浅谈用放缩法证明不等式

时间:2019-05-14 15:44:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浅谈用放缩法证明不等式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浅谈用放缩法证明不等式》。

第一篇:浅谈用放缩法证明不等式

淮南师范学院2012届本科毕业论文 1

目录

引言„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„(2)1.放缩法的常用技巧„„„„„„„„„„„„„„„„„„„„„„„„„„(3)

1.1 增减放缩法„„„„„„„„„„„„„„„„„„„„„„„„„„„(3)1.2 公式放缩法„„„„„„„„„„„„„„„„„„„„„„„„„„„(5)1.3 利用函数的性质„„„„„„„„„„„„„„„„„„„„„„„„„(6)1.4 综合法„„„„„„„„„„„„„„„„„„„„„„„„„„„„„(9)1.5 数列不等式的证明„„„„„„„„„„„„„„„„„„„„„„„„(11)2.放缩法要放缩得恰到好处„„„„„„„„„„„„„„„„„„„„„„„(12)

2.1 调整放缩量的大小„„„„„„„„„„„„„„„„„„„„„„„„(12)2.2 限制放缩的项和次数„„„„„„„„„„„„„„„„„„„„„„„(13)2.3 将不等式的一边分组进行放缩„„„„„„„„„„„„„„„„„„„(14)总结„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„(16)致谢„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„(17)参考文献„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„(18)

浅谈用放缩法证明不等式 2 浅谈用放缩法证明不等式

学生: 指导老师:

淮南师范学院数学与计算科学系

摘要:本文介绍了放缩法的基本概念, 在此基础上总结出增减放缩法、公式放缩法、利用函数的性质放缩和综合法等用放缩法证明不等式的常用技巧,以及数列不等式证明中放缩法的应用,并进而从三个方面阐述使用放缩法过程中如何使放缩适当的问题.这对证明不等式很有帮助。关键词:不等式;放缩法;技巧;适当

Proving the Inequity by Amplification and Minification

Student: Guide teacher:

Huainan Normal University Department of Mathematics

Abstract: This paper introduces the fundamental conception of the amplification and minification method.And on the basis of this, it sums up some commonly used skills: increasing or reducing some terms, using important inequality formula, using function properties, synthesis method, and the amplification method to demonstrate the sequence inequality.In addition, it describes how to make it appropriate in proving the inequality by the amplification and minification method from three aspects.They do much help to demonstrating inequality.Key words: inequality;amplification and minification;skill;appropriate

引 言

在证明不等式的过程中,我们的基本解题思路就是将不等式的一边通过若干次适当的恒等变形或不等变形(放大或缩小),根据等式的传递性①和不等式的传递性②逐步转化出另外一边.与等式的证明相比较,不等式的证明最大特色就是在变形过程中它有“不等的”变形,即对原式进行了“放大”或“缩小”.而这种对不等式进行不等变形,从而使不等式按同一方向变换,达到证明目的的特有技巧我们称之为放缩法.因其技巧性强,方法灵活多变,同学们一直较难掌握.想要很好的在不等式证明中运用放缩法,应当注意以下两点:掌握放缩法的一些常用策略和技巧;放缩法要放缩得恰到好处,才能达到证题的目的.本文着重就这两点举例加以说明.淮南师范学院2012届本科毕业论文 3 放缩法的常用技巧

1.1 增减放缩法

1.1.1 增加(减去)不等式中的一些正(负)项

在不等式的证明中常常用增加(减去)一些正(负)项,从而使不等式一边的各项之和变大(小),从而达到证明的目的.例1 设a,b,c都是正数,abbcca1,求证:abc3.证明:abc2a2b2c22ab2bc2ca

12ab2bcca3abbcca

223abbcca3

33abc3,当且仅当abc时取等号.1.1.2 增大(减小)不等式一边的所有项

将不等式一边的各项都增大或减小,从而达到放缩的目的.例2[1](02年全国卷理科第21题)设数列an满足an1an2nan1,且ann2n1,2,3,,求证:

11a111a211a311an12

证明:由an1an2nan1,得:an1anann1, ann2,an12an1,1an121an0, 11an111121an11,于是有:

1a211a311a421a111,12221a21111a111a1, 21a3123,浅谈用放缩法证明不等式 4 „„, 11an1112n121an111a1,111a111a211a31an111112n12221a1111n2121111a1132

1.1.3 增大(减小)不等式一边的部分项

在不等式的证明中,有时候增大或减小不等式一边的所有项会造成放缩过度,因此,在考虑这些问题时要根据题目的具体情况进行部分项的放缩.例3 求证证明:1221321421n2n22nnN,,n2.1n21nn121nn1121n1n11 122133,1314,,n121n11n.把以上(n-2)个不等式相加,得 1221321421n12121nn22n

1221321n2142n22n1n121n2

n22n故原不等式成立.1.1.4 增大(减小)分子或分母的值

增大或减小不等式一边分数中分子或分母的值,从而达到放缩目的.淮南师范学院2012届本科毕业论文 5 例4 求证9112512n12114nN.*证明:12k12191252k121114k(k1)111k1, 4kk12n12 1111111 4223nn11111,4n14

19125114.

即

1.2 公式放缩法

2n12即利用已有的大家熟悉的不等式来进行放缩,这里我们主要利用的是均值不等式1以及abamam,a,b,mR,ab,下面分别举例说明.1.2.1 均值不等式

例5 若nN,n1,求证:n!*2n12n1.62n证明:12nn22212nn1622,而1222n2 故n1222nn 即n!216nn1n2

n12n1

nn12n16 .例6 已知:Sn1223nn1

n均值不等式: a1a2ana1a2ann,aiRi1,2,n.浅谈用放缩法证明不等式 6 求证:证明:nnn12Snn122.nnnn1nn12 Sn1223nn1

 32522n12 nn12n122 又Sn1223nn1

12n 1.2.2 abamam,a,b,mR,abnn12



a1ab1bc1c.例7[4] 若正数a,b,c满足abc,求证:证明:abc,abc0;

c1ccabc1cabca

1abb1aba1ab1b,即原不等式成立.1.3 利用函数的性质

主要指利用函数的单调性和有界性来进行放缩.1.3.1 利用特殊函数的单调性

这里的特殊函数主要指一些已知单调性的函数,如指数函数和对数函数等.例8 求证:log23log34.证明:我们先给出常规解法;

log23log34lg3lg2lg4lg32lg3lg2lg4lg2lg322,lg2lg4lg8lg92lg2lg4lg3,222 淮南师范学院2012届本科毕业论文 7 log23log340,log23log34.另外,还有更简便的方法.log23log827log816log916log34.1.3.2 利用特殊函数的有界性

这里的特殊函数主要指一些大家熟知有界性的函数,如|sinx|1,|cosx|1,x20等.例9[5] 已知,为整数,并且,求证:

1sin21sin2sin222.证明: 0,0,,sin0,sin0,coscos1,1sin241sin22sinsin24coscos

1cossin22.(当且仅当时取等号).1.3.3 利用一般函数的性质

利用一般函数的单调性和有界性进行放缩.例10 求证a3时,证明:令fn1n11n11n21n213n113n12a5,nN.N,n1fn1fn213n213n33n41n1

3n13n23n40.fn1fn,fn是增函数,其最小值为f1,fnminf1

1213141312,浅谈用放缩法证明不等式 8 故对一切自然数,fn13121;

再由a3,知2a51,比较得: 当a3时,1n11n2xxa213n12a5,nN.例11 设定义在R上的函数fx的充要条件是a1.,求证:对任意的x,yR,|fxfy|1证明:利用求导数、均值不等式或判别式法均可求得:

fxmax12a,fxmin12a.根据fxmax1a12a,fxmin12a,得fxfy1a, ,即|fxfy|max 故对x,yR,1a|fxfy|1|fxfy|max1

1a1a1.例12 已知an1n1tn2t1,t[,2],Tn是an的前n2n项和

2求证:Tn2n2.证明:令ft1n1tn,则: 2tnn11n1 t2t ft令ft0,得t1.淮南师范学院2012届本科毕业论文 9 1 当2t1时, ft0;当1t2时, ft0;

12从而可知ft在[,1]上递减,在[1,2]上递增,故:

ftmaxmaxf,f22n2112n

ft2n即an2n12n12n ,n1,2,2n11112nTn2222222n11 211

22nn11n 21

22n1 22122n1

2 2n2n

1.4 综合法

对于比较复杂的不等式证明,有时需要综合以上两种放缩手法进行不止一次的放缩.例13(1985年高考题)证明:nn1n2[7]

nn12n1223nn1n122,nN

nn12 1223nn112n 而nn1nn12 ①

122232nn12 1223nn1

浅谈用放缩法证明不等式 10  32522n121232522n12 ②

12n1n122n122.在①中运用了增减放缩法,②运用了公式放缩法和增减放缩法.例14 数列an满足a11且an111n1 an2nnn21(Ⅰ)用数学归纳法证明an2n2;(Ⅱ)已知不等式ln1xx对x0成立.证明:(Ⅰ)用数学归纳法证明,略;(Ⅱ)用递推公式及(Ⅰ)的结论有 an11111a1an,n1 n2n2nnn2nn21 两边取对数并利用已知不等式得: lnan1ln11nn1nn1nn2221lnann212n

lnan

n lnan1lnan12,n1

上式从1到n1求和可得: lnan1lnan1121231nn11212212n1

11112231n12n111n11221n1n12

112

证明过程中分别运用了增减放缩法和利用特殊函数性质的放缩法.淮南师范学院2012届本科毕业论文 11 1.5 数列不等式的证明

在数列不等式的证明中,我们大量采用放缩法,在这里我们把它单独提出来说明.而这里的数列主要指“叠加”模型的数列不等式,可以利用放缩法对叠加的数列进行化简,从而达到证明的目的.这里“叠加”模型指的是形如:a1a2anfn,这里的也可以是、或.例15 已知n2,nN,证明

1221321n2n1n

证明:12211213211112;

1213

23;

„„ 1n21nn11n11n;

各式相加,得:

1221321n211nn1n*

例16 若Sn112131n,nN

求证:2n11Sn2n

证明:1k2k1kk2k2kkk12kk1

 又2kk12k1k

 当k1,2,3,,n1,n时, 221 232 „„

1112210

221

浅谈用放缩法证明不等式 12 2nn1 2n1n1n11n22n1n2

nn1

 将上式相加,得到:2n11Sn2n.在数列不等式的放缩中,放缩的主要目的是使不等式裂项相消,也可以组成等差、等比数列,利用公式求和,或者运用根式有理化后的放缩,探索n项相加的递推式,然后逐项相消.放缩法要放缩得恰到好处

2.1 调整放缩量的大小

放缩量的大小,即放缩的“精确度”,直接影响到是否能达到欲证明的目标.放大多少,缩小多少,把握“度”的火候,要因题适宜.例17 已知Sn1(Ⅰ)Sn12131n,求证:

n;

(Ⅱ)Sn2n11;(Ⅲ)Sn2n.证明:(Ⅰ)Sn11n12131n

1n 1n1nnn;

(Ⅱ)是(Ⅰ)的加强不等式,为此需调整放缩幅度, 1k22k22kk1k1

12k,k1,2,3,,n

 Sn1131n

淮南师范学院2012届本科毕业论文 13

22212322n1n

n11.(Ⅲ)改变放缩方向,故 1k22k22kk1

kk1,k1,2,3,,n

 Sn12212131n2

10212nn1

n.1n!2;(Ⅱ)

11!12!1n!74,nN.例18 求证(Ⅰ)1!112!证明:(Ⅰ)1n!1nn1n22112n112221

n3 12!21n1 左边1 212212312n1

(Ⅱ)是(Ⅰ)的加强不等式,将放缩间距调整小些,得到:

1n!1nn1n221123n2133321

n14 13!12 则左边123717 n2412342!1233123n2

2.2 限制放缩的项和次数

若对不等式中的每一项都进行放缩,很可能造成放得过大或缩得太小,若限制放缩

浅谈用放缩法证明不等式 14 的项,保留一些特定项不变,可以通过这样来调整放缩的“度”,逼近欲证明的目标,这与第一部分的1.1.3也是相通的.例19 求证1121221n261361nn3,nN.*证明:这是一个常见问题的改编题,我们先给出一般算法: 1121221n21121121n1231n1n

2 由21n61361n ,显然放得过大,要减少放大的项;

先试试减少一项: 1121221n21121221231341n1n

1  由 112111111142334n1n1n

74

741n61361n.再试试减少两项:

1121221n21221321341n1n

61361n

如此可得出,放缩时减少两项可以得到欲证目标.2.3 将不等式的一边分组进行放缩

把不等式的一边进行分组,将有关联的项放在一起进行放缩,不仅可以减少放缩的项,还可以有效地控制放缩的“度”,减少误差,并且更有方向性,尽量避免放缩的盲目性和随意性.例20 已知数列的通项公式是

an32

nn(Ⅰ)求证:当k为奇数时,1ak1ak143k1;

淮南师范学院2012届本科毕业论文 15(Ⅱ)求证:1a11a21an12nN.*证明:(Ⅰ)略

(Ⅱ)当n为偶数时, 1a11a21an11aa214321111 aaaa4n3n16  4344343n

1111n2321an11a2

当n为奇数时,因为1a11a21an1a10,则:

1an1an1

 11 a1a24321111aaa4an13n43n1434436

1213141111n12321210

例21 求证5证明:由于121312141215121610

21; 17141414141441;

„„ „„

1210129121912101111921; 99992222291 由1,将上面的不等式两边相加,得到:

12121312141210

10

又由于

浅谈用放缩法证明不等式 16 3114161417141814182181218;

1818412 51;

„„ „„

12191229121011 101010222291 将上面的不等式两边相加,得到:

12131412121012102912;

5131;

1210 于是,综上得到5

410.总 结

综上可知,放缩法的技巧千变万化,灵活多样.而事实上,放缩法贯穿于整个不等式的证明过程中,不等式证明的每一步几乎都与“放”与“缩”密切相关.在证明的过程中要注意几点:

(1)在放缩过程中不等号的方向必须一致;

(2)运算时要注意总结规律,有些不等式用特定的放缩方法可以使计算简便,而有些不等式可以用很多种方法解决;

(3)不等式的放缩法在不等式的证明中应用广泛,但是遇到具体题目时不能生搬硬套,必须根据实际情况考虑是用什么方法.另外,用放缩法证明不等式关键就是“度”的把握,如果放得过大或太小就会导致解题失败,而如果放缩不适当要学会调整,一些实用的技巧可以帮助我们把握放缩中的“度”,而具体怎样放缩才适度,需要我们在解题过程中去体会.放缩法有着高度的灵活性和极强的技巧性,放缩方法更是多种多样,要能恰到好处的想到具体解题中的放缩方法,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧.淮南师范学院2012届本科毕业论文 17 致谢

感谢我的导师,她在我的论文写作过程中倾注了大量心血,从选题开始到开题报告,从写作提纲到一遍遍的指出稿中的具体问题,每一个工作她都做得那么的细致认真,她的严谨的态度和工作风深深的感动着每一个了解她的人。我还要感谢我的许多同学,他们在我的论文写作中给予了大量的支持和帮助,同学都对我的论文格式和内同的修改给予了大量的帮助,在此我也深深的感谢他们,同时我还要感谢在我大学学习期间给我极大关心和支持的各位老师同学还有朋友,感谢你们!感谢老师!

参考文献:

[1]刘艳.放缩法在高考题中应用[J].湖北广播电视大学学报,2008,28(9):143-144.[2]武增明.放与缩九策略[J].中学数学研究,2003,(9):32-34.[3]李长明,周焕山.初等数学研究[M].北京高等教育出版社,2005,266-267.[4]张嘉瑾.放缩法,证明不等式的基本方法[J].上海中学数学,2005,(10):35-36.[5]时月兰.如何使用放缩法证明不等式[J].文教资料,2005,(4):72-73.[6]黄坚.谈放缩法证题的灵活性与适度性[J].数学通讯,2005,(3):23-24.[7]王卫琴.放缩法与不等式证明[J].运城高等专科学校学报,2000,18(3):95-96.[8]刘作宏.一道题引出的思考[J].科技教育,2010,(29):213-214.[9]张徐生.放缩有度,顺应目标——例谈放缩法在证明不等式中的应用[J].数学教学研究,2007,(9):26-28.[10]董入星.放缩“失控”的调整初探[J].中学数学,2007,(1):29-31.[11]邵志华.若干解析不等式的统一证明——兼谈几个不等式的加强[J].湖南理工学院学报(自然科学版),2010,23(3):9-13.[12]陈太道.放缩法在《数学分析》上的应用[J].琼州大学学报,2002,9(2):10-14.[13]李素峰.谈数列极限证明中的“放大法”[J].衡水学院学报,2009,11(4):3-7.

第二篇:用放缩法证明不等式

用放缩法证明不等式

蒋文利飞翔的青蛙

所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。

一.“添舍”放缩

通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。

例1.设a,b为不相等的两正数,且a3-b3=a2-b2,求证1<a+b<4。

3证明:由题设得a2+ab+b2=a+b,于是(a+b)2>a2+ab+b2=a+b,又a+b>0,得a+b>1,又ab<(a+b),而(a+b)=a+b+ab<a+b+

+b)2<a+b,所以a+b<

例2.已知a、b、c不全为零,求证:

a2abb2b2bcc2c2aca2>3(abc)21422132(a+b),即(a4444,故有1<a+b<。3

3证明:因为a2abb2

同理b2bcc2>bc,2(ab23)b2>42(ab2)2abb≥a,22c2aca2>ca。

23(abc)2所以a2abb2

二.分式放缩 b2bcc2c2aca2>

一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。

例3.已知a、b、c为三角形的三边,求证:1<abc++<2。bcacab

证明:由于a、b、c为正数,所以baab>>,bcabcacabc

cc

>ababc,所以

abcabc

++>++=1,又a,b,c为三角形的bcaca+b+ca+b+ca+b+cab

边,故b+c>a,则

c2c,<

ababc

a2a2b

为真分数,则a<,同理b<,bcabcacabcbc

abc2a2b2c

++<++2.bcacabcabcabcab

abc

++<2。bcacab

综合得1<

三.裂项放缩

若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。例4.已知n∈N*,求1

1n

„

1n

2n

n

„

1n

<2n。

证明:因为<

nn13

2(nn1),则1

<12(21)2(2)„2(nn1)2n1<2n,证毕。

n(n1)2

5.an

已知

(n1)2

nN

*

an

223n(n1),求证:

对所有正整数n都成立。

n

证明:因为n(n1)又n(n1)

122

n,所以an12n

n(n1),n(n1)

232,n(n1)

2n12

(n1)

所以an立。

,综合知结论成四.公式放缩

利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。

例6.已知函数f(x)证明:由题意知

f(n)

nn1

2121

nn

2121

x

x,证明:对于nN*且n3都有f(n)

nn1。

nn1

(1

221

n)(1

1n1)

1n1

221

n

2(2n1)(n1)(21)

n

n

又因为nN*且n3,所以只须证2n2n1,又因为,n

(11)

n

Cn

CnCn

Cn

n1

Cn

n

1n

n(n1)

n12n1

以f(n)

nn1。

例7.已知f(x)x2,求证:当ab时f(a)f(b)ab。证

f(a)f(b)

1a2

b2

a2b2a

b

ababa

b2

1

ababab

(ab)ab

ab

ab证毕。

五.换元放缩

对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目的。

例8.已知abc,求证

1ab

1bc

1ca

0。

证明:因为abc,所以可设act,bcu(tu0),所以tu0则

1ab

1bc

1ca

1tu

1u1t1u1ttutu

0,即

1ab

1bc

1ca

0。

例9.已知a,b,c为△ABC的三条边,且有a2b2c2,当nN*且n3时,求证:anbncn。

证明:由于a2b2c2,可设a=csina,b=ccosa(a为锐角),因为0sina1,0cosa1,则当n3时,sinnasin2a,cosnacos2a,所以anbncn(sinnacosna)cn(sin2acos2a)cn。

六.单调函数放缩

根据题目特征,通过构造特殊的单调函数,利用其单调性质进行放缩求解。例10.已知a,b∈R,求证

x1x

ab1ab

a1a

b1b。

证明:构造函数f(x)

f(x1)f(x2)

x11x1

(x0),首先判断其单调性,设0x1x2,因为

x21x2

x1x2(1x1)(1x2)

0,所以fx1fx2,所以f(x)在[0,]上是增函数,取x1ab,x2ab,显然满足0x1x2,所以f(ab)f(|a||b|),即

|ab|1|ab|

|a||b|1|a||b|

|a|1|a||b|

|b|1|a||b|

|a|1|a|

|b|1|b|

。证毕。

第三篇:用放缩法证明不等式1

用放缩法证明不等式

时间:2009-01-13 10:47 点击:

1230次

不等式是高考数学中的难点,而用放缩法证明不等式学生更加难以掌握。不等式是衡量学生数学素质的有效工具,在高考试题中不等式的考查是热点难点。本难点着重培养考生数学式的变形能力

不等式是高考数学中的难点,而用放缩法证明不等式学生更加难以掌握。不等式是衡量学生数学素质的有效工具,在高考试题中不等式的考查是热点难点。本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力。放缩法的理论依据是不等式性质的传递性,难在找中间量,难在怎样放缩、怎样展开。证明不等式时,要依据题设、题目的特点和内在联系,选择适当的放缩方法。

⒈利用三角形的三边关系

[例1] 已知a,b,c是△ABC的三边,求证:

证明:∴﹥。

∵=为增函数,又∵点评:学生知道要利用三角形的三边关系,但无法找到放缩的方法,难在构造函数。⒉利用函数的单调性

[例2] 求证:对于一切大于1的自然数n,恒有。

证明: 原不等式变形为,令 则

,所以。

即 是单调增函数(n=2,3,„),所以。故原不等式成立。

点评:一开始学生就用数学归纳法进行尝试,结果失败,就放弃了。若使不等式的右边变为常数,再用单调性放缩就好了。⒊利用基本不等式

[例3]已知f(x)=x+证明:设

(1)+(2)得(x﹥0)求证:-,(1)(2)

点评:用数学归纳法证明,思路简单,但是难度很大,可以通过二项式定理展开,倒序法与基本不等式相结合进行放缩。⒋利用绝对值不等式 [例4]设证明:∵=,∴,当,时,总有,,求证:。

又∵所以∴,∴

=7。

点评:本题是一道函数与绝对值不等式综合题,学生不能找到解题的突破口,关键在于找到a,b,c与f(0),f(1),f(-1)的联系,再利用绝对值内三角形不等式适当放缩。⒌利用不等式和等比数列求和

[例5]求证:。

证明:=,利用不等式

∴﹤=﹤。

点评:有些学生两次用错位相减进行放缩,但是没有找到恰当的变形放缩,对利用不等式进行放缩不熟悉。若经过“凑”与不等式求和放缩就到了。⒍ 利用错位相减法求和

相结合,再利用等比数列[例6]已知a1, a2, a3, „„, an, „„构成一等差数列,其前n项和为Sn=n2, 设bn=记{bn}的前n项和为Tn,(1)求数列{an}的通项公式;(2)证明:Tn<1。

解:(1)a1=S1=1, 当n≥2时, an=Sn-Sn-1=2n-1;由于n=1时符合公式,, ∴ an=2n-1(n≥1).(2)Tn=, , ∴ Tn= 两式相减得Tn=+=+(1-)-, ∴ Tn=+(1-)-<1。

⒎ 利用裂项法求和

[例7]已知函数在上有定义,且满足①对任意的

②当证明:令上为奇函数.设时,则

.证明不等式.令,则,故

.在,且由可得,则由题有,即从而函数在时,.,所以

为,故上减函数.所以,即

.点评:本题将数列与不等式、函数综合考查数学逻辑推理能力,分析问题能力,变形能力,可以用数学归纳法证明不等式,但学生解题的过程不过完善。若用裂项法进行数列求和放缩就简单 ⒏利用二项式定理展开

[例8]已知数列满足(n∈N*),是的前n项的和,并且.

(1)求数列的前项的和;(2)证明:≤.(3)求证: 解:(1)由题意得

两式相减得

所以再相加

所以数列是等差数列.又又

所以数列的前项的和为.

≤.(3)证明:

点评:这是一道很有研究价值的用放缩法证明不等式的典例。考查了与 an 的关系,有些学生没有对an中的n进行讨论,也没有合并,虽用了二项式展开,但无法构造不等式进行放缩。对第3小题的放缩也可裂项法求和进行放缩。

第四篇:放缩法证明不等式

放缩法证明不等式

不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。

一、不等式的初等证明方法

1.综合法:由因导果。

2.分析法:执果索因。基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。

(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。

3.反证法:正难则反。

4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:

(1)添加或舍去一些项,如

(2)利用基本不等式,如:

(3)将分子或分母放大(或缩小):

5.换元法:换元的目的就是减少不等式中变量,以使问题

化难为易、化繁为简,常用的换元有三角换元和代数换元。

二、部分方法的例题

1.换元法

换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。

2.放缩法

欲证A≥B,可将B适当放大,即B1≥B,只需证明A≥B1。相反,将A适当缩小,即A≥A1,只需证明A1≥B即可。

注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地应对那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;二是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;有了自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。

第五篇:放缩法证明不等式

主备人:审核:包科领导:年级组长:使用时间:

放缩法证明不等式

【教学目标】

1.了解放缩法的概念;理解用放缩法证明不等式的方法和步骤。

2.能够利用放缩法证明简单的不等式。

【重点、难点】

重点:放缩法证明不等式。

难点:放缩法证明不等式。

【学法指导】

1.据学习目标,自学课本内容,限时独立完成导学案;

2.红笔勾出疑难点,提交小组讨论;

3.预习p18—p19,【自主探究】

1,放缩法:证明命题时,有时可以通过缩小(或)分式的分母(或),或通过放大(或缩小)被减式(或)来证明不等式,这种证明不

等式的方法称为放缩法。

2,放缩时常使用的方法:①舍去或加上一些项,即多项式加上一些正的值,多项式的值变大,或多项式减上一些正的值,多项式的值变小。如t22t2,t22t2等。

②将分子或分母放大(或缩小):分母变大,分式值减小,分母变小,分

式值增大。

如当(kN,k1)1111,22kkk(k1)k(k1),③利用平均值不等式,④利用函数单调性放缩。

【合作探究】

证明下列不等式

(1)

(2),已知a>0,用放缩法证明不等式:loga

(a1)1111...2(nN)2222123nloga(a1)1

(3)已知x>0, y>0,z>0求证

xyz

(4)已知n

N,求证:1

【巩固提高】

已知a,b,c,d都是正数,s

【能力提升】

求证: ...abcd求证:1

1aba

1ab

1b

本节小结:

下载浅谈用放缩法证明不等式word格式文档
下载浅谈用放缩法证明不等式.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    放缩法证明不等式

    放缩法证明不等式 在学习不等式时,放缩法是证明不等式的重要方法之一,在证明的过程如何合理放缩,是证明的关键所在。现例析如下,供大家讨论。 例1:设a、b、c是三角形的边长,求证ab......

    浅谈用放缩法证明不等式(共五篇)

    浅谈用放缩法证明不等式山东省 许 晔不等式的证明是中学数学教学的重点,也是学生接受时感到头痛的难点。不等式的证明方法很多。如:比较法(比差商法)、分析法、综合法、数学归纳......

    放缩法证明不等式例证

    例谈“放缩法”证明不等式的基本策略江苏省苏州市木渎第二高级中学母建军 215101近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以......

    放缩法证明数列不等式

    放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用......

    放缩法证明数列不等式

    放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n......

    用放缩法证明与数列和有关的不等式

    用放缩法证明与数列和有关的不等式湖北省天门中学薛德斌数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等......

    放缩法与不等式的证明

    放缩法与不等式的证明我们知道,“放”和“缩”是证明不等式时最常用的推证技巧,但经教学实践告诉我们,这种技巧却是不等式证明部分的一个教学难点。学生在证明不等式时,常因忽视......

    利用放缩法证明不等式举例

    利用放缩法证明不等式举例高考中利用放缩方法证明不等式,文科涉及较少,但理科却常常出现,且多是在压轴题中出现。放缩法证明不等式有法可依,但具体到题,又常常没有定法,它综合性强......