第一篇:高一不等式解法及放缩法证明练习
不等式
1.设a,b,c,d是任意正数,求证:1
2.已知x,y,z
3.求证:1)1
4.已知a,b,cR,求证:abcabbcca。222aabdbbcaccdbddac2。32(xyz)。nN*)。
225.(1)不等式x3x100的解集是___________;(2)不等式5x3x11的解集是_________;
(3)不等式2x
x11的解集是___________________。
6.不等式0的解集是 3x
1111111A.{x|x或xB.{x|xC.{x|xD.{x|x 32322
3117.不等式的解集是 x
2A.(,2)B.(2,)C.(0,2)D.(,2)(2,)2x1
8.不等式x
5(x1)2≥2的解集是
A.3
1111B.,C.D.3,11,311,3 222,2
x8x202
9.不等式mx22(m1)x9m40的解集为R,求实数m的取值范围。
10.不等式|2x1
x|3的解集是()
A、{x|x1,或x5};B、{x|x
15,或x1};C、{x|1x
15;D、{x|1x5}。
11.若不等式|ax2|6的解集为{x|1x2},则实数a等于()
A、8;B、2;C、-4;D、-8。
12.不等式
A、a
axx1121的解集为{x|x1,或x2},则a的值为()12;C、a;B、a12;D、a1
2
1x2
13.不等式组的解集是_______________________。1|x|3
14.设集合A{x||x|4},B{x|x
24x30},则集合{x|xA,且xAB}__________________。
15.解不等式:
x2x15x220。
16.求不等式|x5||2x3|1的解集。
17.已知A{x||2x3|5},B{x|x
2x60},求AB,AB。
18.若A{x|x5x60},B{x||x5|a,a0},且ABB,求a的取值范围。
19.不等式ax22bx20的解集为{x|1
2x1
3,则ab()
A、-10;B、10;C、-14;D、14。
20.已知不等式x(a1)xa0,(1)若不等式的解集为(1,3),则实数a的值是_______________;
(2)若不等式在(1,3)上有解,则实数a的取值范围是___________;
(3)若不等式在(1,3)上恒成立,则实数a的取值范围是_________。2
第二篇:放缩法证明不等式
放缩法证明不等式
不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。
一、不等式的初等证明方法
1.综合法:由因导果。
2.分析法:执果索因。基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。
(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。
3.反证法:正难则反。
4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:
(1)添加或舍去一些项,如
(2)利用基本不等式,如:
(3)将分子或分母放大(或缩小):
5.换元法:换元的目的就是减少不等式中变量,以使问题
化难为易、化繁为简,常用的换元有三角换元和代数换元。
二、部分方法的例题
1.换元法
换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。
2.放缩法
欲证A≥B,可将B适当放大,即B1≥B,只需证明A≥B1。相反,将A适当缩小,即A≥A1,只需证明A1≥B即可。
注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地应对那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;二是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。
解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;有了自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。
第三篇:放缩法证明不等式
主备人:审核:包科领导:年级组长:使用时间:
放缩法证明不等式
【教学目标】
1.了解放缩法的概念;理解用放缩法证明不等式的方法和步骤。
2.能够利用放缩法证明简单的不等式。
【重点、难点】
重点:放缩法证明不等式。
难点:放缩法证明不等式。
【学法指导】
1.据学习目标,自学课本内容,限时独立完成导学案;
2.红笔勾出疑难点,提交小组讨论;
3.预习p18—p19,【自主探究】
1,放缩法:证明命题时,有时可以通过缩小(或)分式的分母(或),或通过放大(或缩小)被减式(或)来证明不等式,这种证明不
等式的方法称为放缩法。
2,放缩时常使用的方法:①舍去或加上一些项,即多项式加上一些正的值,多项式的值变大,或多项式减上一些正的值,多项式的值变小。如t22t2,t22t2等。
②将分子或分母放大(或缩小):分母变大,分式值减小,分母变小,分
式值增大。
如当(kN,k1)1111,22kkk(k1)k(k1),③利用平均值不等式,④利用函数单调性放缩。
【合作探究】
证明下列不等式
(1)
(2),已知a>0,用放缩法证明不等式:loga
(a1)1111...2(nN)2222123nloga(a1)1
(3)已知x>0, y>0,z>0求证
xyz
(4)已知n
N,求证:1
【巩固提高】
已知a,b,c,d都是正数,s
【能力提升】
求证: ...abcd求证:1
1aba
1ab
1b
本节小结:
第四篇:放缩法证明不等式
放缩法证明不等式
在学习不等式时,放缩法是证明不等式的重要方法之一,在证明的过程如何合理放缩,是证明的关键所在。现例析如下,供大家讨论。例1:设a、b、c是三角形的边长,求证
abc≥3 bcacababc证明:由不等式的对称性,不妨设a≥b≥c,则bca≤cab≤abc
且2cab≤0,2abc≥0
∴
∴abcabc3111
bcacababcbcacababc2abc2bac2cab2abc2bca2cab≥0
bcacababccabcabcababc≥3 bcacababc2bac无法放缩。所以在运用放
cab[评析]:本题中为什么要将bca与abc都放缩为cab呢?这是因为2cab≤0,2abc≥0,而2bac无法判断符号,因此缩法时要注意放缩能否实现及放缩的跨度。
例2:设a、b、c是三角形的边长,求证
abc(bc)2(ca)2(ab)2≥ bccaab1 [(ab)2(bc)2(ca)2]
3证明:由不等式的对称性,不防设a≥b≥c,则3abc0,3bca≥bccca
bca0
左式-右式3abc3bca3cab(bc)2(ca)2(ab)2 bcacab3bca3cab(ca)2(ab)2 abab2(bca)3bca3cab(ab)2(ab)2(ab)2≥0 ababab ≥ ≥[评析]:本题中放缩法的第一步“缩”了两个式了,有了一定的难度。由例
1、例2也可知运用放缩法前先要观察目标式子的符号。
例3:设a、b、cR且abc1求证
111≤1 1ab1bc1ca证明:设ax3,by3,cz3.且 x、y、zR.由题意得:xyz1。
∴1abxyzx3y3
∴x3y3(x2yxy2)x2(xy)y2(yx)(xy)2(xy)≥0 ∴x3y3≥x2yxy2
∴1abxyzx3y3≥xyzxy(xy)xy(xyz)
∴
1z1≤
xy(xyz)xyz1abyx11≤,≤ ∴命题得证.xyzxyz1bc1ca同理:由对称性可得[评析]:本题运用了排序不等式进行放缩,后用对称性。
39例4:设a、b、c≥0,且abc3,求证a2b2c2abc≥
22证明:不妨设a≤b≤c,则a≤1又∵(44。∴a0。33ab23a23434)≥bc,即()≥bc,也即bc(a)≥(3a)2(a)。2223833∴左边(abc)22(abbcca)abc
23434 92a(bc)bc(a)≥92a(3a)(3a)2(a)
2383
3416339(3a)[(3a)(a)a]9(3a)[a2a4]9(a32a2a12)8338899393a(a22a1)a(a1)2≥
2282893 ∴a2b2c2abc≥
22[评析]:本题运用对称性确定符号,在使用基本不等式可以避开讨论。
例5:设a、b、cR,pR,求证:
abc(apbpcp)≥ap2(abc)bp2(abc)cp2(abc)
证明:不妨设a≥b≥c>0,于是
左边-右边ap1(bca2abca)bp1(cab2bcab)cp1(abc2cabc)
ap1(ab)[(ab)(bc)]bp1(ab)(bc)cp1[(ab)(bc)](bc)ap1(ab)2(ab)(bc)(ap1bp1cp1(bc)2
≥(ab)(bc)(ap1bp1cp1)如果p1≥0,那么ap1bp1≥0;如果p1<0,那么cp1bp1≥0,故有(ab)(bc)(ap1bp1cp1)≥0,从而原不等式得证.例6:设0≤a≤b≤c≤1,求证:
abc(1a)(1b)(1c)≤1
bc1ca1ab1abcabc≤,再证明以 bc1ca1ab1ab1证明:设0≤a≤b≤c≤1,于是有下简单不等式
abcab1c1(1a)(1b)(1c)≤1,因为左边(1a)(1b)(1c)
ab1ab1ab1
11c[1(1ab)(1a)(1b)],再注意(1ab)(1a)(1b)≤(1abab)
ab1(1a)(1b)(1a)(1b)(1a)(1b)(1a2)(1b2)≤1得证.在用放缩法证明不等式A≤B,我们找一个(或多个)中间量C作比较,即若能断定A ≤C与C≤B同时成立,那么A≤B显然正确。所谓的“放”即把A放大到C,再把C放大到B,反之,所谓的“缩”即由B缩到C,再把C缩到A。同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及。
第五篇:放缩法证明不等式例证
例谈“放缩法”证明不等式的基本策略
江苏省苏州市木渎第二高级中学母建军 21510
1近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题,例谈“放缩”的基本策略,期望对读者能有所帮助。
1、添加或舍弃一些正项(或负项)
例
1、已知an21(nN).求证:n*an1a1a2...n(nN*).23a2a3an
1ak2k11111111k1.,k1,2,...,n, 证明: ak12122(2k11)23.2k2k2232k
aa1a2n1111n11n1...n(2...n)(1n), a2a3an1232222322
3an1aan12...n(nN*).23a2a3an1
2若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了2k2,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩)
例
2、函数f(x)=4x
14x,求证:f(1)+f(2)+…+f(n)>n+12n11(nN*).2证明:由f(n)= 4n
14n=1-111 nn1422
221得f(1)+f(2)+…+f(n)>11
122211
22n
111111n(1n1)nn1(nN*).424222
此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进
行放缩,从而对左边可以进行求和.若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。
3、先放缩,后裂项(或先裂项再放缩)
例
3、已知an=n,求证:∑ 证明:∑
k=
1nn
nk=1ak
k
n
<3.
(k-1)k(k+1)
=1k2n
ak
2=∑
k=
1n
<1+∑
k=2
<1+∑
k=2
(k-1)(k+1)(k+1 +k
-1)
=1+ ∑(k=2
n
-)
(k-1)
(k+1)
1=1+1+- <2+<3.
(n+1)2
2本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.4、放大或缩小“因式”;
n
1.例
4、已知数列{an}满足an1a,0a1,求证:(akak1)ak2322k
1n
证明 0a1
n
11112,an1an,a2a12,a3.当k1时,0ak2a3, 2416161n11(akak1)(a1an1).16k116
32(akak1)ak2
k1
本题通过对因式ak2放大,而得到一个容易求和的式子
5、逐项放大或缩小
(a
k
1n
k
ak1),最终得出证明.n(n1)(n1)
2an例
5、设an2234n(n1)求证 22122n1
2证明:∵ n(n1)nnn(n1)(n)
2n
1n(n1)(n1)213(2n1)
∴ 123nan,∴
an
222
2n1
本题利用n,对an中每项都进行了放缩,从而得到可以求和的∴ n
n(n1)
数列,达到化简的目的。
6、固定一部分项,放缩另外的项; 例
6、求证:
11117 2222123n
4证明:
1
2nn(n1)n1n
11111111151171()().22222123n223n1n42n4
此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
7、利用基本不等式放缩
例
7、已知an5n
41对任何正整数m,n都成立.1,只要证
5amn1aman因为 amn5mn4,aman(5m4)(5n4)25mn20(mn)16,故只要证
5(5mn4)125mn20(mn)16 即只要证
20m20n37
因为aman5m5n85m5n8(15m15n29)20m20n37,所以命题得证.本题通过化简整理之后,再利用基本不等式由aman放大即可.8、先适当组合, 排序, 再逐项比较或放缩
例
8、.已知i,m、n是正整数,且1<i≤m<n.(1)证明:nAim<mAin;(2)证明:(1+m)>(1+n)
i
i
n
m
证明:(1)对于1<i≤m,且Aim =m·…·(m-i+1),Aimmm1Aimnn1mi1ni
1,,同理ii
mmmnnnmn
由于m<n,对于整数k=1,2,…,i-1,有
nkmk,
nm
AinAim
所以ii,即miAinniAim
nm
(2)由二项式定理有:
2n2n
(1+m)n=1+C1nm+Cnm+…+Cnm,22mm(1+n)m=1+C1mn+Cmn+…+Cmn,由(1)知
mAin
i
>nAim
i
(1<i≤m<n),而
Cim
∴miCin>niCim(1<m<n)
AimiAin
= ,Cni!i!
00222211
∴m0C0n=nCn=1,mCn=nCm=m·n,mCn>nCm,…,mmm+1m1mmCmCn>0,…,mnCnn>nCm,mn>0,2n222n1mm∴1+C1nm+Cnm+…+Cnm>1+Cmn+Cmn+…+Cmn,即(1+m)n>(1+n)m成立.以上介绍了用“放缩法”证明不等式的几种常用策略,解题的关键在于根据问题的特征选择恰当的方法,有时还需要几种方法融为一体。在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。但放缩的范围较难把握,常常出现放缩后得不出结论或得到相反的现象。因此,使用放缩法时,如何确定放缩目标尤为重要。要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。希望大家能够进一步的了解放缩法的作用,掌握基本的放缩方法和放缩调整手段.