第一篇:用放缩法证明与数列和有关的不等式
用放缩法证明与数列和有关的不等式
湖北省天门中学薛德斌
数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.
一.先求和后放缩
例1.正数数列an的前n项的和Sn,满足2Snan1,试求:
(1)数列an的通项公式;
(2)设bn11,数列bn的前n项的和为Bn,求证:Bn 2anan
1解:(1)由已知得4Sn(an1)2,n2时,4Sn1(an11)2,作差得:
22所以(anan1)(anan12)0,又因为an为正数数4anan2anan12an1,列,所以anan12,即an是公差为2的等差数列,由2S1a11,得a11,所以an2n1
(2)bn11111(),所以 anan1(2n1)(2n1)22n12n1
Bn111111111(1) 23352n12n122(2n1)
2注:一般先分析数列的通项公式.如果此数列的前n项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列{an}满足条件an1anfn)求和或者利用分组、裂项、倒序相加等方法来求和.
二.先放缩再求和
1.放缩后成等差数列,再求和
例2.已知各项均为正数的数列{an}的前n项和为Sn,且anan2Sn.2an2an12(1)求证:Sn;
4(2)
解:(1)在条件中,令n1,得a1a12S12a1,a10a11,又由条件
22anan2Sn有an1an12Sn1,上述两式相减,注意到an1Sn1Sn得
(an1an)(an1an1)0an0an1an0∴an1an
1所以,an11(n1)n,Sn
n(n1)
n(n1)1n2(n1)2anan1
所以Sn
2224
(2)因为n
n(n1)n1,所以
n2
n(n1)n1,所以
S1S2Snn23n22
Sn112
1223n(n1)23n1
222222
S2Sn
1222
n2n(n1)22
Sn2
;S1
2.放缩后成等比数列,再求和
例3.(1)设a,n∈N*,a≥2,证明:a2n(a)n(a1)an;
(2)等比数列{an}中,a1,前n项的和为An,且A7,A9,A8成等差数列.设
a1bnn,数列{bn}前n项的和为Bn,证明:Bn<.
31an
解:(1)当n为奇数时,an≥a,于是,a
2n
(a)nan(an1)(a1)an.
当n为偶数时,a-1≥1,且an≥a2,于是
a2n(a)nan(an1)(a21)an(a1)(a1)an(a1)an.
(2)∵A9A7a8a9,A8A9a9,a8a9a9,∴公比q
a91
.a82
∴an(). bn
n
1n11()n
.nnn
4(2)32
(12)
11111(11)1.∴Bnb1b2bn
1323223332n32n12
3.放缩后为差比数列,再求和
例4.已知数列{an}满足:a11,an1(1
n)an(n1,2,3).求证: 2n
an1an3
n1
n1
n)an,所以an1与an同号,又因为a110,所以an0,n2
证明:因为an1(1即an1an
n
an0,即an1an.所以数列{an}为递增数列,所以ana11,2nnn12n1
即an1annann,累加得:ana12n1.
22222
12n1112n1
令Sn2n1,所以Sn23n,两式相减得:
2222222
11111n1n1n1Sn23n1n,所以Sn2n1,所以an3n1,22222222
n1
故得an1an3n1.
4.放缩后为裂项相消,再求和
例5.在m(m≥2)个不同数的排列P1P2…Pn中,若1≤i<j≤m时Pi>Pj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列(n1)n(n1)321的逆序数为an,如排列21的逆序数a11,排列321的逆序数
a36.
(1)求a4、a5,并写出an的表达式;(2)令bn
ana
n1,证明2nb1b2bn2n3,n=1,2,….an1an
n(n1)
.2解(1)由已知得a410,a515,ann(n1)21
(2)因为bn
anann2nn2
n122,n1,2,,an1ann2nn2n
所以b1b2bn2n.nn2222,n1,2,,n2nnn2
11111
1)] 所以b1b2bn2n2[()()(
1324nn2
222n3.=2n3
n1n2
又因为bn
综上,2nb1b2bn2n3,n1,2,.注:常用放缩的结论:(1)
1111111
2(k2)kk1k(k1)kk(k1)k1k
2kk1
1k
2kk1
2(1k1
1k)(k2)
(2).2(1k
1k1)
在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论
n23n22、n(n1)22
为等差数列求和结果的类型,则把通项放缩为等差数
11)为等比数列求和结果的类型,则把通n
n1
项放缩为等比数列,再求和即可;如例4要证明的结论3n1为差比数列求和结果的类
22型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论2n3为n1n2
列,再求和即可;如例3要证明的结论(1
裂项相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.
虽然证明与数列和有关的不等式问题是高中数学中比较困难的问题,但是我们通过仔细分析它的条件与要证明的结论之间的内在关系,先确定能不能直接求和,若不能直接求和则要考虑把通项朝什么方向进行放缩.如果我们平时能多观测要证明结论的特征与数列求和之间的关系,则仍然容易找到解决这类问题的突破口.
《高中数学教与学》2007年第8期刊号ISSN 1007—1830
第二篇:放缩法证明数列不等式
放缩法证明数列不等式
基础知识回顾:
放缩的技巧与方法:
(1)常见的数列求和方法和通项公式特点:
① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)
② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式
④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项
(2)与求和相关的不等式的放缩技巧:
① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手
② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)
③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。
(3)放缩构造裂项相消数列与等比数列的技巧:
① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)
② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。
注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响
(4)与数列中的项相关的不等式问题:
① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形
② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:
类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).
(1)求错误!未找到引用源。的通项公式;
(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.
例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。
(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.类型
二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。).
例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;
②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;
②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.方法、规律归纳: 常见的放缩变形:
(1)错误!未找到引用源。,(2)错误!未找到引用源。
注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。
错误!未找到引用源。可推广为:错误!未找到引用源。
错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。
(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;
(2)求错误!未找到引用源。;
(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.
⑴ 求证:数列错误!未找到引用源。为等差数列;
⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;
⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。
3.【江苏省徐州市2018届高三上学期期中考试】已知数列的前项和为,满足,.数列
满足(1)求数列(2)若和,且. 的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;
(3)是否存在正整数,使,请说明理由.)成等差数列,若存在,求出所有满足条件的,若不存在,4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.
(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;
(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;
(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.
5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.
(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.
(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。.
6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列
分别满足,其中(1)若数列(2)若数列①若数列②若数列,设数列的前项和分别为的通项公式;,使得,称数列
.都为递增数列,求数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列
为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;
(2)求证: 错误!未找到引用源。;
(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;
(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;
(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.
(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;
(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列.
10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.
(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式;
②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.
放缩法证明数列不等式
基础知识回顾:
放缩的技巧与方法:
(1)常见的数列求和方法和通项公式特点:
① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)
② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式
④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项
(2)与求和相关的不等式的放缩技巧:
① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手
② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)
③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。
(3)放缩构造裂项相消数列与等比数列的技巧:
① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)
② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响
(4)与数列中的项相关的不等式问题:
① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形
② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:
类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).
(1)求错误!未找到引用源。的通项公式;
(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.
【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。
(2)由(1)知,错误!未找到引用源。,即错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,则有错误!未找到引用源。,而错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,故错误!未找到引用源。,解得错误!未找到引用源。,再将错误!未找到引用源。代入错误!未找到引用源。,得错误!未找到引用源。,例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。
(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.【答案】(1)错误!未找到引用源。(2)详见解析(3)详见解析 【解析】
试题分析:(1)根据及时定义,列出等量关系,解出首项,写出通项公式;(2)根据子集关系,进行放缩,转化为等比数列求和;(3)利用等比数列和与项的大小关系,确定所定义和的大小关系:设错误!未找到引用源。,则错误!未找到引用源。因此由错误!未找到引用源。,因此错误!未找到引用源。中最大项必在A中,由(2)得错误!未找到引用源。.试题解析:(1)由已知得错误!未找到引用源。.于是当错误!未找到引用源。时,错误!未找到引用源。.又错误!未找到引用源。,故错误!未找到引用源。,即错误!未找到引用源。.所以数列错误!未找到引用源。的通项公式为错误!未找到引用源。.(2)因为错误!未找到引用源。,错误!未找到引用源。,所以错误!未找到引用源。.因此,错误!未找到引用源。.综合①②③得,错误!未找到引用源。.类型
二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。). 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.
故错误!未找到引用源。,则有:错误!未找到引用源。错误!未找到引用源。例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;
②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;
②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.【答案】(1)①错误!未找到引用源。;②不存在;(2)①当错误!未找到引用源。且错误!未找到引用源。时,数列错误!未找到引用源。是以错误!未找到引用源。为首项,错误!未找到引用源。为公比的等比数列,当错误!未找到引用源。时,错误!未找到引用源。,不是等比数列;②错误!未找到引用源。.
方法、规律归纳: 常见的放缩变形:
(1)错误!未找到引用源。,(2)错误!未找到引用源。
注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。
错误!未找到引用源。可推广为:错误!未找到引用源。
错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。
(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;
(2)求错误!未找到引用源。;
(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)当错误!未找到引用源。为偶数时,错误!未找到引用源。都成立,(3)详见解析
(3)假设存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立,因为错误!未找到引用源。,错误!未找到引用源。,所以只要错误!未找到引用源。
即只要满足 ①:错误!未找到引用源。,和②:错误!未找到引用源。,对于①只要错误!未找到引用源。就可以; 对于②,当错误!未找到引用源。为奇数时,满足错误!未找到引用源。,不成立,当错误!未找到引用源。为偶数时,满足错误!未找到引用源。,即错误!未找到引用源。令错误!未找到引用源。,因为错误!未找到引用源。
即错误!未找到引用源。,且当错误!未找到引用源。时,错误!未找到引用源。,所以当错误!未找到引用源。为偶数时,②式成立,即当错误!未找到引用源。为偶数时,错误!未找到引用源。成立.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.
⑴ 求证:数列错误!未找到引用源。为等差数列;
⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;
⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。
要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,只要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,即使错误!未找到引用源。对错误!未找到引用源。为正偶数恒成立,错误!未找到引用源。,错误!未找到引用源。,故实数错误!未找到引用源。的取值范围是错误!未找到引用源。; ⑶由⑴得错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,设错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。错误!未找到引用源。
错误!未找到引用源。当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,因此数列错误!未找到引用源。的最大值为错误!未找到引用源。.
【点睛】本题考查数列与不等式的综合应用,涉及等差数列的判定与证明,其中证明(1)的关键是分析得到错误!未找到引用源。与错误!未找到引用源。的关系式.
3.【江苏省徐州市2018届高三上学期期中考试】已知数列满足,且
. 的前项和为,满足,.数列(1)求数列(2)若和的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;
(3)是否存在正整数,使,请说明理由.
【答案】(1)(2))成等差数列,若存在,求出所有满足条件的,若不存在,(3)不存在
(2)由(1)得于是所以,两式相减得所以由(1)得因为对 即所以恒成立,都有,,恒成立,记所以因为从而数列于是,为递增数列,所以当.
(),使
成等差数列,则,时取最小值,(3)假设存在正整数即,若为偶数,则若为奇数,设于是当时,为奇数,而为偶数,上式不成立.,则,与
矛盾;,即,此时
4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.
(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;
(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;
(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.
【答案】(1)错误!未找到引用源。;(2)存在,错误!未找到引用源。;(3)错误!未找到引用源。. 【解析】试题分析:
(1)根据题设条件用累乘法能够求出数列{an}的通项公式.b1=2,bn+1=2bn可知{bn}是首项为2,公比为2的等比数列,由此能求出{bn}的通项公式.(2)bn=2n.假设存在自然数m,满足条件,先求出错误!未找到引用源。,将问题转化成错误!未找到引用源。可求得错误!未找到引用源。的取值范围;(3)分n是奇数、n是偶数两种情况求出Tn,然后写成分段函数的形式。
试题解析:(1)由错误!未找到引用源。,即错误!未找到引用源。. 又错误!未找到引用源。,所以错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.当错误!未找到引用源。时,上式成立,因为错误!未找到引用源。,所以错误!未找到引用源。是首项为2,公比为2的等比数列,故错误!未找到引用源。.(3)当错误!未找到引用源。为奇数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。; 当错误!未找到引用源。为偶数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.因此错误!未找到引用源。.
点睛:数列求和时,要根据数列项的特点选择不同的方法,常用的求和方法有公式法、裂项相消法、错位相减法、分组求和等。
5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.
(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.
(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.
(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。. 【答案】(1)不存在,理由见解析(2)证明见解析(3)证明见解析
当错误!未找到引用源。时,错误!未找到引用源。,两式相减得错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,综上,错误!未找到引用源。.
6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列的前项和分别为(1)若数列.分别满足,其中,设数列都为递增数列,求数列的通项公式;(2)若数列①若数列②若数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列,使得,称数列为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.【答案】(1)
.(2)①,② 6.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;
(2)求证: 错误!未找到引用源。;
(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.【答案】(1)不具有(2)见解析(3)错误!未找到引用源。.(2)因为集合错误!未找到引用源。具有性质错误!未找到引用源。,所以对错误!未找到引用源。而言,存在错误!未找到引用源。,使得错误!未找到引用源。,又因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,同理可得错误!未找到引用源。,将上述不等式相加得: 错误!未找到引用源。,所以错误!未找到引用源。.(3)由(2)可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,故错误!未找到引用源。的最小值为错误!未找到引用源。.点睛:本题是一道新定义的迁移信息并利用信息的信息迁移题。求解第一问时,直接运用题设条件中所提供的条件信息进行验证即可;解答第二问时,先运用题设条件中定义的信息可得错误!未找到引用源。,同理可得错误!未找到引用源。,再将上述不等式相加得: 错误!未找到引用源。即可获证错误!未找到引用源。;证明第三问时,充分借助(2)的结论可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。可得错误!未找到引用源。,因此构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,进而求出错误!未找到引用源。的最小值为错误!未找到引用源。.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;
(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;
(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.【答案】(1)见解析(2)错误!未找到引用源。(3)见解析
解:(1)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,从而错误!未找到引用源。,所以当错误!未找到引用源。时,错误!未找到引用源。,即数列错误!未找到引用源。是等差数列.(2)因为的任意的错误!未找到引用源。都是公差为错误!未找到引用源。,的等差数列,所以错误!未找到引用源。是公差为错误!未找到引用源。,的等差数列,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,显然,错误!未找到引用源。满足条件,当错误!未找到引用源。时,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。不是整数,综上所述,正整数错误!未找到引用源。的取值集合为错误!未找到引用源。.(3)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,所以错误!未找到引用源。,即数列错误!未找到引用源。是公比大于错误!未找到引用源。,首项大于错误!未找到引用源。的等比数列,记公比为错误!未找到引用源。.以下证明: 错误!未找到引用源。,其中错误!未找到引用源。为正整数,且错误!未找到引用源。,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,当错误!未找到引用源。时,因为错误!未找到引用源。为减函数,错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,综上,错误!未找到引用源。,其中错误!未找到引用源。错误!未找到引用源。
错误!未找到引用源。,即错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.
(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;
(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列. 【答案】(1)cn=1.(2)见解析.10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.
(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式; ②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.
【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。
(3)错误!未找到引用源。,在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,组成公比为错误!未找到引用源。的等比数列,故有错误!未找到引用源。,即错误!未找到引用源。,
第三篇:放缩法证明数列不等式
放缩法证明不等式
1、设数列an的前n项的和Sn
43an
13
2n
n
1
3(n1,2,3,)
n
(Ⅰ)求首项a1与通项an;(Ⅱ)设Tn
an42
n
n
2Sn
(n1,2,3,),证明:Ti
i1
解:易求
SnTn
(其中n为正整数)
n
n
432
n
an
n
13
2
n1
4n
23
n
2
n1
2
n1
121
n
Sn
2
n1
121
11
nn1
22121
所以:
i1
Ti
3131
1n12212122、求证:(1)
11法1:数归(两边都可以)
法2:放缩裂项 法3:定积分放缩(2)
22
nN)
1n1n
31n
11n
法1:放缩一:
n(n1)
(n2)
Sn
1n
1n
(1336
52)(15
1653
1n1
1n)
=1
1336
121400
11
121400
1
23893600(1
1
24003600
.放缩二:
1n
1n1
(n1)(n1)
2n1
n1),(n2)
Sn54
1n
(11
2)
111111111()22435n2nn1n1
1111151115
()().223nn142233
放缩三:
1n
1n
(n
112)(n
12)
(1n
1n
12)2(12n1
12n1),(n1)
Sn
1n
12(13
12n1
12n1)12(13
12n1)
法2:数归——加强命题:常用的放缩公式:
1n(n1)
2n
n1
1n
1n
1n
1n(n1)1n
;n
n12nn
n1;
n
n
2n1;
ab
ambm
(ba0,m0)
1k
k(k1)(k1)
1n11k(k1)
111*
(k2,kN)
2k(k1)k(k1)
1nk
nkn1k!
1n2
...
kn11
(k3)
(k2)
;212
n1n
k!k(k1)(k2)
n
an
例3:已知:
1
(nN
),求证:ai
i1
n2
法1:均值不等式:即证
715n2
...
212
n1
n
1
n2
也即:
715
...
212
n
n1
n
1
而
:
715
...
212
n1
1
n
法2:放缩后裂项求和
an
21212
n1n
1(
212(21
n
n)1
n1
=
1
21(2
n1
n
1)(21)
n
=
21
n
n1
1)
法3:数归,但是直接去证是不行的,要转化为一个加强命题
4.定义数列如下:a12,an1anan1,nN
证明:(1)对于nN恒有an1an成立。
2
(2)当n2且nN,有an1anan1a2a11成立。
(3)1
2006
1a1
1a2
1a2006
1。
解:(1)用数学归纳法易证。
(2)由an1anan1得:an11an(an1)an1an1(an11)……
a21a1(a11)以上各式两边分别相乘得:
an11anan1a2a1(a11),又a12an1anan1a2a11(3)要证不等式1
2006
1a1
1a2
1a2006
1,可先设法求和:
1a1
1a2
a2006,再进行适当的放缩。
an11an(an1)
1an111an1a1
1an1
1an
1an11a2
1an111a2006
(1a111
1a211)(1a21
1a31)(1a20061
1a20071)
a11
a200711
1
a1a2a2006
1
又a1a2a2006a1
2006
2
2006
1
1a1a2a2006
1
2006
原不等式得证。
5.已知数列an中an
i
i
n
nn
21,求证:ai(ai1)3.i1
方法一:ai(ai1)
n
i
2121
i
i
i
(21)(22)
i
i1
i1
(21)(21)
i1
1
121
i
.
i1
ai(ai1)
(21)
(121
121)(121
121)(12
n1
1
121
n)3
121
n
3.方法二:
ai(ai1)
i
i
(21)
i
122
i
122
i
122
i
22
i
i1
.(i2)
n
i1
ai(ai1)2
n1
2(1
12)3n1
n1
3.n
法3:数归证
i1
ai(ai1)3
121
n
3.(即转化为证明加强命题)
6、已知函数fxln1xx,数列an满足:
a1
2,ln2lnan1an1anf
an1an.
(1)求证:ln1xx;(2)求数列an的通项公式;
(3)求证不等式:a1a2annln2lnn2. 解:(1)fxln1xx,f'x
11x
1
x1x,当1x0时,f'x0,即yf(x)是单调递增函数;当x0时,f'x0,即yf(x)是单
调递减函数.
所以f'00,即x0是极大值点,也是最大值点
fxln1xxf00ln1xx,当x0时取到等号.(2)法1:数学归纳法(先猜想,再证明)
法2:由ln2lnan1an1anfan1an得2an1an1an1,an1
12an,an11
12an
1
an12an,1an1
1
1an1
1,即数列
1
2,公差为1,是等差数列,首项为
a11an1
nn1
∴
an1
n1an
.
(3)法1:
a1a2an1
111
1
121
1
111
n
23n1n1
又∵x0时,有xln1x,令x
1n112
0,则
1n2
ln1ln n1n1n11
∴n
3
345n1n2
nlnlnlnlnln n1234nn1n
2n2
nln
n12
nln
343
ln2
n nl
∴a1a2annln2lnn2 . 法2:积分法要证原命题,即证:
12
ln(n2)ln2 n11
1113n12
12
n2
1x
dxlnx
n22
法3:数归证明:7.1、(1)求证:2
n
ln(n2)ln2 n1
2n1(n2,nN)
nn1n01
法1:2CnCn...CnCn;
法2:数学归纳法 法3:函数法(求导)
8.若nN,证明:()+()+…+(n
n
*
n
n
n1n)+(n
nn)
n
ee1
提示:借助e1x证明
x
第四篇:放缩法与数列不等式的证明
2017高三复习灵中黄老师的专题
放缩法证明数列不等式
编号:001 引子:放缩法证明数列不等式历来是高中数学的难点,在高考数列试题中经常扮演压轴的角色。由于放缩法灵活多变,技巧性要求较高,所谓“放大一点点太大,缩小一点点太小”。为了揭开放缩法的神秘面纱,黄老师特开设这一专题,带领大家走近“放缩法”。一.放缩法证明不等式的理论依据: 1.不等式的传递性:
2.同向不等式的可加性:
3.同向的正数不等式的可乘性:
二.常见的数列求和的方法及公式特点: 1.等差数列的和;an_____sn______(nN)2.等比数列的和:ankqn,sn3.错位相减法:等差×等比
4.裂项相消法:若anan1d(d为常数)在三.常见题型分析:
1.放缩目标模型:可求和 1.1等差模型
1111()(nN)
anan1dan1ana1(1qn)(q1)(nN)1qn(n1)n(n2)1223...n(n1)例1.(1985全国卷)求证:(nN)22
n(n1)n(n3)1223...n(n1)变式:(nN)22
1.2等比模型
1111例2.求证:23....n1(nN)2222
变式.求证:1121112231......2n11(nN21)
例3.(2014全国卷Ⅱ1an满足a11,an13an1,1)证明:a1n2是等比数列.并求an的通項公式 2)证明:1a113a.......12an2
变式:求证:1211211152231......2n13(nN)
例4.(2002全国卷理22题7题)第2问已知数已知数列
列(()an满足an1an2nan1,n1,2,3.......当a13时,证明对所有的n1,nN(1)ann2(2)证明:1a11a.......11121an12
1.3错位相减模型
例5.求证:12123n222233.......2nn2(nN)
1.4裂项相消模型
例2(2013广东文19第(3)问)求证:11313515711(2n1)(2n1)2
11111例6.证明:n12n12232......n2n(nN)
(nN)
111变式1.证明:122......22(nN)
变式2.证明:
变式3.证明:
变式4.证明:
变式5.证明:
23n 111172232......n24(nN)112115232......n24(nN)1213......1n2n(nN)1113252......(2n1)232
1115变式6.证明:122......235(2n1)4
常见的放缩技巧总结:
第五篇:用放缩法证明不等式
用放缩法证明不等式
蒋文利飞翔的青蛙
所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。
一.“添舍”放缩
通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。
例1.设a,b为不相等的两正数,且a3-b3=a2-b2,求证1<a+b<4。
3证明:由题设得a2+ab+b2=a+b,于是(a+b)2>a2+ab+b2=a+b,又a+b>0,得a+b>1,又ab<(a+b),而(a+b)=a+b+ab<a+b+
+b)2<a+b,所以a+b<
例2.已知a、b、c不全为零,求证:
a2abb2b2bcc2c2aca2>3(abc)21422132(a+b),即(a4444,故有1<a+b<。3
3证明:因为a2abb2
同理b2bcc2>bc,2(ab23)b2>42(ab2)2abb≥a,22c2aca2>ca。
23(abc)2所以a2abb2
二.分式放缩 b2bcc2c2aca2>
一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。
例3.已知a、b、c为三角形的三边,求证:1<abc++<2。bcacab
证明:由于a、b、c为正数,所以baab>>,bcabcacabc
cc
>ababc,所以
abcabc
++>++=1,又a,b,c为三角形的bcaca+b+ca+b+ca+b+cab
边,故b+c>a,则
c2c,<
ababc
a2a2b
为真分数,则a<,同理b<,bcabcacabcbc
故
abc2a2b2c
++<++2.bcacabcabcabcab
abc
++<2。bcacab
综合得1<
三.裂项放缩
若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。例4.已知n∈N*,求1
1n
„
1n
2n
n
„
1n
<2n。
证明:因为<
nn13
2(nn1),则1
<12(21)2(2)„2(nn1)2n1<2n,证毕。
例
n(n1)2
5.an
已知
(n1)2
nN
*
且
an
223n(n1),求证:
对所有正整数n都成立。
n
证明:因为n(n1)又n(n1)
122
n,所以an12n
n(n1),n(n1)
232,n(n1)
2n12
(n1)
所以an立。
,综合知结论成四.公式放缩
利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。
例6.已知函数f(x)证明:由题意知
f(n)
nn1
2121
nn
2121
x
x,证明:对于nN*且n3都有f(n)
nn1。
nn1
(1
221
n)(1
1n1)
1n1
221
n
2(2n1)(n1)(21)
n
n
又因为nN*且n3,所以只须证2n2n1,又因为,n
(11)
n
Cn
CnCn
Cn
n1
Cn
n
1n
n(n1)
n12n1
所
以f(n)
nn1。
例7.已知f(x)x2,求证:当ab时f(a)f(b)ab。证
f(a)f(b)
1a2
b2
明
a2b2a
:
b
ababa
b2
1
ababab
(ab)ab
ab
ab证毕。
五.换元放缩
对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目的。
例8.已知abc,求证
1ab
1bc
1ca
0。
证明:因为abc,所以可设act,bcu(tu0),所以tu0则
1ab
1bc
1ca
1tu
1u1t1u1ttutu
0,即
1ab
1bc
1ca
0。
例9.已知a,b,c为△ABC的三条边,且有a2b2c2,当nN*且n3时,求证:anbncn。
证明:由于a2b2c2,可设a=csina,b=ccosa(a为锐角),因为0sina1,0cosa1,则当n3时,sinnasin2a,cosnacos2a,所以anbncn(sinnacosna)cn(sin2acos2a)cn。
六.单调函数放缩
根据题目特征,通过构造特殊的单调函数,利用其单调性质进行放缩求解。例10.已知a,b∈R,求证
x1x
ab1ab
a1a
b1b。
证明:构造函数f(x)
f(x1)f(x2)
x11x1
(x0),首先判断其单调性,设0x1x2,因为
x21x2
x1x2(1x1)(1x2)
0,所以fx1fx2,所以f(x)在[0,]上是增函数,取x1ab,x2ab,显然满足0x1x2,所以f(ab)f(|a||b|),即
|ab|1|ab|
|a||b|1|a||b|
|a|1|a||b|
|b|1|a||b|
|a|1|a|
|b|1|b|
。证毕。