第一篇:立体几何中不等式问题的证明方法
例谈立体几何中不等式问题的证明方法
立体几何中的不等式问题具有很强的综合性,解决这类问题既要有较强的空间想象能力,又要有严密的逻辑思维能力,因此有一定的难度.下面我们介绍几种有关的解题方法.
1.利用最小角定理
例1.在直二面角l中,A,B,点A,B不全在棱l上,直线AB与平面,所成的角分别为,,求证:90.
证:如图1,当AB与,都不垂直时,分别在,内作ACl于C,BDl于D,则AC,BD,BAD,ABC.
由最小角定理得ABCABD,BADABCBADABD90.
当AB或AB时,易知90.
综上即得90.
2.利用三角知识
例2.已知三棱锥PABC的侧棱PA、PB、PC两两垂直,求证:0BAC90,0ABC90,0CAB90.
证:如图2,则在ABC中,由余弦定理得
cosBACABACBC
2ABAC
22222 222
2(PAPB)(PAPC)(PBPC)2ABACPA2ABAC0,0BAC90.
同理可证0ABC90,0CAB90.
3.利用一元二次方程根的判别式
例3.已知球O的半径为定值r,它的外切圆锥的全面积为S,求证:S8r. 证:如图3,作球O的外切圆锥的轴截面PAB,设球O
与圆锥底面直径AB及母线PA分别切于点E和F.再设
AEAFt,则由PAE∽POF,2
得
PEPF
AEOF
PF
4tr,由此有PF
2rttr,Stt(PFt)
2rt
tr,即2t4St2r2S0.
时取等号.
∵t2为实数,S28r2S0,即S
8r2,当且仅当t
4.利用基本不等式
例4.已知三棱锥PABC的侧面PAB、PBC、PCA两两垂直,且这三个侧面与底面ABC所成的二面角分别为、、,求证:coscoscos
9证:如图4,由题设易得CP平面PAB,在侧面PAB内过点P作PEAB于E,则CEAB,∴CEP.设PAa,PBb,PCc,则
PE
cos
CE,同理,cos,cos
coscoscos
5.利用函数的单调性
例5.如图5,A、B是球O面上的两点,O是过A、B的大圆,O1是过A、B的任意小圆,记l大为O中劣弧AB的长,记l小为O1中 劣弧AB的长,求证:l大l小.
证:设OAR,O1Ar(Rr),AOB2,AO1B2.在等腰AOB和等腰AO1B中,由OAOA1,知022,即0/2.
AB2Rsin,AB2rsin,Rsinrsin,即
sinsin
rR
①.
设f(x)
sinxx
(0x
),则f(x)
xcosxsinx
x,再令g(x)xcosxsinx(0x
),则g(x)cosxxsinxcosxxsinx0.
∴g(x)在(0,)上为减函数,故g(x)g(0)0,即xcosxsinx0,从而,当
0x时,有f(x)0,f(x)在(0,
)上也为减函数.
0,rR
sin
sin
,即
sinsin
②,由①、②两式可得
2R2rl大l小.
6.利用平面几何知识
例6.已知P、Q是正四面体ABCD内部的两点,求证:PAQ60.
证:如图6,过点A、P、Q作正四面体ABCD的截面
AEF.若E、F都不是BCD的顶点,不妨设E、F分别是
棱BD、CD上异于端点的点,此时P、Q两点在AEF内,PAQEAF.又ABE≌CBE,AECE.
而EFCEDF60BCFECF,EFCEAE.
同理可得EFAF,EF是AEF中最小的边,故必有EAF60,PAQEAF60.
若E、F中有一个是BCD的顶点,不妨设点F在D处.于是有,PAQEAFBAF60.
第二篇:立体几何证明方法
立体几何证明方法
一、线线平行的证明方法:
1、利用平行四边形。
2、利用三角形或梯形的中位线
3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。(线面平行的性质定理)
4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行的性质定理)
5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理)
6、平行于同一条直线的两条直线平行。
二、线面平行的证明方法:
1、定义法:直线与平面没有公共点。
2、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(线面平行的判定定理)
3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。
三、面面平行的证明方法:
1、定义法:两平面没有公共点。
2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理)
3、平行于同一平面的两个平面平行
4、经过平面外一点,有且只有一个平面和已知平面平行。
5、垂直于同一直线的两个平面平行。
四、线线垂直的证明方法
1、勾股定理。
2、等腰三角形。
3、菱形对角线。
4、圆所对的圆周角是直角。
5、点在线上的射影。6利用向量来证明。
7、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。
8、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。
五、线面垂直的证明方法:
1、定义法:直线与平面内任意直线都垂直。
2、点在面内的射影。
3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(线面垂直的判定定理)
4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(面面垂直的性质定理)
5、两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面
6、一条直线垂直于两平行平面中的一个平面,则必垂直于另一个平面。
7、两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面。
8、过一点,有且只有一条直线与已知平面垂直。
9、过一点,有且只有一个平面与已知直线垂直。
六、面面垂直的证明方法:
1、定义法:两个平面的二面角是直二面角。
2、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。(面面垂直的判定定理)
3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。
4、如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直。
第三篇:立体几何证明问题
证明问题
例1.如图,E、F分别是长方体边形
.-的棱A、C的中点,求证:四边形是平行四
例2.如图所示,ABCD为正方形,SA⊥平面ABCD,过点A且垂直于SC的平面分别交SB、SC、SD与E、F、G.求证:AE⊥SB.例3.如图,长方体∠求证:
=90°.⊥
PQ
-中,P、Q、R分别为棱、、BC上的点,PQ//AB,连结,例4.已知有公共边AB的两个全等的矩形ABCD和ABEF不同在一个平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ,如图所示.求证:PQ//平面
CBE.例5.如图直角三角形ABC平面外一点S,且SA=SB=SC,且点D为斜边AC的中点.(1)求证:SD⊥平面ABC.(2)若AB=AC,求证BD⊥平面
SAC.例6.如图,在正方体
-中,M、N、E、F分别是棱、、、的中点.求证:平面AMN//平面
EFDB.例7.如图(1)、(2),矩形ABCD中,已知AB=2AD,E为AB的中点,将ΔAED沿DE折起,使AB=AC.求证:平面ADE⊥平面
BCDE.
第四篇:证明不等式方法
不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。1比较法
比较法是证明不等式的最基本方法,具体有“作差”比较和“作商”比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)
例1已知a+b≥0,求证:a3+b3≥a2b+ab
2分析:由题目观察知用“作差”比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。
∵(a3+b3)(a2b+ab2)
=a2(a-b)-b2(a-b)
=(a-b)(a2-b2)
证明: =(a-b)2(a+b)
又∵(a-b)2≥0a+b≥0
∴(a-b)2(a+b)≥0
即a3+b3≥a2b+ab2
例2 设a、b∈R+,且a≠b,求证:aabb>abba
分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同“1”比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小
证明:由a、b的对称性,不妨解a>b>0则
aabbabba=aa-bbb-a=(ab)a-b
∵ab0,∴ab1,a-b0
∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba
练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法
利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有:
(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)
(2)若a、b∈R+,则a+b≥ 2ab(当且仅当a=b时,取等号)
(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)
例3 若a、b∈R,|a|≤1,|b|≤1则a1-b2+b1-a2≤
1分析:通过观察可直接套用: xy≤x2+y2
2证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1
∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立
练习2:若 ab0,证明a+1(a-b)b≥
33综合法
综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。
例4,设a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252
证明:∵ a0,b0,a+b=1
∴ab≤14或1ab≥
4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2
=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252
练习3:已知a、b、c为正数,n是正整数,且f(n)=1gan+bn+cn
3求证:2f(n)≤f(2n)
4分析法
从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。
例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab
分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。
要证c-c2-ab<a<c+c2-ab
只需证-c2-ab<a-c<c2-ab
证明:即证 |a-c|<c2-ab
即证(a-c)2<c2-ab
即证 a2-2ac<-ab
∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知
∴ 不等式成立
练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)
25放缩法
放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。
例6:已知a、b、c、d都是正数
求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<
2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。
证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>
ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=
1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d
∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<
b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2
综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
练习5:已知:a<2,求证:loga(a+1)<1
6换元法
换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。
(1)三角换元:
是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。
例
7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<
1证明: ∵x,y∈R+,且x-y=1,x=secθ,y=tanθ,(0<θ<xy)
∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ
=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ
=sinθ
∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1
复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤
3(2)比值换元:
对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。
例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥431
4证明:设x-1=y+12=z-23=k
于是x=k+1,y=zk-1,z=3k+
2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2
=14(k+514)2+4314≥4314
7反证法
有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是“至少”、“唯一”或含有否定词的命题,适宜用反证法。
例9:已知p3+q3=2,求证:p+q≤
2分析:本题已知为p、q的三次,而结论中只有一次,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。
证明:解设p+q>2,那么p>2-q
∴p3>(2-q)3=8-12q+6q2-q
3将p3+q3 =2,代入得 6q2-12q+6<0
即6(q-1)2<0 由此得出矛盾∴p+q≤
2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0
8数学归纳法
与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。
例10:设n∈N,且n>1,求证:(1+13)(1+15)…(1+12n-1)>2n+12
分析:观察求证式与n有关,可采用数学归纳法
证明:(1)当n=2时,左= 43,右=52
∵43>52∴不等式成立
(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①
要证①式左边>2k+32,只要证2k+12·
2k+22k+1>2k+32②
对于②〈二〉2k+2>2k+1·2k+3
〈二〉(2k+2)2>(2k+1)(2k+3)
〈二〉4k2+8k+4>4k2+8k+3
〈二〉4>3③
∵③成立 ∴②成立,即当n=k+1时,原不等式成立
由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立
练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n>132
49构造法
根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。
1构造函数法
例11:证明不等式:x1-2x <x2(x≠0)
证明:设f(x)=x1-2x-x2(x≠0)
∵f(-x)
=-x1-2-x+x2x-2x2x-1+x
2=x1-2x-[1-(1-2x)]+x2=x1-2x-x+x2
=f(x)
∴f(x)的图像表示y轴对称
∵当x>0时,1-2x<0,故f(x)<0
∴当x<0时,据图像的对称性知f(x)<0
∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)
练习9:已知a>b,2b>a+c,求证:b-b2-ab<a<b+b2-ab
2构造图形法
例12:若f(x)=1+x2,a≠b,则|f(x)-f(b)|< |a-b|
分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2
于是如下图,设A(1,a),B(1,b)则0A= 1+a2 0B=1+b2
|AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b|
练习10:设a≥c,b≥c,c≥0,求证 c(a-c)+c(b-c)≤ab
10添项法
某些不等式的证明若能优先考虑“添项”技巧,能得到快速求解的效果。
1倍数添项
若不等式中含有奇数项的和,可通过对不等式乘以2变成偶数项的和,然后分组利用已知不等式进行放缩。
例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(当且仅当a=b=c时等号成立)证明:∵a、b、c∈R+
∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc
当且仅当a=b,b=c,c=a即a=b=c时,等号成立。
2平方添项
运用此法必须注意原不等号的方向
例14 :对于一切大于1的自然数n,求证:
(1+13)(1+15)…(1+12n-1> 2n+1 2)
证明:∵b > a> 0,m> 0时ba> b+ma+m
∵ [(1+13)(1+15)…(1+12n-1)]2=(43、65…2n2n-1)(43、65…2n2n-1)>(54、76…2n+12n)(43、65…2n2n-1)=2n+13> 2n+14>
∴(1+13)(1+15)…(1+12n-1)>2n+1 2)
3平均值添项
例15:在△ABC中,求证sinA+sinB+sinC≤3
32分析:∵A+B+C=π,可按A、B、C的算术平均值添项sin π
3证明:先证命题:若x>0,y<π,则sinx+siny≤2sin x+y2(当且仅当x=y时等号成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y
2∴上式成立
反复运用这个命题,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332
∴sinA+sinB≠sinC≤332
练习11 在△ABC中,sin A2sinB2sinC2≤18
4利用均值不等式等号成立的条件添项
例16 :已知a、b∈R+,a≠b且a+b=1,求证a4+b4> 18
分析:若取消a≠b的限制则a=b= 12时,等号成立
证明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①
同理b4+3(12)4 ≥b②
∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③
∵a≠b ∴①②中等号不成立∴③中等号不成立∴ 原不等式成立
1.是否存在常数c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y对任意正数x,y恒成立? 错解:证明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故说明c存在。
正解:x=y得23 ≤c≤23,故猜想c= 23,下证不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。要证不等式xx+2y+xx+2y≤23,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。
6.2已知x,y,z∈R+,求证:x2y2+y2z2+z2x2x+y+z ≥ xyz
错解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz
错因:根据不等式的性质:若a >b> 0,c >d >0,则ac bd,但 ac>bd却不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化简得:x2y2+y2z2+z2x2≥xyz(x+y+z),两边同除以x+y+z:
x2y2+y2z2+z2x2x+y+z ≥ xyz
6.3 设x+y>0,n为偶数,求证yn-1xn+xn-1yn≥
1x 1y
错证:∵yn-1xn+xn-1yn-1x-1y
=(xn-yn)(xn-1-yn-1)xnyn
n为偶数,∴ xnyn >0,又xn-yn和xn-1-yn-
1同号,∴yn-1xn+xn-1yn≥ 1x-1y
错因:在x+y>0的条件下,n为偶数时,xn-yn和xn-1-yn-1不一定同号,应分x、y同号和异号两种情况讨论。
正解:应用比较法:
yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn
① 当x>0,y>0时,(xn-yn)(xn-1-yn-1)≥ 0,(xy)n >0
所以(xn-yn)(xn-1-yn-1)xnyn
≥0故:yn-1xn+xn-1yn≥ 1x-1y
② 当x,y有一个是负值时,不妨设x>0,y<0,且x+y>0,所以x>|y|
又n为偶数时,所以(xn-yn)(xn-1-yn-1)>0 又(xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y
综合①②知原不等式成立
第五篇:立体几何常见证明方法
立体几何方法归纳小结
一、线线平行的证明方法
1、根据公理4,证明两直线都与第三条直线平行。
2、根据线面平行的性质定理,若直线a平行于平面A,过a的平面B与平面A相交于b,则 a//b。
3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b。
4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线 a与直线 b,则a//b。
5、由向量共线定理,若ABxCD,且AB、CD不共线,则向量AB所在的直线a与向量cd所在的直线b平行,即a//b。
二、线面平行的证明方法
1、根据线面平行的定义,证直线与平面没有公共点。
2、根据线面平行的判定定理,若平面 A内存在一条直线b与平面外的直线a平行,则a//A。(用相似三角形或平行四边形)
3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。
4、向量法,向量c与平面A法向量垂直,且向量c所在直线c不在平面内,则c//A。
三、面面平行的证明方法
1、根据定义,若两平面没有公共点,则两平面平行。
2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。
或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。
3、垂直同一直线的两平面平行。
4、平行同一平面的两平面平行。
5、向量法,证明两平面的法向量共线。
四、两直线垂直的证明方法
1、根据定义,证明两直线所成的角为90°
2、一直线垂直于两平行直线中的一条,也垂直于另一条.3、一直线垂直于一个平面,则它垂直于平面内的所有直线.4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线).5、向量法.五、线面垂直的证明方法
1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面.2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面.3、一直线垂直于两平行平面中的一个,也垂直于另一个.4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面.5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.6、向量法,证明平面的法向量与表示该直线的向量共线.六、面面垂直的证明方法
1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。
2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。
3、一平面垂直于两平行平面中的一个,也垂直于另一个。
4、向量法,证明两平面的法向量垂直(即法向量的数量积为零)。
七、两异面直线所成角的求法
1、根据定义,平移其中一条和另一条相交,然后在三角形中求角。
2、利用中位线,将两异面直线平移至一特殊点(中位线的交点)然后在三角形中求角。
3、cos=cos1cos2
4、向量法.八、直线与平面所成角的求法
1、根据定义,作出直线与平面所成角,然后在直角三角形中求角。
2、转化为距离(sin=h/l)
3、向量法,求出平面的法向量,然后求平面的斜线与法向量的夹角。(注意为正弦)注:对两异面直线所成角和直线与平面所成角一定要注意角的范围。九、二面角的求法
1、定义法,从二面角的棱上的某一点分别在两个半平面内作棱的垂线,求两条垂线所形成的角。
2、根据三垂线定理,先作出二面角的平面角,再在直角三角形中求角。
3、射影面积法,先作出一个半平面内的某个多边形,在另一个半平面内的射影多边形,然后由公式 cosθ=s'/s(其中θ为二面角的平面角,s'为射影多边形的面积,s为多边形的面积)求出二面角的平面角。
4、向量法,求出两个半平面的法向量,然后求两法向量的夹角。(一般要先根据已知判断二面角是锐角还是钝角,否则要判断指向,同内同外为补角)
5.公式法(异面直线上点距离公式和三类角公式)
十、点到平面的距离的求法
1、根据定义,直接求垂线段的长度。
2、向量法,利用公式
|PAn|d=|n|(其中PA为平面的一条斜线,向量n 为平面的一个法向量。
3、等体积法,主要用在四面体(三棱锥)中,根据四面体的体积等于1/3底面积×高,选取不同的底面积,求出其中一条高长。
十一、平面图形翻折问题的处理方法
1、先比较翻折前后的图形,弄清哪些量和位置关系在翻折过程中不变,哪些已发生变化,然后将不变的条件集中到立体图形中,将问题归结为一个条件与结论都已知的立体几何问题。
2、有关翻折问题的计算,必须抓住在翻折过程中点、线、面之间的位置关系、数量关系中,哪些是变的,哪些没变,尤其要抓住不变量。对计算几何体上两点之间的最短距离问题,要注意转变为平面图形求两点间的距离来计算。
十二、要注意的问题
1、对推理论证与计算相结合的题目的解题原则是一作、二证、三计算。(向量法可省略证角,但必须交代如何建系,右手系)。
2、正方体中,两个平行的正三角形截面把一条与它们垂直的体对角线三等分。
3、已知三条射线两两夹角,会求线面角和二面角(课堂笔记,只需会推导方法,不需强记公式)
4、适当时候,坐标法不方便时可以考虑基向量法,求向量模易出错:rar2a。
5、求异面直线间的距离,若公垂线找不到,除向量法外,可以考虑构造平行平面或平行线面,转化为点面距离求。