大学数学中不等式的证明方法

时间:2019-05-13 21:42:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《大学数学中不等式的证明方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《大学数学中不等式的证明方法》。

第一篇:大学数学中不等式的证明方法

龙源期刊网 http://.cn

大学数学中不等式的证明方法

作者:吴莹

来源:《学园》2013年第01期

【摘 要】不等式在科学研究中的地位很重要,但对不等式的证明有些同学无从下手,用什么方法是个难题,所以本文对大学数学中遇到的不等式的各种证明方法进行归纳总结,并给出了相应的例子。

【关键词】数学归纳法 导数 单调性 中值定理 最值 积分

【中图分类号】O211 【文献标识码】A 【文章编号】1674-4810(2013)01-0076-02

第二篇:证明不等式方法

不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。1比较法

比较法是证明不等式的最基本方法,具体有“作差”比较和“作商”比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)

例1已知a+b≥0,求证:a3+b3≥a2b+ab

2分析:由题目观察知用“作差”比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。

∵(a3+b3)(a2b+ab2)

=a2(a-b)-b2(a-b)

=(a-b)(a2-b2)

证明: =(a-b)2(a+b)

又∵(a-b)2≥0a+b≥0

∴(a-b)2(a+b)≥0

即a3+b3≥a2b+ab2

例2 设a、b∈R+,且a≠b,求证:aabb>abba

分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同“1”比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小

证明:由a、b的对称性,不妨解a>b>0则

aabbabba=aa-bbb-a=(ab)a-b

∵ab0,∴ab1,a-b0

∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba

练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法

利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有:

(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)

(2)若a、b∈R+,则a+b≥ 2ab(当且仅当a=b时,取等号)

(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)

例3 若a、b∈R,|a|≤1,|b|≤1则a1-b2+b1-a2≤

1分析:通过观察可直接套用: xy≤x2+y2

2证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1

∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立

练习2:若 ab0,证明a+1(a-b)b≥

33综合法

综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。

例4,设a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252

证明:∵ a0,b0,a+b=1

∴ab≤14或1ab≥

4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2

=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252

练习3:已知a、b、c为正数,n是正整数,且f(n)=1gan+bn+cn

3求证:2f(n)≤f(2n)

4分析法

从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。

例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab

分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。

要证c-c2-ab<a<c+c2-ab

只需证-c2-ab<a-c<c2-ab

证明:即证 |a-c|<c2-ab

即证(a-c)2<c2-ab

即证 a2-2ac<-ab

∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知

∴ 不等式成立

练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)

25放缩法

放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。

例6:已知a、b、c、d都是正数

求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<

2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。

证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>

ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=

1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d

∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<

b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2

综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2

练习5:已知:a<2,求证:loga(a+1)<1

6换元法

换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。

(1)三角换元:

是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。

7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<

1证明: ∵x,y∈R+,且x-y=1,x=secθ,y=tanθ,(0<θ<xy)

∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ

=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ

=sinθ

∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1

复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤

3(2)比值换元:

对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。

例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥431

4证明:设x-1=y+12=z-23=k

于是x=k+1,y=zk-1,z=3k+

2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2

=14(k+514)2+4314≥4314

7反证法

有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是“至少”、“唯一”或含有否定词的命题,适宜用反证法。

例9:已知p3+q3=2,求证:p+q≤

2分析:本题已知为p、q的三次,而结论中只有一次,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。

证明:解设p+q>2,那么p>2-q

∴p3>(2-q)3=8-12q+6q2-q

3将p3+q3 =2,代入得 6q2-12q+6<0

即6(q-1)2<0 由此得出矛盾∴p+q≤

2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0

8数学归纳法

与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。

例10:设n∈N,且n>1,求证:(1+13)(1+15)…(1+12n-1)>2n+12

分析:观察求证式与n有关,可采用数学归纳法

证明:(1)当n=2时,左= 43,右=52

∵43>52∴不等式成立

(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①

要证①式左边>2k+32,只要证2k+12·

2k+22k+1>2k+32②

对于②〈二〉2k+2>2k+1·2k+3

〈二〉(2k+2)2>(2k+1)(2k+3)

〈二〉4k2+8k+4>4k2+8k+3

〈二〉4>3③

∵③成立 ∴②成立,即当n=k+1时,原不等式成立

由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立

练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n>132

49构造法

根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。

1构造函数法

例11:证明不等式:x1-2x <x2(x≠0)

证明:设f(x)=x1-2x-x2(x≠0)

∵f(-x)

=-x1-2-x+x2x-2x2x-1+x

2=x1-2x-[1-(1-2x)]+x2=x1-2x-x+x2

=f(x)

∴f(x)的图像表示y轴对称

∵当x>0时,1-2x<0,故f(x)<0

∴当x<0时,据图像的对称性知f(x)<0

∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)

练习9:已知a>b,2b>a+c,求证:b-b2-ab<a<b+b2-ab

2构造图形法

例12:若f(x)=1+x2,a≠b,则|f(x)-f(b)|< |a-b|

分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2

于是如下图,设A(1,a),B(1,b)则0A= 1+a2 0B=1+b2

|AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b|

练习10:设a≥c,b≥c,c≥0,求证 c(a-c)+c(b-c)≤ab

10添项法

某些不等式的证明若能优先考虑“添项”技巧,能得到快速求解的效果。

1倍数添项

若不等式中含有奇数项的和,可通过对不等式乘以2变成偶数项的和,然后分组利用已知不等式进行放缩。

例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(当且仅当a=b=c时等号成立)证明:∵a、b、c∈R+

∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc

当且仅当a=b,b=c,c=a即a=b=c时,等号成立。

2平方添项

运用此法必须注意原不等号的方向

例14 :对于一切大于1的自然数n,求证:

(1+13)(1+15)…(1+12n-1> 2n+1 2)

证明:∵b > a> 0,m> 0时ba> b+ma+m

∵ [(1+13)(1+15)…(1+12n-1)]2=(43、65…2n2n-1)(43、65…2n2n-1)>(54、76…2n+12n)(43、65…2n2n-1)=2n+13> 2n+14>

∴(1+13)(1+15)…(1+12n-1)>2n+1 2)

3平均值添项

例15:在△ABC中,求证sinA+sinB+sinC≤3

32分析:∵A+B+C=π,可按A、B、C的算术平均值添项sin π

3证明:先证命题:若x>0,y<π,则sinx+siny≤2sin x+y2(当且仅当x=y时等号成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y

2∴上式成立

反复运用这个命题,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332

∴sinA+sinB≠sinC≤332

练习11 在△ABC中,sin A2sinB2sinC2≤18

4利用均值不等式等号成立的条件添项

例16 :已知a、b∈R+,a≠b且a+b=1,求证a4+b4> 18

分析:若取消a≠b的限制则a=b= 12时,等号成立

证明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①

同理b4+3(12)4 ≥b②

∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③

∵a≠b ∴①②中等号不成立∴③中等号不成立∴ 原不等式成立

1.是否存在常数c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y对任意正数x,y恒成立? 错解:证明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故说明c存在。

正解:x=y得23 ≤c≤23,故猜想c= 23,下证不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。要证不等式xx+2y+xx+2y≤23,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。

6.2已知x,y,z∈R+,求证:x2y2+y2z2+z2x2x+y+z ≥ xyz

错解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz

错因:根据不等式的性质:若a >b> 0,c >d >0,则ac bd,但 ac>bd却不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化简得:x2y2+y2z2+z2x2≥xyz(x+y+z),两边同除以x+y+z:

x2y2+y2z2+z2x2x+y+z ≥ xyz

6.3 设x+y>0,n为偶数,求证yn-1xn+xn-1yn≥

1x 1y

错证:∵yn-1xn+xn-1yn-1x-1y

=(xn-yn)(xn-1-yn-1)xnyn

n为偶数,∴ xnyn >0,又xn-yn和xn-1-yn-

1同号,∴yn-1xn+xn-1yn≥ 1x-1y

错因:在x+y>0的条件下,n为偶数时,xn-yn和xn-1-yn-1不一定同号,应分x、y同号和异号两种情况讨论。

正解:应用比较法:

yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn

① 当x>0,y>0时,(xn-yn)(xn-1-yn-1)≥ 0,(xy)n >0

所以(xn-yn)(xn-1-yn-1)xnyn

≥0故:yn-1xn+xn-1yn≥ 1x-1y

② 当x,y有一个是负值时,不妨设x>0,y<0,且x+y>0,所以x>|y|

又n为偶数时,所以(xn-yn)(xn-1-yn-1)>0 又(xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y

综合①②知原不等式成立

第三篇:不等式证明若干方法

安康学院 数统系数学与应用数学 专业 11 级本科生

论文(设计)选题实习报告

11级数学与应用数学专业《科研训练2》评分表

注:综合评分60的为“及格”; <60分的为“不及格”。

第四篇:高等数学中不等式的证明方法

高等数学中不等式的证明方法

摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此,不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神,创新思维,使一些较难的题目简单化、方便化。

关键词:高等数学;不等式;极值;单调性;积分中值定理

Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints.Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(毕业论文参考网原创论文)ches of mathematics.It has been a special study.Today there are a large number of inequalities in higher mathematics.This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem.We can resolvethe problems identified through these methods.It can bring up our innovative spirit

and thinking and some difficult topics may be more easy and Convenient,Keyword: Higher Mathematics;Inequality;Extreme value Monotonicity;Integral Mean Value

Theorem

文章来自:全刊杂志赏析网(qkzz.net) 原文地址:http://qkzz.net/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm

【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的不等式试题,对一些常用的不等式证明方法进行总结。

【关键词】不等式; 中值定理; 泰勒公式; 辅助函数; 柯西施瓦茨; 凹凸性

在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

式法、函数的凹凸性法、柯西施瓦茨不等式。

1中值定理定理法

利用中值定理(罗尔中值定理、拉格朗日中值定理、柯西中值定理)的方法来证明不等式首先要熟记各个中值定理的应用条件,可将原不等式通过变形找到一个辅助函数,使其在所给区间上满足中值定理的条件,证明的关键是处理好ξ点,分析函数或其导数在该点的性质即可得到所要结论,在证明过程中也会出现反复应用同一定理或同时应用几个定理进行证明的情况。

例1设e4e2(b-a)。

解:对函数ln2x在[a,b]上应用拉格朗日中值定理,得ln2b-ln2a=2lnξξ(b-a),a<ξ设φ(x)=lnxx,φ′(x)=1-lnxx2当x>e时,φ′(x)<0,所以φ(x)单调减少,从而φ(ξ)>φ(e2),即lnξξ>lne2e2=2e2,故ln2b-ln2a>4e2(b-a)。

也可利用函数的单调性证明,可设φ(x)=ln2x-4e2x

例2设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),证明在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

解:因f(x)不恒为常数且f(a)≠f(b),故至少存在一点c∈(a,b),使得f(c)≠f(a)=f(b)。

若f(c)>f(a)则在[a,c]上f(x)满足拉格朗日中值定理条件,因此至少存在一点ξ∈(a,c)(a,b),使得f′(ξ)=1c-a[f(c)-f(a)]>0。

若f(c)

2利用辅助函数的单调性证明

辅助函数方法比较常用,其主要思想是将不等式通过等价变形,找到一个辅助函数,通过求导确定函数在所给区间上的单调性,即可证明出结论。常用的方法是,直接将不等号右端项移到不等号左端,另不等号右端为零,左端即为所求辅助函数。

例3试证:当x>0时,(x2-1)lnx≥(x-1)2。

解:设f(x)=(x2-1)lnx-(x-1)2,易知f(1)=0。

又f′(x)=2xlnx-x+2-1x,f′(1)=0, f′(x)=2lnx+1+1x2,f′(1)=2>0

f(x)=2(x2-1)x3可见,当00,因此有当00。又由f′(1)=0及f′(x)是单调增加的函数推知,当00,因此进一步有f(x)≥f(1)=0(00时,(x2-1)lnx≥(x-1)2。

文章来自:全刊杂志赏析网(qkzz.net) 原文地址:

例4设b>a>e,证明ab>ba。

分析:要证ab>ba,只需证blna>alnb或lnaa>lnbb

解一:令f(x)=xlna-alnx(x≥a),因为f′(x)=lna-ax>1-ax≥0(x≥a)

所以f(x)在x≥a时单调增加。因此当bφa时,有f(b)>f(a)=0,即有blna>alnb,也即ab>ba。

解二:令f(x)=lnxx,x>e,则有f′(x)=1-lnxx2<0(x>e),因此f(x)单调减少,故当b>a>e时,有lnaa>lnbb即ab>ba。

3利用泰勒展开式证明

泰勒展开式的证明常用的是将函数f(x)在所给区间端点或一些特定点(如区间的中点,零点)进行展开,通过分析余项在ξ点的性质,而得出不等式。另外若余项在所给区间上不变号,也可将余项舍去而得到不等式。

例5设f(x)在[0,1]上具有二阶可导函数,且满足条件|f(x)|≤a,|f(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明|f′(x)|≤2a+b2。

分析:已知f(x)二阶可导,应考虑用二阶泰勒展开式。本题涉及证明|f′(x)|≤2a+b2,应在特定点x=c处将f(x)按泰勒公式展开。

解: 对f(x)在x=c处用泰勒公式展开,得

f(x)=f(c)+f′(c)(x-c)+f′(ξ)2!(x-c)2(1)

其中ξ=c+θ(x-c),0<θ<1,在(1)式中令x=0,有

f(0)=f(c)+f′(c)(0-c)+f′(ξ)2!c2, 0<ξ1

在(1)式中令x=1,有f(1)=f(c)+f′(c)(1-c)+f′(ξ)2!c2, 0

上述两式相减得

f(1)-f(0)=f′(c)12![f′(ξ2)(1-c)2-f′(ξ1)c2],于是

|f′(c)|=|f(1)-f(0)-12 [f′(ξ2)(1-c)2-f′(ξ1)c2]|

≤|f(1)|+|f(0)|+12|f′(ξ2)|(1-c)2+12 |f′(ξ1)|c2

≤2a+b2[(1-c)2+c2],又因当c∈(0,1)时,有

(1-c)2+c2≤1故 |f′(c)|≤2a+b2

因这里ξ与x有关,可将其记为ξ(x),那么当令x分别取0和1时,对应的ξ可分别用ξ1和ξ2表示。

4柯西施瓦茨不等式

(〖jf(z〗baf(x)g(x)dx)2〖jf)〗≤〖jf(z〗baf2(x)dx〖jf)〗·〖jf(z〗bag2(x)dx〖jf)〗

柯西施瓦茨不等式是一个常用的不等式,在证明过程中我们可以直接利用常用不等式进行证明,即方便又快捷。

例6设f(x)在区间[a,b]上连续,且f(x)>0,证明〖jf(z〗baf(x)dx〖jf)〗·〖jf(z〗ba1f(x)dx≥(b-a)2。〖jf)〗

证明:(〖jf(z〗baf(x)1f(x)dx)2〖jf)〗≤〖jf(z〗baf(x))2 dx〖jf)〗·〖jf(z〗ba(1f(x))2dx〖jf)〗

即得〖jf(z〗baf(x)dx〖jf)〗·〖jf(z〗ba1f(x)dx≥(b-a)2〖jf)〗

5利用函数图形的凹凸性进行证明

函数的凹凸性证明方法首要是找到辅助函数f(x),利用函数f(x)在所给区间[a,b]的二阶导数确定函数的凹凸性。

f′(x)>0 函数为凹的,则 f(a)+f(b)>2f(a+b2);

f′(x)<0 函数为凸的,则 f(a)+f(b)<2f(a+b2),从而证明出结论。

例7xlnx+ylny>(x+y)lnx+y2,(x>0,y>0,x≠y)

令 f(t)=tlnt(t>0), f′(t)=lnt+1, f′(t)=1t>0, 故 f(t)=tlnt在(x,y)或(y,x),x>0,y>0是凹的,于是

12[f(x)+f(y)]>f(x+y2)

即12[f(x)+f(y)]>x+y2ln x+y2

即xlnx+ylny>(x+y)lnx+y2

类似的如:证明 ex+ey2>ex+y2,(x≠y)。

文章来自:全刊杂志赏析网(qkzz.net) 原文地址:http://qkzz.net/article/16be7113-df3a-4524-a9c3-4ba707524e72_3.htm

第五篇:027不等式证明方法-数学归纳法

高二数学序号027 高二 年级班 教师 方雄飞学生

课题第二讲证明不等式的基本方法(5)数学归纳法

变式训练:(1)用数学归纳法证明:1+4+9+…+n=n(n1)(2n1)

2教学目标:

(1)知识与技能:数学归纳法不等式的原理,数学归纳法不等式的一般步骤,会用数学归纳法证明

简单的不等式.(2)过程与方法:培养学生观察分析的能力、猜想证明的能力、逻辑思维及推理的能力、,从而培

养学生的创造能力.同时注意渗透转化的数学思想.(3)情感态度价值观:培养学生认真参与、积极交流的主体意识和乐于探索、勇于创新的科学精神.教学重点: 用数学归纳法证明不等式的原理思路及步骤。16

教学难点:证明过程中步骤完整性的掌握。教学过程: 复习引入:

关于正整数n的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性:

10.验证n取时命题(即n=n时命题成立)(归纳奠基);20.假设当n=k+1时命题归纳递推).30.由10、20知,对于一切n≥n的自然数n命题!(结论)数学归纳法的实质是寻找一种用有限个步骤,就能处理完无限多个结论的方法。数学归纳法的应用:

例1:用数学归纳法证明:n35n(nN)能够被6整除。

例2:证明贝努利(Bernoulli)不等式:

如果x是实数,且x> 1,且x0,nN*,n≥2.求证:(1+x)n>1+nx.教学小结:

2)用数学归纳法证明:1357(1)

n

(2n1)(1)n

n(3)证明: sinnnsin(nN)

(课后作业:

1、观察下列式子:1

13,2

21

1152,2

31

1117

222

23445、求证:

1115(n2,nN)n1n23n6

则可归纳出____.2、用数学归纳法证明:135...(2n1)n2.3、用数学归纳法证明:

4、用数学归纳法证明:

427310n(3n1)n(n1)2

x2n1y2n1 能被xy整除。

(123...n)

111...1

n2n1.能力提升:用数学归纳法证明:n1且nN

*

时,111

n2

n1n

教学反思:

下载大学数学中不等式的证明方法word格式文档
下载大学数学中不等式的证明方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    不等式的一些证明方法

    数学系数学与应用数学专业2009级年论文(设计) 不等式的一些证明方法 [摘要]:不等式是数学中非常重要的内容,不等式的证明是学习中的重点和难点,本文除总结不等式的常规证明......

    不等式的证明方法

    几个简单的证明方法一、比较法:ab等价于ab0;而ab0等价于ab1.即a与b的比较转化为与0或1的比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章......

    证明不等式方法探析

    §1 不等式的定义用不等号将两个解析式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含sinx1,ex>0 ,2x<3,5x5不等符号的式子,那它就是一个不等式.例如2x+2y2xy,等。根据......

    不等式证明的若干方法

    不等式证明的若干方法 摘要:无论是在初等数学还是在高等数学中,不等式证明都是其中一块非常重要的内容.本文主要总结了高等数学中不等式的几种证明方法,高等数学中不等式证明......

    不等式证明方法(二)(大全)

    不等式证明方法(二) 一、知识回顾 1、反证法:从否定结论出发,经过逻辑推理,导出矛盾,从而肯定原结论的正确; 2、放缩法:欲证AB,可通过适当放大或缩小,借助一个或多个中间量使得,常用的......

    高中数学不等式证明常用方法(★)

    本科生毕业设计(论文中学证明不等式的常用方法 所在学院:数学与信息技术学院专 业: 数学与应用数学姓 名: 张俊学 号: 1010510020 指导教师: 曹卫东 完成日期: 2014......

    sos方法证明不等式

    数学竞赛讲座SOS方法证明不等式(sum of squares)SABSabcSbcaScab0性质一:若Sa,Sb,Sc0,则SABSabcSbcaScab0. 222222性质二:若a,b,c,Sa,Sb,Sc且满足(1)SaSb,SbSc,ScSa0,(2)若abc或abc,则S......

    考研数学中的不等式证明(范文大全)

    考研数学中的不等式证明陈玉发郑州职业技术学院基础教育处450121摘要:在研究生入学考试中,中值定理是一项必考的内容,几乎每年都有与中值定理相关的证明题.不等式的证明就是其中......