时,分别在,内作ACl于C,BDl于D,则AC,BD,BAD,ABC.

由最小角定理得ABCABD,BADABCBADABD90.

当AB或AB时,易知90.

综上即得90.

2.利用三角知识

例2.已知三棱锥PABC的侧棱PA、PB、PC两两垂直,求证:0BAC90,0ABC90,0CAB90. 

证:如图2,则在ABC中,由余弦定理得

cosBACABACBC

2ABAC

22222 222

2(PAPB)(PAPC)(PBPC)2ABACPA2ABAC0,0BAC90.

同理可证0ABC90,0CAB90.

3.利用一元二次方程根的判别式

例3.已知球O的半径为定值r,它的外切圆锥的全面积为S,求证:S8r. 证:如图3,作球O的外切圆锥的轴截面PAB,设球O

与圆锥底面直径AB及母线PA分别切于点E和F.再设

AEAFt,则由PAE∽POF,2

PEPF

AEOF

PF

4tr,由此有PF

2rttr,Stt(PFt)

2rt

tr,即2t4St2r2S0.

时取等号.

∵t2为实数,S28r2S0,即S

8r2,当且仅当t

4.利用基本不等式

例4.已知三棱锥PABC的侧面PAB、PBC、PCA两两垂直,且这三个侧面与底面ABC所成的二面角分别为、、,求证:coscoscos

9证:如图4,由题设易得CP平面PAB,在侧面PAB内过点P作PEAB于E,则CEAB,∴CEP.设PAa,PBb,PCc,则

PE

cos

CE,同理,cos,cos

coscoscos

5.利用函数的单调性

例5.如图5,A、B是球O面上的两点,O是过A、B的大圆,O1是过A、B的任意小圆,记l大为O中劣弧AB的长,记l小为O1中 劣弧AB的长,求证:l大l小.

证:设OAR,O1Ar(Rr),AOB2,AO1B2.在等腰AOB和等腰AO1B中,由OAOA1,知022,即0/2.

AB2Rsin,AB2rsin,Rsinrsin,即

sinsin

rR

①.

设f(x)

sinxx

(0x

),则f(x)

xcosxsinx

x,再令g(x)xcosxsinx(0x

),则g(x)cosxxsinxcosxxsinx0.

∴g(x)在(0,)上为减函数,故g(x)g(0)0,即xcosxsinx0,从而,当

0x时,有f(x)0,f(x)在(0,

)上也为减函数.

0,rR

sin



sin

,即

sinsin



②,由①、②两式可得



2R2rl大l小.

6.利用平面几何知识

例6.已知P、Q是正四面体ABCD内部的两点,求证:PAQ60.

证:如图6,过点A、P、Q作正四面体ABCD的截面

AEF.若E、F都不是BCD的顶点,不妨设E、F分别是

棱BD、CD上异于端点的点,此时P、Q两点在AEF内,PAQEAF.又ABE≌CBE,AECE.

而EFCEDF60BCFECF,EFCEAE.

同理可得EFAF,EF是AEF中最小的边,故必有EAF60,PAQEAF60.

若E、F中有一个是BCD的顶点,不妨设点F在D处.于是有,PAQEAFBAF60.

第二篇:立体几何证明方法

立体几何证明方法

一、线线平行的证明方法:

1、利用平行四边形。

2、利用三角形或梯形的中位线

3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。(线面平行的性质定理)

4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行的性质定理)

5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理)

6、平行于同一条直线的两条直线平行。

二、线面平行的证明方法:

1、定义法:直线与平面没有公共点。

2、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(线面平行的判定定理)

3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。

三、面面平行的证明方法:

1、定义法:两平面没有公共点。

2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理)

3、平行于同一平面的两个平面平行

4、经过平面外一点,有且只有一个平面和已知平面平行。

5、垂直于同一直线的两个平面平行。

四、线线垂直的证明方法

1、勾股定理。

2、等腰三角形。

3、菱形对角线。

4、圆所对的圆周角是直角。

5、点在线上的射影。6利用向量来证明。

7、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。

8、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。

五、线面垂直的证明方法:

1、定义法:直线与平面内任意直线都垂直。

2、点在面内的射影。

3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(线面垂直的判定定理)

4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(面面垂直的性质定理)

5、两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面

6、一条直线垂直于两平行平面中的一个平面,则必垂直于另一个平面。

7、两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面。

8、过一点,有且只有一条直线与已知平面垂直。

9、过一点,有且只有一个平面与已知直线垂直。

六、面面垂直的证明方法:

1、定义法:两个平面的二面角是直二面角。

2、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。(面面垂直的判定定理)

3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。

4、如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直。

第三篇:立体几何证明问题

证明问题

例1.如图,E、F分别是长方体边形

.-的棱A、C的中点,求证:四边形是平行四

例2.如图所示,ABCD为正方形,SA⊥平面ABCD,过点A且垂直于SC的平面分别交SB、SC、SD与E、F、G.求证:AE⊥SB.例3.如图,长方体∠求证:

=90°.⊥

PQ

-中,P、Q、R分别为棱、、BC上的点,PQ//AB,连结,例4.已知有公共边AB的两个全等的矩形ABCD和ABEF不同在一个平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ,如图所示.求证:PQ//平面

CBE.例5.如图直角三角形ABC平面外一点S,且SA=SB=SC,且点D为斜边AC的中点.(1)求证:SD⊥平面ABC.(2)若AB=AC,求证BD⊥平面

SAC.例6.如图,在正方体

-中,M、N、E、F分别是棱、、、的中点.求证:平面AMN//平面

EFDB.例7.如图(1)、(2),矩形ABCD中,已知AB=2AD,E为AB的中点,将ΔAED沿DE折起,使AB=AC.求证:平面ADE⊥平面

BCDE.

第四篇:证明不等式方法

不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。1比较法

比较法是证明不等式的最基本方法,具体有“作差”比较和“作商”比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)

例1已知a+b≥0,求证:a3+b3≥a2b+ab

2分析:由题目观察知用“作差”比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。

∵(a3+b3)(a2b+ab2)

=a2(a-b)-b2(a-b)

=(a-b)(a2-b2)

证明: =(a-b)2(a+b)

又∵(a-b)2≥0a+b≥0

∴(a-b)2(a+b)≥0

即a3+b3≥a2b+ab2

例2 设a、b∈R+,且a≠b,求证:aabb>abba

分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同“1”比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小

证明:由a、b的对称性,不妨解a>b>0则

aabbabba=aa-bbb-a=(ab)a-b

∵ab0,∴ab1,a-b0

∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba

练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法

利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有:

(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)

(2)若a、b∈R+,则a+b≥ 2ab(当且仅当a=b时,取等号)

(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)

例3 若a、b∈R,|a|≤1,|b|≤1则a1-b2+b1-a2≤

1分析:通过观察可直接套用: xy≤x2+y2

2证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1

∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立

练习2:若 ab0,证明a+1(a-b)b≥

33综合法

综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。

例4,设a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252

证明:∵ a0,b0,a+b=1

∴ab≤14或1ab≥

4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2

=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252

练习3:已知a、b、c为正数,n是正整数,且f(n)=1gan+bn+cn

3求证:2f(n)≤f(2n)

4分析法

从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。

例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab

分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。

要证c-c2-ab<a<c+c2-ab

只需证-c2-ab<a-c<c2-ab

证明:即证 |a-c|<c2-ab

即证(a-c)2<c2-ab

即证 a2-2ac<-ab

∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知

∴ 不等式成立

练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)

25放缩法

放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。

例6:已知a、b、c、d都是正数

求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<

2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。

证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>

ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=

1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d

∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<

b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2

综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2

练习5:已知:a<2,求证:loga(a+1)<1

6换元法

换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。

(1)三角换元:

是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。

7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<

1证明: ∵x,y∈R+,且x-y=1,x=secθ,y=tanθ,(0<θ<xy)

∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ

=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ

=sinθ

∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1

复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤

3(2)比值换元:

对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。

例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥431

4证明:设x-1=y+12=z-23=k

于是x=k+1,y=zk-1,z=3k+

2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2

=14(k+514)2+4314≥4314

7反证法

有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是“至少”、“唯一”或含有否定词的命题,适宜用反证法。

例9:已知p3+q3=2,求证:p+q≤

2分析:本题已知为p、q的三次,而结论中只有一次,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。

证明:解设p+q>2,那么p>2-q

∴p3>(2-q)3=8-12q+6q2-q

3将p3+q3 =2,代入得 6q2-12q+6<0

即6(q-1)2<0 由此得出矛盾∴p+q≤

2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0

8数学归纳法

与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。

例10:设n∈N,且n>1,求证:(1+13)(1+15)…(1+12n-1)>2n+12

分析:观察求证式与n有关,可采用数学归纳法

证明:(1)当n=2时,左= 43,右=52

∵43>52∴不等式成立

(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①

要证①式左边>2k+32,只要证2k+12·

2k+22k+1>2k+32②

对于②〈二〉2k+2>2k+1·2k+3

〈二〉(2k+2)2>(2k+1)(2k+3)

〈二〉4k2+8k+4>4k2+8k+3

〈二〉4>3③

∵③成立 ∴②成立,即当n=k+1时,原不等式成立

由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立

练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n>132

49构造法

根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。

1构造函数法

例11:证明不等式:x1-2x <x2(x≠0)

证明:设f(x)=x1-2x-x2(x≠0)

∵f(-x)

=-x1-2-x+x2x-2x2x-1+x

2=x1-2x-[1-(1-2x)]+x2=x1-2x-x+x2

=f(x)

∴f(x)的图像表示y轴对称

∵当x>0时,1-2x<0,故f(x)<0

∴当x<0时,据图像的对称性知f(x)<0

∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)

练习9:已知a>b,2b>a+c,求证:b-b2-ab<a<b+b2-ab

2构造图形法

例12:若f(x)=1+x2,a≠b,则|f(x)-f(b)|< |a-b|

分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2

于是如下图,设A(1,a),B(1,b)则0A= 1+a2 0B=1+b2

|AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b|

练习10:设a≥c,b≥c,c≥0,求证 c(a-c)+c(b-c)≤ab

10添项法

某些不等式的证明若能优先考虑“添项”技巧,能得到快速求解的效果。

1倍数添项

若不等式中含有奇数项的和,可通过对不等式乘以2变成偶数项的和,然后分组利用已知不等式进行放缩。

例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(当且仅当a=b=c时等号成立)证明:∵a、b、c∈R+

∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc

当且仅当a=b,b=c,c=a即a=b=c时,等号成立。

2平方添项

运用此法必须注意原不等号的方向

例14 :对于一切大于1的自然数n,求证:

(1+13)(1+15)…(1+12n-1> 2n+1 2)

证明:∵b > a> 0,m> 0时ba> b+ma+m

∵ [(1+13)(1+15)…(1+12n-1)]2=(43、65…2n2n-1)(43、65…2n2n-1)>(54、76…2n+12n)(43、65…2n2n-1)=2n+13> 2n+14>

∴(1+13)(1+15)…(1+12n-1)>2n+1 2)

3平均值添项

例15:在△ABC中,求证sinA+sinB+sinC≤3

32分析:∵A+B+C=π,可按A、B、C的算术平均值添项sin π

3证明:先证命题:若x>0,y<π,则sinx+siny≤2sin x+y2(当且仅当x=y时等号成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y

2∴上式成立

反复运用这个命题,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332

∴sinA+sinB≠sinC≤332

练习11 在△ABC中,sin A2sinB2sinC2≤18

4利用均值不等式等号成立的条件添项

例16 :已知a、b∈R+,a≠b且a+b=1,求证a4+b4> 18

分析:若取消a≠b的限制则a=b= 12时,等号成立

证明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①

同理b4+3(12)4 ≥b②

∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③

∵a≠b ∴①②中等号不成立∴③中等号不成立∴ 原不等式成立

1.是否存在常数c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y对任意正数x,y恒成立? 错解:证明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故说明c存在。

正解:x=y得23 ≤c≤23,故猜想c= 23,下证不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。要证不等式xx+2y+xx+2y≤23,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。

6.2已知x,y,z∈R+,求证:x2y2+y2z2+z2x2x+y+z ≥ xyz

错解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz

错因:根据不等式的性质:若a >b> 0,c >d >0,则ac bd,但 ac>bd却不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化简得:x2y2+y2z2+z2x2≥xyz(x+y+z),两边同除以x+y+z:

x2y2+y2z2+z2x2x+y+z ≥ xyz

6.3 设x+y>0,n为偶数,求证yn-1xn+xn-1yn≥

1x 1y

错证:∵yn-1xn+xn-1yn-1x-1y

=(xn-yn)(xn-1-yn-1)xnyn

n为偶数,∴ xnyn >0,又xn-yn和xn-1-yn-

1同号,∴yn-1xn+xn-1yn≥ 1x-1y

错因:在x+y>0的条件下,n为偶数时,xn-yn和xn-1-yn-1不一定同号,应分x、y同号和异号两种情况讨论。

正解:应用比较法:

yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn

① 当x>0,y>0时,(xn-yn)(xn-1-yn-1)≥ 0,(xy)n >0

所以(xn-yn)(xn-1-yn-1)xnyn

≥0故:yn-1xn+xn-1yn≥ 1x-1y

② 当x,y有一个是负值时,不妨设x>0,y<0,且x+y>0,所以x>|y|

又n为偶数时,所以(xn-yn)(xn-1-yn-1)>0 又(xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y

综合①②知原不等式成立

第五篇:立体几何常见证明方法

立体几何方法归纳小结

一、线线平行的证明方法

1、根据公理4,证明两直线都与第三条直线平行。

2、根据线面平行的性质定理,若直线a平行于平面A,过a的平面B与平面A相交于b,则 a//b。

3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b。

4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线 a与直线 b,则a//b。



5、由向量共线定理,若ABxCD,且AB、CD不共线,则向量AB所在的直线a与向量cd所在的直线b平行,即a//b。

二、线面平行的证明方法

1、根据线面平行的定义,证直线与平面没有公共点。

2、根据线面平行的判定定理,若平面 A内存在一条直线b与平面外的直线a平行,则a//A。(用相似三角形或平行四边形)

3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。

4、向量法,向量c与平面A法向量垂直,且向量c所在直线c不在平面内,则c//A。

三、面面平行的证明方法

1、根据定义,若两平面没有公共点,则两平面平行。

2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。

或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。

3、垂直同一直线的两平面平行。

4、平行同一平面的两平面平行。

5、向量法,证明两平面的法向量共线。

四、两直线垂直的证明方法

1、根据定义,证明两直线所成的角为90°

2、一直线垂直于两平行直线中的一条,也垂直于另一条.3、一直线垂直于一个平面,则它垂直于平面内的所有直线.4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线).5、向量法.五、线面垂直的证明方法

1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面.2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面.3、一直线垂直于两平行平面中的一个,也垂直于另一个.4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面.5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.6、向量法,证明平面的法向量与表示该直线的向量共线.六、面面垂直的证明方法

1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。

2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。

3、一平面垂直于两平行平面中的一个,也垂直于另一个。

4、向量法,证明两平面的法向量垂直(即法向量的数量积为零)。

七、两异面直线所成角的求法

1、根据定义,平移其中一条和另一条相交,然后在三角形中求角。

2、利用中位线,将两异面直线平移至一特殊点(中位线的交点)然后在三角形中求角。

3、cos=cos1cos2

4、向量法.八、直线与平面所成角的求法

1、根据定义,作出直线与平面所成角,然后在直角三角形中求角。

2、转化为距离(sin=h/l)

3、向量法,求出平面的法向量,然后求平面的斜线与法向量的夹角。(注意为正弦)注:对两异面直线所成角和直线与平面所成角一定要注意角的范围。九、二面角的求法

1、定义法,从二面角的棱上的某一点分别在两个半平面内作棱的垂线,求两条垂线所形成的角。

2、根据三垂线定理,先作出二面角的平面角,再在直角三角形中求角。

3、射影面积法,先作出一个半平面内的某个多边形,在另一个半平面内的射影多边形,然后由公式 cosθ=s'/s(其中θ为二面角的平面角,s'为射影多边形的面积,s为多边形的面积)求出二面角的平面角。

4、向量法,求出两个半平面的法向量,然后求两法向量的夹角。(一般要先根据已知判断二面角是锐角还是钝角,否则要判断指向,同内同外为补角)

5.公式法(异面直线上点距离公式和三类角公式)

十、点到平面的距离的求法

1、根据定义,直接求垂线段的长度。

2、向量法,利用公式

|PAn|d=|n|(其中PA为平面的一条斜线,向量n 为平面的一个法向量。

3、等体积法,主要用在四面体(三棱锥)中,根据四面体的体积等于1/3底面积×高,选取不同的底面积,求出其中一条高长。

十一、平面图形翻折问题的处理方法

1、先比较翻折前后的图形,弄清哪些量和位置关系在翻折过程中不变,哪些已发生变化,然后将不变的条件集中到立体图形中,将问题归结为一个条件与结论都已知的立体几何问题。

2、有关翻折问题的计算,必须抓住在翻折过程中点、线、面之间的位置关系、数量关系中,哪些是变的,哪些没变,尤其要抓住不变量。对计算几何体上两点之间的最短距离问题,要注意转变为平面图形求两点间的距离来计算。

十二、要注意的问题

1、对推理论证与计算相结合的题目的解题原则是一作、二证、三计算。(向量法可省略证角,但必须交代如何建系,右手系)。

2、正方体中,两个平行的正三角形截面把一条与它们垂直的体对角线三等分。

3、已知三条射线两两夹角,会求线面角和二面角(课堂笔记,只需会推导方法,不需强记公式)

4、适当时候,坐标法不方便时可以考虑基向量法,求向量模易出错:rar2a。

5、求异面直线间的距离,若公垂线找不到,除向量法外,可以考虑构造平行平面或平行线面,转化为点面距离求。

下载立体几何中不等式问题的证明方法word格式文档
下载立体几何中不等式问题的证明方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    立体几何的证明方法

    立体几何的证明方法1.线面平行的证明方法2.两线平行的证明方法5.面面垂直的证明方法6.线线垂直的证明方法7、空间平行、垂直之间的转化与联系:应用判定定理时,注意由“低维”到......

    立体几何常见证明方法

    立体几何方法归纳小结一、线线平行的证明方法1、根据公理4,证明两直线都与第三条直线平行。2、根据线面平行的性质定理,若直线a平行于平面A ,过a的平面B与平面A相交于b ,则 a//b......

    高中立体几何证明方法

    高中立体几何一、平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定......

    高等数学中不等式的证明方法

    高等数学中不等式的证明方法摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,......

    不等式证明若干方法

    安康学院 数统系数学与应用数学 专业 11 级本科生论文(设计)选题实习报告11级数学与应用数学专业《科研训练2》评分表注:综合评分60的为“及格”;......

    不等式的证明方法

    几个简单的证明方法一、比较法:ab等价于ab0;而ab0等价于ab1.即a与b的比较转化为与0或1的比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章......

    证明不等式方法探析

    §1 不等式的定义用不等号将两个解析式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含sinx1,ex>0 ,2x<3,5x5不等符号的式子,那它就是一个不等式.例如2x+2y2xy,等。根据......

    sos方法证明不等式

    数学竞赛讲座SOS方法证明不等式(sum of squares)SABSabcSbcaScab0性质一:若Sa,Sb,Sc0,则SABSabcSbcaScab0. 222222性质二:若a,b,c,Sa,Sb,Sc且满足(1)SaSb,SbSc,ScSa0,(2)若abc或abc,则S......