第一篇:构造法与放缩法在不等式证明中的运用
构造法与放缩法在不等式证明中的运用
例1:设函数fxx(x1)ln(x1)(x1).(1)求fx的单调区间;
(2)证明:当nm0时,1n1m;
(3)证明:当n2012且x1,x2,x3,,xnR,x1x2x3xn1时,11222x3xnx12x21()n()2012 1x11x21x31xn2013mn
解:(1)f'x1lnx11lnx1由lnx10得lnx10 lnx1ln1,0x11,1x0,即当1x0时f'x0,fx在 1,0上单调递增;由f'x0解得x0即fx在0,上单调递减。所以fx的单调增区间为1,0;fx的单调减区间为0,.(2)由(1)得,当x0时,fxf00,由nm0有1n0,m1mn0,要证1n1m,只需ln1nln1m,即只需证 mnmn
只需mln1nnln1m,ln1nln1mln1x,x0 于是设gxxnm
1xx1lnx1lnx1xx1lnx1g'x 222xxx1x
因为fxxx1lnx1,x0由(1)知fx0,而x1x20 所以g'x0,所以gxln1x,x0在0,上单调递减,x
由0mn有gmgn,所以ln1nln1m,所以 nm
mnmnmln1nnln1m,所以ln1nln1m,所以1n1m.(3)从已知的条件中会让我们联想到柯西不等式
x1x2xn1
xnx12x2
()(n1)1 1x11x21xn
221122xnx12x21xnx12x21
,即()n()n,1x11x21xnn11x11x21xn1nmn
由(2)有(1n)(1m),令m2012得(1n)
20122012n
n2012n
1n
12012
2012
(12012)n,于是
(1n)
(12012)
23,即(1n)2013
2n
1n
1n
111)n()2012,所以(1n2013
12012
xxx11x
1x1x1x1x1n2013123n
xxx1x故
1x1x1x1x2013123n
2n
1n
12012
xnx12x21
不等式来源于人教A版选修4-5不等式选讲第1x11x21xnn1
41习题3.2中的第6题.下面的例2也是利用了课本上的结论去证明有关的问题。
lnxk
例2:(2012山东)(本小题满分13分)已知函数fx(k为常数,e=2.71828…是
ex
自然对数的底数),曲线yfx在点1,f1处的切线与x轴平行。(1)求k的值;
(2)求fx 的单调区间;
(3)设gxxxf'x,其中f'x为fx的导函数,2
证明,对任意x0,gx1e。
(1)解:由fx
lnxk1kxxlnx
f'x,得,x0,,exxex
由于曲线yfx在点1,f1处的切线与x轴平行,所以f'10,因此k1。(2)解:由(1)得f'x
1xxlnx,x0,,xxe
当x0,1时,hx0;当x1,时,,令hx1xxlnx,x0,hx0,又ex0,所以当x0,1时,f'x0;当x1,时,f'x0,因此fx的单调递增区间为0,1,单调递减区间为1,。(3)证明:因为gxxxf'x,所以gx
2
因此,对任意x0,gx1e等价于
x1
1xxlnx,x0,,ex
x1
1xxlnx1e2 xe
ex
1e2,即1xxlnx
x1
由(2)知hx1xxlnx,x0,,所以
1
h'x11lnxx2lnxlne2lnxlnxlne2,x0,
x
当0xe时,h'x0,hx单调递增,2
当e
2
x时,h'x0,hx单调递减。
2
22222
所以当xe时,hx的最大值为he1eelne1e
因此hx1e
2,即1xxlnx1e
2
ex
1e2还相差一个倍数关系,这个不等式与要证的不等式1xxlnx
x1
ex
1,即要证exx1,比较这两个不等式可知还需要证明(这个不等式在人教A x1
版的课本练习题中有关于它的证明)于是设xex1,因为
x
'xex1exe0,所以当x0,时,'x0,x单调递增,x0e010,ex
1 故当x0,时,xex10,即ex1亦即
x1
x
x
所以1xxlnx1e
2
ex1e2,x1
因此对任意x0,gx1e2。
第二篇:放缩法证明不等式
放缩法证明不等式
不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。
一、不等式的初等证明方法
1.综合法:由因导果。
2.分析法:执果索因。基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。
(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。
3.反证法:正难则反。
4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:
(1)添加或舍去一些项,如
(2)利用基本不等式,如:
(3)将分子或分母放大(或缩小):
5.换元法:换元的目的就是减少不等式中变量,以使问题
化难为易、化繁为简,常用的换元有三角换元和代数换元。
二、部分方法的例题
1.换元法
换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。
2.放缩法
欲证A≥B,可将B适当放大,即B1≥B,只需证明A≥B1。相反,将A适当缩小,即A≥A1,只需证明A1≥B即可。
注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地应对那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;二是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。
解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;有了自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。
第三篇:放缩法证明不等式
主备人:审核:包科领导:年级组长:使用时间:
放缩法证明不等式
【教学目标】
1.了解放缩法的概念;理解用放缩法证明不等式的方法和步骤。
2.能够利用放缩法证明简单的不等式。
【重点、难点】
重点:放缩法证明不等式。
难点:放缩法证明不等式。
【学法指导】
1.据学习目标,自学课本内容,限时独立完成导学案;
2.红笔勾出疑难点,提交小组讨论;
3.预习p18—p19,【自主探究】
1,放缩法:证明命题时,有时可以通过缩小(或)分式的分母(或),或通过放大(或缩小)被减式(或)来证明不等式,这种证明不
等式的方法称为放缩法。
2,放缩时常使用的方法:①舍去或加上一些项,即多项式加上一些正的值,多项式的值变大,或多项式减上一些正的值,多项式的值变小。如t22t2,t22t2等。
②将分子或分母放大(或缩小):分母变大,分式值减小,分母变小,分
式值增大。
如当(kN,k1)1111,22kkk(k1)k(k1),③利用平均值不等式,④利用函数单调性放缩。
【合作探究】
证明下列不等式
(1)
(2),已知a>0,用放缩法证明不等式:loga
(a1)1111...2(nN)2222123nloga(a1)1
(3)已知x>0, y>0,z>0求证
xyz
(4)已知n
N,求证:1
【巩固提高】
已知a,b,c,d都是正数,s
【能力提升】
求证: ...abcd求证:1
1aba
1ab
1b
本节小结:
第四篇:放缩法证明不等式
放缩法证明不等式
在学习不等式时,放缩法是证明不等式的重要方法之一,在证明的过程如何合理放缩,是证明的关键所在。现例析如下,供大家讨论。例1:设a、b、c是三角形的边长,求证
abc≥3 bcacababc证明:由不等式的对称性,不妨设a≥b≥c,则bca≤cab≤abc
且2cab≤0,2abc≥0
∴
∴abcabc3111
bcacababcbcacababc2abc2bac2cab2abc2bca2cab≥0
bcacababccabcabcababc≥3 bcacababc2bac无法放缩。所以在运用放
cab[评析]:本题中为什么要将bca与abc都放缩为cab呢?这是因为2cab≤0,2abc≥0,而2bac无法判断符号,因此缩法时要注意放缩能否实现及放缩的跨度。
例2:设a、b、c是三角形的边长,求证
abc(bc)2(ca)2(ab)2≥ bccaab1 [(ab)2(bc)2(ca)2]
3证明:由不等式的对称性,不防设a≥b≥c,则3abc0,3bca≥bccca
bca0
左式-右式3abc3bca3cab(bc)2(ca)2(ab)2 bcacab3bca3cab(ca)2(ab)2 abab2(bca)3bca3cab(ab)2(ab)2(ab)2≥0 ababab ≥ ≥[评析]:本题中放缩法的第一步“缩”了两个式了,有了一定的难度。由例
1、例2也可知运用放缩法前先要观察目标式子的符号。
例3:设a、b、cR且abc1求证
111≤1 1ab1bc1ca证明:设ax3,by3,cz3.且 x、y、zR.由题意得:xyz1。
∴1abxyzx3y3
∴x3y3(x2yxy2)x2(xy)y2(yx)(xy)2(xy)≥0 ∴x3y3≥x2yxy2
∴1abxyzx3y3≥xyzxy(xy)xy(xyz)
∴
1z1≤
xy(xyz)xyz1abyx11≤,≤ ∴命题得证.xyzxyz1bc1ca同理:由对称性可得[评析]:本题运用了排序不等式进行放缩,后用对称性。
39例4:设a、b、c≥0,且abc3,求证a2b2c2abc≥
22证明:不妨设a≤b≤c,则a≤1又∵(44。∴a0。33ab23a23434)≥bc,即()≥bc,也即bc(a)≥(3a)2(a)。2223833∴左边(abc)22(abbcca)abc
23434 92a(bc)bc(a)≥92a(3a)(3a)2(a)
2383
3416339(3a)[(3a)(a)a]9(3a)[a2a4]9(a32a2a12)8338899393a(a22a1)a(a1)2≥
2282893 ∴a2b2c2abc≥
22[评析]:本题运用对称性确定符号,在使用基本不等式可以避开讨论。
例5:设a、b、cR,pR,求证:
abc(apbpcp)≥ap2(abc)bp2(abc)cp2(abc)
证明:不妨设a≥b≥c>0,于是
左边-右边ap1(bca2abca)bp1(cab2bcab)cp1(abc2cabc)
ap1(ab)[(ab)(bc)]bp1(ab)(bc)cp1[(ab)(bc)](bc)ap1(ab)2(ab)(bc)(ap1bp1cp1(bc)2
≥(ab)(bc)(ap1bp1cp1)如果p1≥0,那么ap1bp1≥0;如果p1<0,那么cp1bp1≥0,故有(ab)(bc)(ap1bp1cp1)≥0,从而原不等式得证.例6:设0≤a≤b≤c≤1,求证:
abc(1a)(1b)(1c)≤1
bc1ca1ab1abcabc≤,再证明以 bc1ca1ab1ab1证明:设0≤a≤b≤c≤1,于是有下简单不等式
abcab1c1(1a)(1b)(1c)≤1,因为左边(1a)(1b)(1c)
ab1ab1ab1
11c[1(1ab)(1a)(1b)],再注意(1ab)(1a)(1b)≤(1abab)
ab1(1a)(1b)(1a)(1b)(1a)(1b)(1a2)(1b2)≤1得证.在用放缩法证明不等式A≤B,我们找一个(或多个)中间量C作比较,即若能断定A ≤C与C≤B同时成立,那么A≤B显然正确。所谓的“放”即把A放大到C,再把C放大到B,反之,所谓的“缩”即由B缩到C,再把C缩到A。同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及。
第五篇:放缩法与不等式的证明
放缩法与不等式的证明
我们知道,“放”和“缩”是证明不等式时最常用的推证技巧,但经教学实践告诉我们,这种技巧却是不等式证明部分的一个教学难点。学生在证明不等式时,常因忽视“放”或“缩”的合理性或把握不住“放”或“缩”的“度”而导致解题失误甚至思维搁浅。本文以通过对几道实例的分析,就证明不等式的过程中如何进行“放”或“缩”作些浅谈。
例1设△ABC的三边长为a、b、c,且m为正数,求证:abc。mambmc解说:依题设知abc,因此证明的第一个目标就是考虑将待证不等式的左端适当
ababab„„„① mambmabmabmab
由于①式的分子、分母中都含有ab,不便于利用条件abc,据此可考虑处理掉分子
ab(mab)mm1的ab:„„„„② mabmabmab
在利用条件abc和不等式的性质便能达到“缩”的目的:
11∵ abc0,∴ mabmc0,∴,又∵m0,mabmc
mmmmm(mc)mc11∴,又∵1,mabmcmabmcmcmcmcabc于是。mambmc缩小,以出现ab:左
本题是高中数学教材第二册(上)(人教版)中不等式证明中的一道习题,主要利用了三角形的两边之和大于第三边和不等式的一些基本性质来对分母进行“放”或“缩”,以达到证明的目的。
例2:对于一切大于1的自然数n,证明(1)(1)(1
13151)2n12n1
2解说:本题的常见证明方法是数学归纳法。能否找到一种“放”或“缩”的方式直接证明呢?显然,待证不等式等价于22232n2212312n12n1„„„„„„① 2
①式的左端是形如2k(k2,3,„„,n)的n1个因数的乘积。如果能将每一个2k1
因数按照某种规律缩小后能“交叉”约分的话,可望收到化繁为简之效。注意到①式右端需要2n1,因此,对左端每一个因数缩小后应含有2k1,据此便不难找到可行的缩小方式:2k2k2k2k2k12k1,2k12k12k12k12k2k1
于是左2212312(n1)12n12n12n1。2.212312(n1)12n132
本题是95年上海的一道高考题,本题通过对待证式子的变形,然后在假分数的分子、分母上加上同一个常数,分数的值缩小,以达到能够约分的目的,进而得到所证的结果。
以上两个例中的“放”或“缩”的方式都是通过对待证不等式的结构特征进行分析才获得的“放”或“缩”的方法。然而,对有些不等式而言,合适的“放”或“缩”的方式的获得并非象上面两个例子那样顺利。
例3:求证:11111(nN)。325272(2n1)2
41(k1,2,„,n)的n项之和,不便于与右2(2k1)解说:不等式是左边是形如
边直接比较,于是想到将左边的每一项按照某种规律放大,求和后再与右边比较,我们先看下列放大方式:
11111111325272(2n1)22324252n
111111n1[1(1)n]1。3(12n1)122228424121
仅观其表,会认为无懈可击。问题在于这里采用的放大方式11 2k2(2k1)
2即(2k1)22k2(kN)是否合理。通过验证k的前几个特殊值可以发现,(2k1)22k2对k1,2,3,4成立,但对k5,6等不成立,其根源在于忽视了“当k增大时,指数函数2k2比幂函数(2k1)2增大得快”这一基本事实。我们再看下述放大方式:1111,22k(2k1)2k2k1(2k1)
左边<(111111)()()。23452n2n1
11的积,利用它2k12k1显然,这种放大方式是行不通的,因为它不能满足将左边各项放大后求和的要求,必须对其作些改进。如果将左边每一项放大后能出现一个常数与
将左边放大后就可“交叉”相消达到求和目的,基于这种想法,考虑放大方式:
11111(),(2k1)2(2k1)(2k1)22k12k1
左边<[(1)()()(由于12***1111)](1)。2n12n122n1211知这种放大方式的放大量偏大,但它却给我们提供了寻求放大方式的启示:24
使每一项放大后出现因数1。经尝试可得: 4
111111(),于是(2k1)24k24k14k(k1)4kk1
左边<[(1)()()(1
41212***)](1)。nn14n14
通过对放大方式的反复调整,终于成功了。
该例题表明在放、缩方式合理的前提下,放、缩方式是否适度,事先难以预料的,但在证明过程中可以通过对放、缩情况的审视逐步作出调整,选择适度的放缩方式改进证明。
例4: 设a、bR,ab1,求证:(a12125)(b)2„„„„„① ab
2解说:如果直接运用二元均值不等式缩小,即采用缩小方式a112a2„„„„„„„„„„„„„„② aa
b112b2„„„„„„„„„„„„„„„„„„③ bb
2225知,②、③处的缩小量太大。失败的根源在于②、③中的2
1等号无法取得。注意到①是非严格不等式,其中等号成立的条件是ab,因此,每一2将有左228,由8
次缩小都必须保证等号成立的条件得到满足。抓住这一点不难获得多种可行的缩小方式,组织多种证法。
121111)(b)2[(a)(b)]2 ab2ab
1ab2111125[(ab)](1)2[1]2 ab22ab2ab22()2
1212111ab1)2(ab2)证法2:(a)(b)2(a)(b)2(ababababbaab证法1:(a
1194911592[(ab)(4)]2(ab)2[(ab)]4ab4ab24ab4ab2
2(115
4ab)92(1215925159)=2(1)ab222242
对非严格不等式的证明,每一次的“放”或“缩”保证等号成立是一个基本的思考点,是放大或缩小的一个必要性要求,但它并不具有充分性。